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In this paper we present a consolidated equation for all low-field transport coefficients, based on
a reservoir approach developed for non-interacting quasiparticles. This formalism allows us to treat
the two distinct types of charged (fermionic and bosonic) quasiparticles that can be simultaneously
present, as for example in superconductors. Indeed, in the underdoped cuprate superconductors
these two types of carriers result in two onset temperatures with distinct features in transport: T ∗,
where the fermions first experience an excitation (pseudo)gap, and Tc, where bosonic conduction
processes are dominant and often divergent. This provides the central goal of this paper, which is
to address the challenges in thermoelectric transport that stem from having two characteristic tem-
peratures as well as two types of charge carriers whose contributions can in some instances enhance
each other and in others compete. We show how essential features of the cuprates (their “bad-metal”
character and the presence of Fermi arcs) provide an explanation for the classic pseudogap onset
signatures at T ∗ in the longitudinal resistivity, ρxx. Based on the fits to the temperature-dependent
ρxx, we present the implications for all of the other thermoelectric transport properties.

I. INTRODUCTION

There is renewed interest in thermoelectric transport
properties in the condensed matter community, moti-
vated in part by the refined experimental capabilities
which address the difficult measurements [1–5] of the
small thermal Hall effect. The thermal Hall effect has
attracted additional excitement because of topological
signatures [2, 6, 7] which we now understand can be em-
bedded in these data. Moreover, with better experimen-
tal understanding of strongly-correlated materials, such
as the high-temperature superconductors, this has called
attention to the need to understand transport properties
in a holistic way, rather than to focus on any particular
quantity alone. Among the issues of interest [8–10] are
subtle but important features related to magnetization
effects, which must be incorporated in a proper treat-
ment of thermoelectric transport properties.

This leads to the goal of the present paper, which is to
address the full complement of transport coefficients in
the normal-state (T > Tc) of strongly-correlated super-
conductors, focusing on the weak magnetic field regime.
We assume that this normal state is characterized by a
mixture of fermions and fluctuating Cooper pairs. How-
ever, in contrast to conventional fluctuation theory [11],
the fermions themselves are under the influence of pairing
fluctuations and this in turn feeds back to renormalize the
pairs. Both components contribute to the thermoelectric
transport properties, and when the two are treated as
non-interacting quasiparticles we demonstrate, quite re-
markably, that their contributions can be consolidated
into a single equation for all transport coefficients.

Our derivation of the transport coefficients is based
on the introduction of a grand-canonical reservoir con-

taining localized, charged particles (such as proposed by
Leggett and Caldeira [12]) which can be either bosonic
or fermionic. We couple the reservoir to a system (con-
sisting of either non-interacting fermions or bosons) with
the same statistics. Because the principal system is
open, dissipation is automatically generated in the trans-
port expressions after integrating out the reservoir de-
grees of freedom. Furthermore, this approach allows a
more direct treatment of temperature gradient perturba-
tions and enables us to avoid the complications of Lut-
tinger’s [13] gravitational potential approach for deriv-
ing thermal transport coefficients. Our single equation
for the full set of thermoelectric transport coefficients
depends only on the particle spectral functions. Impor-
tantly, our formulae have properly taken into account the
magnetization currents [8–10] and satisfy the Onsager re-
ciprocal relations.

In the mixture of fermions and fluctuating Cooper
pairs, these latter, bosonic contributions are often de-
scribed by Gaussian fluctuation theory. This paper goes
beyond this conventional fluctuation scheme. The frame-
work we use [14] can be interpreted as an extension of
self-consistent Hartree fluctuation theory [15, 16], which
produces a pairing-induced pseudogap in the fermionic
energy spectrum. We define the onset temperature of
this pseudogap as T ∗, which can be larger than Tc by or-
ders of magnitude as the pairing attraction becomes pro-
gressively stronger. The formation of the pseudogap re-
flects the fact that electrons and fluctuating Cooper pairs
are strongly intertwined. Both contributions to transport
should be considered simultaneously.

While in this paper we emphasize both fermionic and
bosonic transport contributions, the literature in the
cuprates exhibits a kind of dichotomy. There has been
a focus on theories in which the transport is dominated
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by bosonic contributions where T ∗ plays no role. These
derive from conventional Gaussian fluctuations [17–22],
which are important in the immediate vicinity of Tc. Ad-
ditionally, there has been a focus on transport associated
with pseudogapped fermions [23–25], where Tc plays little
or no role. For this case, however, a variety of different
origins of the pseudogap have been contemplated.

Here we argue that both the fluctuating Cooper
pairs and pseudogapped fermions should be present in
strongly-correlated superconductors. Moreover, if the
pseudogap is due to pairing fluctuations, the pairs and
fermions are not independent. Thus, we find the size
of the fermionic gap reflects the bosonic binding energy
and constrains the number of preformed pairs. Due to
the finite lifetime of these pairs, and their d-wave pair-
ing nature, the pseudogap leads to a broadening of the
nodes in the fermionic energy spectrum, which can, in
the cuprates, be associated with Fermi arcs [26].

Given that both the fermions and bosons contribute
to thermoelectric transport, a key question with strong
experimental implications is: under what circumstances
can the bosonic transport contributions be visible, as
compared to those from the fermions, at relatively high
temperatures around T ∗? Interestingly, we find that
the “bad-metal” character of the cuprates enables the
bosonic terms to dominate their fermionic counterparts,
making the former more evident well outside the conven-
tional fluctuation regime. We illustrate these points us-
ing a “Fermi arc + preformed Cooper pair” model for the
cuprates. In order to constrain the phenomenological pa-
rameters in our model, we fit the theoretical temperature-
dependent DC resistivity, ρxx(T ), to that of a typical
cuprate with a pseudogap. This serves to disentangle the
relative weights of the fermionic and bosonic contribu-
tions; we then outline the resulting implications for the
entire complement of transport properties.

As one last argument for our more holistic approach to
transport, we note that this enables us to quantitatively
evaluate the “open-circuit” corrections to transport coef-
ficients. These have recently been of interest [27] in the
context of thermal Hall measurements. Here, we quite
generally quantify these contributions and find that they
are negligibly small.

The remainder of the paper is organized as follows. In
Sec. II we define transport coefficients in general and dis-
cuss their symmetry properties. In Sec. III we present our
theoretical formalism and results for the bosonic thermo-
electric transport. Section IV reviews our strong-pairing
fluctuation theory. The inclusion of the fermionic contri-
butions is discussed in Sec. V, while an overview of the
numerical results appears in Sec. VI. Section VII contains
estimates of the usually neglected open-circuit correction
terms using our numerical approach as well as experi-
mental data on the cuprates. We conclude our paper
with Sec. VIII. In addition, we make a number of de-
tails available in several appendices. Appendix A gives

a summary of transport in conventional superconducting
fluctuation theory; Appendix B presents a comparison of
transport in “bad” and “good metals”. Finally, Appen-
dices C and D provide detailed comparisons between our
numerical results (for the physical case of highly resistive
or “bad” metals) and cuprate experiments.

II. GENERAL ASPECTS OF TRANSPORT
THEORY

A. General transport coefficients

The transport coefficients are defined within linear-
response theory, where the external perturbations con-
sist of an electric field E and a temperature gradient
Θ = −∇T . The pertinent equations for the (transport)
electric current Jetr and the (transport) heat current Jhtr
are defined in terms of these coefficients by

Jetr = σ↔E + β
↔

Θ,

Jhtr = γ↔E + κ↔Θ.
(2.1)

The electrical conductivity tensor is denoted by σ↔, the
thermal conductivity tensor is κ↔, and the thermoelectric
tensors are β

↔
and γ↔. Solving Eq. (2.1) for E gives

E = (σ↔)
−1
(
Jetr − β

↔
Θ
)
. (2.2)

As discussed in Refs. [13, 28–30], thermal and thermo-
electric response measurements are carried out under
open-circuit conditions, where the transport electric cur-
rent is set to zero: Jetr = 0. In the absence of a parti-
cle current, Eq. (2.2) shows that a nonzero temperature
gradient produces an electric field. This can be under-
stood physically from the fact that a temperature gradi-
ent causes a diffusion of particles, which then sets up the
field.

The thermopower tensor, denoted by S
↔
, is an impor-

tant transport quantity, and it is defined [11, 31] by ex-
pressing Eq. (2.2) as E = ρ↔Jetr−S

↔
Θ, where ρ↔ is the resis-

tivity tensor. Comparing this expression with Eq. (2.2)
gives

ρ↔ = σ↔−1, (2.3)

S
↔

= σ↔−1β
↔

= ρ↔β
↔
. (2.4)

In the presence of an external magnetic field B = Bẑ
(perpendicular to the two-dimensional (2d) system), the
transverse components of these tensors are nonzero and
of considerable interest. The transverse resistivity, ρyx,
measured in the absence of a temperature gradient, is
related to the Hall coefficient RH via ρyx = BRH. This
is given in terms of the components of the electrical con-
ductivity by

RH =
ρyx
B

=
1

B

σxy
σ2
xx + σ2

xy

. (2.5)
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Similarly, the transverse thermopower is related to the
Nernst coefficient, ν, via Syx = −Bν, with

ν = −Syx
B

=
1

B

(
βxyσxx − βxxσxy

σ2
xx + σ2

xy

)
. (2.6)

Another important transverse transport quantity is the
thermal Hall conductivity. Setting Jetr to zero in Eq. (2.2)
and then inserting this expression for the electric field
into Eq. (2.1) yields a heat current

Jhtr =
[
κ↔− γ↔ (σ↔)

−1
β
↔]

Θ ≡ κ̃
↔

Θ. (2.7)

The last equivalence defines the measured thermal con-
ductivity tensor κ̃

↔
via Fourier’s law of heat conduction.

Written out explicitly, the thermal Hall conductivity is

κ̃xy = κxy − T
(
β2
xx + β2

xy

)
σyx + 2βxxσxxβxy

σ2
xx + σ2

xy

, (2.8)

where use has been made of the Onsager relations be-
tween γ↔ and β

↔
. This expression highlights how un-

derstanding thermal transport requires knowledge of the
magnitude of both the electrical and thermoelectric con-
ductivities. These interconnections between electrical
and thermal response serve to emphasize the value of
a unified theory that deals with all transport coefficients
simultaneously.

B. Onsager relations and particle-hole symmetry

Due to time-reversal symmetry in the underlying equa-
tions of motion, the transport coefficient tensors in
Eq. (2.1) obey the following Onsager reciprocal rela-
tions: σij(B) = σji(−B), βij(B) = γji(−B)/T , and
κij(B) = κji(−B).

These coefficients additionally possess particle-hole
transformation properties. The particle-hole symmetry
operator is denoted by C. Under the action of this opera-
tor, E→ −E,B→ −B, and Jetr → −Jetr, whereas T and
Jhtr are invariant. Using these relations in Eq. (2.1), the
transformation properties for the transport coefficients
are Cσ (B) C−1 = σ (−B) , Cβ (B) C−1 = −β (−B) , and
Cκ (B) C−1 = κ (−B). From these relations it follows
that a particle-hole symmetric system implies βxx =
σxy = κxy = 0.

III. TRANSPORT COEFFICIENTS FOR
NONINTERACTING PARTICLES

In this section we present a methodology that enables
all of the transport coefficients in Eq. (2.1) to be ex-
pressed in terms of a simple formula that depends only
on the relevant spectral functions and associated ver-
tex functions. This theory applies to free bosonic and

fermionic theories, with arbitrary single-band dispersion
relations that preserve time reversal, spatial inversion,
and rotation symmetries. It is thus applicable to the
bosonic contribution in the Ginzburg-Landau (GL) fluc-
tuation theory of superconductors [11], as well as to a
strong-pairing fluctuation theory [14] that incorporates
a normal-state cuprate pseudogap, to be discussed in
Sec. IV.

For concreteness we consider first the case of non-
interacting bosons, presenting an outline of the deriva-
tion and leaving a more detailed exposition to a forth-
coming paper. This work is based on an approach first
introduced in Ref. [32].

To derive the coefficients in Eq. (2.1) we couple our
principal system to a Leggett-Caldeira thermal reservoir
with localized particles [32]. The reservoir particles have
the same type of charge and statistics as those of the
principal system. The system achieves equilibrium by
exchanging particles and energy with the reservoir. Ap-
plying a perturbation, either E or Θ in the presence of
the magnetic field B, one can write down the equation
of motion for both the principal system and the reser-
voir particles in the presence of the perturbation, and
then integrate out the reservoir particles by absorbing
their effects as a phenomenological local self energy into
the definition of the Green’s function associated with the
principal system. Using these perturbed Green’s func-
tions we then compute the “microscopic” current densi-
ties, 〈Ĵe〉E,Θ and 〈Ĵh〉E,Θ, to linear order in E or Θ and
in B, which can be written compactly as[

〈Ĵe〉E,Θ
〈Ĵh〉E,Θ

]
=

[
L
↔
e,e L

↔
e,h

L
↔
h,e L

↔
h,h

] [
E
Θ

]
. (3.1)

Here, Ĵe and Ĵh are the electric and heat current den-
sity operators; L

↔
e,e, L
↔
e,h, L
↔
h,e and L

↔
h,h are four tensorial

coefficients, which can be fully expressed in terms of the
particle’s Green’s functions, retarded and/or advanced.

It is well known that the “microscopic” currents in
Eq. (3.1) are a subset of the macroscopic transport cur-
rents in Eq. (2.1) [9, 10]. To obtain the transport currents
one needs to subtract the divergence-free currents due to
the charge magnetization Me and the heat magnetiza-
tion Mh. As elaborated in Refs. [9, 10], in the presence
of E or Θ perturbations, the correct subtractions are[

Jetr
Jhtr

]
=

[
L
↔
e,e L

↔
e,h − ∂Me

∂T ×
L
↔
h,e −Me× L

↔
h,h − ∂Mh

∂T ×

] [
E
Θ

]
, (3.2)

The transport coefficients are then defined by comparing
this equation with Eq. (2.1). The magnetization currents
for the thermoelectric tensors β

↔
and γ↔, the off-diagonal

magnetization terms in Eq. (3.2), were first derived by
Obraztsov [8]. Including these magnetization currents is
vital to ensure the Onsager reciprocal relations and the
laws of thermodynamics are obeyed [9, 10].
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In our reservoir approach, we express both L
↔
ij and Mi,

with {i, j} ∈ {e, h}, in terms of Green’s functions. Al-
though each of the two generally involves complicated
combinations of retarded and advanced Green’s func-
tions, the final answers for the transport coefficients on
the right-hand side of Eq. (3.2) turn out to be simply
written in terms of spectral functions and current ver-
tices. We find that the matrix appearing in Eq. (3.2) can
be consolidated [32] into the form:

Jn(tr)a =

1∑
n′=0

∑
b

Lnn
′

ab E
n′

b , (3.3)

with

Lnn
′

ab =

∫
d2p

(2π)2

dz

2π
zn+n′

[
q2−n−n′

2Tn′ vavbA
2
b(z,p)

+
q3−n−n′

6Tn′ BεcdvavcvbdA
3
b(z,p)

]
b(1)(z). (3.4)

Here, Ab(z,p) is the Bose spectral function. To arrive
at this compact form we have introduced the notation
E0
a ≡ Ea and E1

a ≡ −∂aT , where a = {x, y}. Here
b(1)(z) ≡ −∂b(z)/∂z where b(z) =

(
ez/T − 1

)−1
is the

Bose-Einstein distribution function (we set ~ = kB = 1
and will restore these units only when necessary). The
relations between Lnn′

ab and the coefficients in Eq. (2.1)
are: σab = L00

ab, βab = L01
ab, γab = L10

ab and κab = L11
ab.

In Eq. (3.4), z is the real frequency and q is the charge
of the particles in the system: q = −e < 0 for electrons
and q = −2e for fluctuating Cooper pairs. We define va
as the a-component velocity whose wavevector p depen-
dence has been suppressed for brevity while vab is the
ab-component of the inverse effective-mass tensor, which
is also p dependent. In the second term of Eq. (3.4), εcd
is the 2d Levi-Civita symbol. Because of the underlying
spatial inversion and rotation symmetries of the band dis-
persion, the first term in Eq. (3.4) is longitudinal, while
the second term is transverse.

A few comments are in order concerning Eq. (3.4), as it
might seem rather unexpected that there exists a single,
closed-form, Kubo-like expression from which all of the
transverse and longitudinal transport coefficients can be
obtained. Notably, for the transverse contribution, this
result also includes magnetization corrections in addition
to the “intrinsic” L

↔
ij terms. That this is possible partially

follows from confining our attention to the low magnetic
field limit.

We note that from Eq. (3.4) it is easy to verify con-
sistency with the Onsager reciprocal relations, i. e.,
Tn

′Lnn′

ab (B) = TnLn′n
ba (−B) (no summation). We em-

phasize that this result is a consequence of including the
magnetization terms in Eq. (3.2).

Next we briefly compare our approach to other meth-
ods in the literature. In a classic series of papers, Lut-
tinger [13, 29] developed an approach which requires in-

troducing a source ψ for perturbations in the energy den-
sity, in analogy with the way the vector potential A is
used to initiate changes in the electric current. The field
ψ acts as a source that enables describing a local temper-
ature T (r), which is distinct from the equilibrium tem-
perature. This formalism builds on the Einstein relation
which asserts that coefficients of gradients in ψ and T
must be equal; this is analogous to the other well-known
Einstein relation that coefficients of gradients in chemi-
cal potential µ and electric potential φ are the same for
electrical response [9, 31]. The Luttinger approach was
implemented in more detail by Cooper, Halperin, and
Ruzin [9], who derived the magnetization current contri-
butions for all of the transport coefficients.

While our formalism is different, we equivalently in-
clude these same magnetization current effects here. We
emphasize that in our approach to electrical and thermal
transport the thermal response is naturally deduced from
temperature fluctuations about the equilibrium temper-
ature set by the reservoir. The advantages of the heat-
reservoir approach are that it provides a direct method to
derive thermal transport, avoiding the more abstract and
technically difficult Luttinger formalism. In this way, we
formulate the theory with ∇ψ = 0 from the outset.

IV. TRANSPORT DUE TO STRONG-PAIRING
FLUCTUATIONS: BOSONS WITH PSEUDOGAP

EFFECTS

We apply the general expression for transport coeffi-
cients in Eq. (3.4) to a model that consists of a mixture
of fluctuating Cooper pairs and electrons, in order to ad-
dress transport properties of the pseudogapped normal
state of cuprates [33]. In reality the fluctuating pairs and
electrons are constantly interconverting. Importantly,
the effects of this interconversion can be treated in a self-
consistent, “mean-field” manner, where they are mani-
fested as a pseudogap in the electron energy spectrum.
This excitation gap, at the same time, feeds back to alter
the general physical properties of the Cooper pairs.

A. Preformed pairs and the pseudogap

The observations that the pseudogap is associated with
a reduction in carrier number [34] have led many to ar-
gue against the concept of preformed pairs as the origin
of the pseudogap. Indeed, the notion that the pseudo-
gap arises in this way has gone in and out of favor with
time. Indications for some unspecified form of additional
order which onsets at T ∗, as well as alternative experi-
ments, have more recently been cited as evidence against
a preformed-pair theory. Among these experiments are
(i) evidence for “two-gap” physics [35] in which the nodal
and anti-nodal gaps have different temperature depen-
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dences, and (ii) the existence of Fermi arcs was also ar-
gued to be difficult to understand [36], at least within one
preformed-pair framework. Finally, (iii) there are claims
of particle-hole asymmetry in the fermionic quasiparticle
energy dispersion in the pseudogap phase [37], although
this is not substantiated by other experiments [38]. [39]

In this paper we explore the field-dependent trans-
port in a preformed-pair scenario. Here we are moti-
vated by the anomalously high transition temperatures
which support the view that the cuprates are in an in-
termediate state between BCS and Bose-Einstein con-
densation (BEC) [40]. Importantly, there is well sup-
ported evidence that in the strong-pairing preformed-
pair theory observations (i) and (ii) are in fact fully con-
sistent. For point (i) a number of references address
the two gap dichotomy [41, 42], while the presence of
Fermi arcs is addressed in this paper. We emphasize
that there are multiple “flavors” of preformed-pair sce-
narios; the one we consider here has a laboratory real-
ization in AMO systems [14]. An alternative scenario is
the phase-fluctuation picture of Emery and Kivelson [43].
At the very least, the strong-pairing approach that we
adopt represents a rather benign extension of BCS the-
ory, which appears warranted due to the short coherence
length.

We emphasize that the physical picture introduced in
this paper can also be seen as a natural generalization
of self-consistent-Hartree approaches [15, 16] to the time-
dependent Ginzburg-Landau framework [44]. These have
been independently advocated [19] for addressing cuprate
transport.

B. Theoretical approach to strong-pairing
fluctuations

Our approach to preformed-pair theory is, in some
sense, a generalization of conventional superconducting
fluctuation theory [45]. The latter, however, does not
explicitly incorporate pseudogap effects, which we argue
are associated with stronger-than-BCS attractive inter-
actions. One expects, as the pairing strength increases,
the inverse fluctuation propagator transitions from a pre-
dominantly diffusive [45] to a propagating form, which we
write as

t−1
R (z,p) = Z

[
κz − p2/ (2Mpair)− |µpair|+ iΓz

]
,
(4.1)

where {Z, κ,Γ} are all real. This expression breaks
particle-hole symmetry due to the presence of the κz
term. We will find that κ, which is equal to±1 here, plays
an important role in the transport coefficients βxx, σxy,
and κxy. In conventional fluctuation theories the coun-
terpart to κ is small.

We now give a brief overview of the formalism that
we use to arrive at the pair propagator (or t-matrix),

tR in Eq. (4.1). This is based on a BCS-like structure,
extended to include stronger attractive interactions. We
are motivated by the observation that, in BCS theory, the
gap equation (here considered for d-wave pairing symme-
try),

0 =
1

g
+
∑
k

1− 2f(Ek)

2Ek
ϕ2

k, (4.2)

can be understood as a Thouless criterion reflecting a
q = 0 divergence of a “dressed” t-matrix [14], with inverse

t−1(p) =
∑
k

G(k)G0(p− k)ϕ2
k−p/2 + g−1. (4.3)

Here f(x) is the Fermi-Dirac distribution function.
In Eq. (4.2), g < 0 is the strength of the attractive

d-wave pairing interaction Vk,k′ = gϕkϕk′ , where ϕk =
cos kx − cos ky is the d-wave pairing form factor; Ek =√
ξ2
k + ∆2

mfϕ
2
k and the underlying bare fermion disper-

sion is ξk = εk − µF , where µF is the fermionic chemical
potential. Here, ∆mf is the temperature-dependent BCS
mean-field (mf) gap. In Eq. (4.3), G0(k) = (iωn − ξk)

−1

and G(k) ≡
[
G−1

0 (k)− Σ(k)
]−1

are the bare and dressed
fermionic Green’s functions, respectively, where Σ(k) =
−(∆mfϕk)2G0(−k) is the superconducting self energy.
We define k = (iωn,k) and p = (iΩm,p) as two four-
vectors with ωn = (2n+ 1)πT and Ωm = 2mπT .

The t-matrix in Eq. (4.3) involves one bare and one
dressed Green’s function, as has been recognized in the
literature [46, 47]. If one expands t−1(p) at p = 0 in
a Taylor expansion and analytically continues the result
to real frequencies, as in Eq. (4.1), one finds that the
Thouless criterion, t−1(p = 0) = 0, can be regarded as a
BEC condition for the pair chemical potential: µpair = 0
for all T ≤ Tc.

We note that this BEC condition describes the ap-
proach to condensation from above Tc. In this way, one
should view the associated t-matrix in the Thouless cri-
terion as characterizing the non-condensed pairs. To ex-
tend this approach to strong pairing, we use the same t-
matrix as in Eq. (4.3) but with a crucial difference from
strict BCS theory in the fermion self energy Σ(k). In
general t-matrix theories, and in ours in particular,

Σ(k) =
∑
p

t(p)G0(p− k)ϕ2
k−p/2. (4.4)

Here we represent the non-condensed pairs through
contributions from the q 6= 0 component of t(q). By
numerically solving the coupled Eqs. (4.3) and (4.4), one
can determine t(q). This is, however, very challenging.

For this reason, we adopt the so-called “pseudogap
(pg) approximation”, in which one observes that t(p) is
strongly peaked about p = 0 so that one can approxi-
mate t(p) in Eq. (4.3) (after analytical continuation) by
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the form of tR(z,p) in Eq. (4.1). Simultaneously, the ap-
proximate self energy due to the non-condensed pairs is
given by Σ(k) ≈ −(∆pgϕk)2G0(−k), with

∆2
pg(T ) = −

∑
p 6=0

t(p), T . Tc. (4.5)

Note the p = 0 component of t(p) (which corresponds to
the condensate) is necessarily excluded in the above sum-
mation. The above approximation is valid for |µpair| very
small, that is, below or only slightly above Tc. Precisely
at T = Tc, all pairs are non-condensed and thus the con-
dition µpair = 0 requires [14] that ∆pg(Tc) = ∆mf(Tc).

The focus of this paper is, however, on transport in the
normal state over the entire temperature range between
Tc and T ∗. Indeed, one observes that T ∗ � Tc when the
pairing is strong. In contrast to the above treatment for
T . Tc, which has a rather precise microscopic basis [14],
we must make some simple, but physical assumptions to
extend it well away from Tc. We assume that in the
normal state

∆pg(T ) = ∆mf(T ), T ≥ Tc. (4.6)

As a consequence, ∆pg vanishes at the mean-field transi-
tion temperature, which we associate with T ∗, although,
strictly speaking, there should be a gentle crossover to
zero here.

We solve Eq. (4.2) together with the electron density
constraint equation,

ne =
∑
k

[
1− ξk

Ek
tanh

(
Ek

2T

)]
, (4.7)

to determine ∆mf(T ) and the fermionic chemical poten-
tial µF (T ) for given {g, T, ne}. The coupling constant g
is chosen to give the desired T ∗. With ∆mf for the exci-
tation gap determined, we can then derive [48]Mpair and
Z from the strong-pairing t-matrix in Eq. (4.3).

This group of assumptions is rather benign, as it guar-
antees continuity between the normal-state results and
those at Tc. However, understanding µpair in the normal
state is more subtle. There is no reliable way of comput-
ing µpair for the whole temperature range Tc < T < T ∗

in a self-consistent manner. Here, we take a more phe-
nomenological approach by interpolating results of µpair

in the two limits T → Tc and T → T ∗. For T slightly
above Tc, we presume that µpair is well described by
the conventional fluctuation behavior, namely, µpair ≈
(8/π)(Tc − T ) [11]. This will be justified later in the
paper through a comparison of the calculated longitu-
dinal resistivity with corresponding experiments. In the
other limit, T → T ∗, the number of pairs vanishes, which
requires that µpair → −∞. A formula for µpair that sat-
isfies these requirements and that smoothly interpolates
between the two limits is [49].

µpair =
8

π
(T ∗ − Tc) ln

T ∗ − T
T ∗ − Tc

. (4.8)

We emphasize that our results are not in detail sensitive
to this particular interpolation.

C. Transport coefficients in the small |µpair| limit

The central quantity for calculating the bosonic con-
tribution to transport coefficients is the bosonic spectral
function Ab which appears in Eq. (3.4). This is defined
in terms of the retarded pairing fluctuation propagator
tR as [50]

Ab(z,p) = Re[2itR(z,p)]. (4.9)

The velocity components in Eq. (3.4) are de-
fined by va(p) ≡ −∂t−1

R (z,p)/∂pa = Zpa/Mpair,
which constitutes a Ward identity [51, 52]; simi-
larly the inverse effective-mass component vab(p) ≡
−∂2t−1

R (z,p)/ (∂pa∂pb) = Z/Mpairδab, where δab is the
Kronecker delta function. With the bosonic parameters
{Mpair, µpair, Z} determined from the previous section,
one can readily evaluate all of the bosonic transport co-
efficients from Eq. (3.4). Interestingly, the prefactor Z
drops out of the transport coefficients due to a cancella-
tion effect.

For a generic temperature, one needs to resort to nu-
merics to evaluate Eq. (3.4). However, in the limit of
T → Tc and |µpair| /Tc � 1, when the bosons become
critical, an asymptotic formula for the singular contribu-
tion of each bosonic transport coefficient can be analyt-
ically deduced. Here we insert Eqs. (4.1) and (4.9) into
Eq. (3.4) and then expand the Bose-Einstein distribution
function derivative for small frequencies. This enables
the frequency integral, and subsequently the momentum
integral, to be performed analytically.

The final results (for 2d) are:

σxx =
1

8π

(
κ2 + Γ2

)
Γ

q2

~
kBTc
|µpair|

, (4.10a)

βxx =
1

4π

κ

Γ

qkB
~

ln

∣∣∣∣ EΛ

µpair

∣∣∣∣ , (4.10b)

κxx = constant, (4.10c)

σxy =
1

24π

κ
(
κ2 + Γ2

)
Γ2

q

e

q2

~
ξ2
0

`2B

(kBTc)
2

|µpair|2
, (4.10d)

βxy =
1

6π

(
3κ2 + Γ2

)
Γ2

q

e

qkB
~

ξ2
0

`2B

kBTc
|µpair|

, (4.10e)

κxy =
1

4π

κ

Γ2

q

e

k2
BTc
~

ξ2
0

`2B
ln

∣∣∣∣ EΛ

µpair

∣∣∣∣ , (4.10f)

where we have restored the constants ~ and kB to make
the units explicit. In these equations `B =

√
~/eB (eB >

0) is the magnetic length, EΛ is an energy cutoff [15, 19],
and ξ0 ≡ ~/

√
2MpairkBTc.
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V. CONTRIBUTIONS FROM THE
PSEUDOGAPPED FERMIONS

In addition to the preformed Cooper pairs, the
(pseudo)gapped electrons are also carriers of charge and
energy in the normal state of a strongly-correlated su-
perconductor. That there are generically two types of
contributions to transport is evident from conventional
fluctuation theory [11], where gauge invariance requires
that both the Aslamazov-Larkin (bosonic) and Maki-
Thompson (MT) plus density of states (DOS) (fermionic)
diagrams must be present. In contrast to the conven-
tional MT and DOS contributions, here we emphasize
that the normal-state fermions must also acquire an ex-
citation gap.

It is of interest to note that there are several phe-
nomenologically motivated papers which presume two
types of carriers. Geshkenbein, Ioffe, and Larkin [53]
considered non-dispersing bosons of charge −2e arising
from electrons in the small anti-nodal regime of the Fermi
surface where the fermion dispersion is flat; they also in-
cluded gapless fermions confined to an extended region
around the nodes. This scenario is different from the
present physical picture where the fermions and pairs
are continuously inter-converting as in a chemical equilib-
rium process. More recently, Lee and collaborators [36]
have proposed a model for the high-field case, similar to
that in Ref. [53] with localized bosons at the anti-nodes.

To account for the fermionic contribution to trans-
port, we use an additional consolidated transport coeffi-
cient equation similar to Eq. (3.4) but for non-interacting
fermions:

Lnn
′

ab = 2

∫
d2k

(2π)2

dz

2π
zn+n′

[
q2−n−n′

2Tn′ vavbA
2
f (z,k)

+
q3−n−n′

6Tn′ BεcdvavcvbdA
3
f (z,k)

]
f (1)(z). (5.1)

This is essentially the same as in Eq. (3.4) except for
the prefactor of 2 from spin degeneracy. Here we define
f (1)(z) = −∂f(z)/∂z as the Fermi-Dirac function deriva-
tive and Af(z,k) as the fermionic spectral function which
can be written in terms of the retarded single-particle
fermionic Green’s function. The latter is given by

Af(z,k) = Re[2iGR(z,k)]. (5.2)

Here the Green’s function associated with the pseudo-
gapped fermions is rather generally taken in the litera-
ture [54] to be of the form:

G−1
R (z,k) = z − ξk −

∆2
pg(T )ϕ2

k

z + ξk + iγ
+ iΣ0(T ), (5.3)

where ξk is the non-interacting electron dispersion.
Important in Eq. (5.3) is that in addition to a broad-

ened BCS-like self energy associated with the excitation

pseudogap ∆pg, we also include a term Σ0(T ) which ac-
counts for the finite lifetime of fermions in the absence of
superconducting fluctuations. In our calculation, Σ0(T )
is a phenomenological function which is assumed to be
linear in T . While its physical origin is under debate,
this accounts for the underlying and universally observed
linear-in-temperature resistivity in optimal and under-
doped cuprates at T > T ∗. We presume this same term
is present both above and below T ∗.

At a more microscopic level, in our thermal-reservoir
approach leading to Eq. (5.1), Σ0 can be viewed as a self
energy effect arising from integrating out local reservoir
degrees of freedom. This is somewhat problematic for
arriving at the pseudogap self energy term in Eq. (5.3)
which has a microscopic [14] and phenomenological ba-
sis [54]. Strictly speaking, the pseudogap self energy can-
not be interpreted in this way because it is k dependent
and non-local. Nevertheless, here we apply Eq. (5.1)
under the assumption that the pseudogapped fermions
can be viewed as independent quasi-particles and define
va ≡ ∂ξk/∂ka and vab ≡ ∂2ξk/ (∂ka∂kb) in Eq. (5.1) us-
ing the bare fermion dispersion. This ignores vertex cor-
rections which have been addressed in previous work [55]
and found to be reasonably unimportant. We should note
that the vertex corrections in the fermionic transport co-
efficients were also considered in Ref. [56] in the limit
of small fermion scattering rate. (Magnetization correc-
tions, which are crucial in the present paper, however,
were not treated, since they are not pertinent in the limit
considered.)

A non-zero value of γ in Eq. (5.3) leads to a broaden-
ing of the d-wave nodes in the electron energy dispersion.
This can be associated with Fermi arcs, which are an
important feature of angle-resolved photoemission spec-
troscopy (ARPES) experiments and associated with the
pseudogap of underdoped cuprates [14, 54]. Its origin at
the microscopic level here is related to the finite lifetime
of the non-condensed pairs [14], which is in stark con-
trast to the infinite lifetime of condensed pairs at T < Tc.
While the implications of Fermi arcs for transport prop-
erties have been considered before [55, 57], these have
been restricted to the case where there are no bosons.

We note that in describing the pseudogap state many
other fermionic models have been proposed [54]. Notable
is the so-called Yang, Rice, Zhang (YRZ) [58] model,
which contains a rather similar form for the fermionic
Green’s function [59] in Eq. (5.3) but with some impor-
tant differences. The pseudogap parameter in YRZ is
not evidently related to pairing fluctuations and instead
of ξk in the denominator of the pseodogap self energy
term in Eq. (5.3) the YRZ model introduces a different
dispersive parameter (εNNk ) which contains only nearest
neighbor hopping without a broadening parameter such
as γ. Technically this is associated with Fermi pockets
rather than Fermi arcs as in Eq. (5.3), and related trans-
port theory has focused on zero temperature [23–25] in
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the absence of bosonic degrees of freedom.
It is useful to add here that we are not concerned in

this paper with charge-density wave (CDW) effects in
the cuprates. The central focus of our cuprate transport
analysis is the pseudogap regime. The CDW regime is in
rather limited regions of the phase diagram. It typically
spans a limited doping range around the commensurate
1/8 doping; additionally it may be induced by very high
magnetic fields. As observed in Ref. [60], the pseudogap
and charge order are separate phenomena. Thus, our
argument for focusing on the pseudogap and pairing ef-
fects is that they are an even more robust feature of the
cuprates than the CDW-ordered phases.

VI. NUMERICAL RESULTS

A. Overview

We have emphasized that in strongly-correlated super-
conductors it is important to study both bosonic and
fermionic contributions to transport. The bosonic terms
will tend to have a singular structure near Tc and even
possibly contribute to transport at temperatures as high
as T ∗. Very near Tc, this singular structure is similar to
the predictions from GL fluctuation theory.

Our approach to transport builds on rather general
assumptions related to claims in the experimental litera-
ture. The effect of the pseudogap onset on the fermions
is to lead to a decrease in effective fermionic carrier den-
sity; this corresponds to a tendency towards an upturn in
ρxx which sets in with decreasing temperature, T , below
T ∗. This upturn is inferred from the behavior of the re-
sistivity ρxx(T ) in cuprates when the superconductivity
is suppressed by three different mechanisms – high mag-
netic fields, B [34, 61], extreme underdoping [62], and
the destruction of superconductivity due to Zn impuri-
ties [63, 64].

These experiments are relevant to the behavior of the
fermionic channel in the superconducting cuprates due to
the widely held belief that such experiments, in partic-
ular those at high fields, reveal the pristine character of
the pseudogap. Importantly, though, what is observed as
the signature of the cuprate pseudogap in ρxx(T ) for the
normal phase is a downturn which sets in at T ∗ with de-
creasing T . This could be understood if [as in Eq. (4.8)],
due to stronger pairing attraction, the bosons are present
and contribute to transport away from the critical regime.

In this section we show the above finding, concerning
a form of “high temperature” bosonic paraconductivity,
is a consequence of the fact that cuprates possess two
important features: they are “bad metals”, and, impor-
tantly, also their d-wave pseudogap is associated not with
gap nodes but with Fermi arcs. The first of these implies
that the fermions play a dominant role in the resistivity
or, equivalently, a more minimal role in the conductivity.

As a result of the Fermi arcs, the fermionic tendency to
enhance the resistivity starting at T ∗ is suppressed.

Our calculations depend on several phenomenologi-
cal parameters, including {γ,Σ0} in Eq. (5.3) and Γ in
Eq. (4.1). The broadening parameter γ, in part, sets the
length of the Fermi arc in Eq. (5.3) (the Fermi arc length
also depends on Σ0, but the dependence is weak). As
is compatible with ARPES measurements, we consider
γ = γ̃T [26, 54, 65, 66], with the dimensionless parameter
γ̃ = 3.2. We determine the remaining two parameters, Σ0

and Γ, by fitting ρxx to the corresponding experimental
data of a typical cuprate with a pseudogap. Using those
constrained parameters, we then calculate all of the other
transport coefficients.

For the fermionic calculation we use ξk = 2t[2−cos kx−
cos ky] − 4t′[1 − cos kx cos ky] − µF for the dispersion in
Eq. (5.3) with t′/t = 0.35. Here µF is adjusted to give an
electron density ne = 0.85 per CuO2 square, i. e., hole
doping p = 1 − ne = 15%. For definiteness we choose
t = 75meV.

B. Longitudinal resistivity ρxx

The resistivity of underdoped cuprates typically ex-
hibits a linear-in-T behavior at high temperature T > T ∗,
deriving from a presently unknown mechanism. As tem-
perature is decreased there comes a point (T ∗) when the
resistivity exhibits a slight downturn from linearity which
is maintained until essentially at the transition tempera-
ture Tc where it plummets to zero. As is conventional, we
take this downturn onset to be a signature of the entrance
into the pseudogap phase.

We divide the following discussion into the temper-
ature ranges above and below T ∗. Above T ∗, to phe-
nomenologically accommodate the linearity of ρxx in T
we use Σ0(T ) = Γ0 + bT for the normal state (fermionic)
inverse lifetime in Eq. (5.3), where Γ0 and b are two T -
independent constants. Γ0 characterizes the extrapolated
residual resistivity. Γ0 and b are so chosen that ρxx at
T > T ∗ fits the experimental data of a nearly optimally
doped Bi2Sr2CaCu2O8+δ sample in Ref. [67], as shown
in Fig. 1. Note that above T ∗ there is no bosonic con-
tribution to ρxx so that ρxx = ρfxx with ρfxx = 1/σfxx,
where σfxx is calculated from Eq. (5.1) using the fermionic
spectral function given in Eqs. (5.2) and (5.3). Also, in
Eq. (5.3), ∆pg ≡ 0 for T ≥ T ∗. The fitting in Fig. 1 gives
Γ0/t = 0.102 and b = 1.4.

Below T ∗ both the bosonic conductivity σbxx and ∆pg
become nonzero. We calculate [68] σbxx from Eqs. (3.4),
(4.1), and (4.9), which depend on {κ,Mpair, µpair} in
Eq. (3.4). With µpair from Eq. (4.8) and {κ,Mpair} de-
termined from microscopic theory [48] [69], the only free
and adjustable parameter is the inverse lifetime of the
pairs, Γ, in Eq. (3.4). We choose the value of Γ such that
the total combination of fermionic and bosonic contribu-
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FIG. 1. Fermi arcs and fit to the resistivity of a slightly underdoped Bi2Sr2CaCu2O8+δ sample. Black dots in (d) are
experimental data taken from Ref. [67]. The fit in (d) is shown as solid and dashed lines based on a band structure with the
hopping integral t = 75meV. Blue solid line: calculated total ρxx. Red dashed line: fermonic ρf

xx. Dark green dashed line:
bosonic ρb

xx. The upturn in ρf
xx with decreasing T , relative to the linear-T background, represents the fermionic pseudogap

signature which is reflected in the fermionic spectral function at the fermionic chemical potential µF (T ), Af(z = 0,k). (a-c,e)
Representative Af(z = 0,k) for temperatures (a) T/t = 0.11, (b) T/t = 0.15, (c) T/t = 0.18, and (e) T/t = 0.23. Here, as
in all figures, Tc/t = 0.1 and T ∗/t = 0.2. The evolution shown in these figures shows that the Fermi-arc length, chosen to be
reasonably consistent with photoemission, decreases with decreasing T . Note that the small kink at T ∗ in the theory should
be viewed as an artifact; it arises from the assumed abrupt divergence in the bosonic chemical potential and the onset of the
pseudogap.

tions to ρxx fits the experimental ρxx at Tc ≤ T ≤ T ∗

reasonably well (see Fig. 1). This leads to Γ = 3.
In Fig. 1, the fermionic contribution to the resistiv-

ity, ρfxx (red dashed line), deviates from its linear in
T background below T ∗ and exhibits the expected up-
turn as T decreases. Countering this upturn we see that
the presence of bosons provides another conducting chan-
nel, which tends to increase the total σxx = σfxx + σbxx
and leads to a downward deviation of ρxx from its high-
temperature extrapolation [70]. Very near Tc the bosonic
ρb
xx = 1/σb

xx (green dashed line) is linear in T − Tc, as
one can see from Eqs. (4.10a) and (4.8) [71].

C. Behavior in the conducting channels

The fundamental theoretical properties computed in
this paper derive from Eq. (3.4) and Eq. (5.1) and pertain
to the conducting channel. Once we have established the
resistivity fit, there is no parameter flexibility so that
these properties are predetermined. Using the Σ0 and Γ
determined from the ρxx fit in Fig. 1 we compute all of
the other transport coefficients. The resulting behavior
of σxx, σxy/B, βxx, and βxy/B are shown in Fig. 2.

There are some general trends in Fig. 2 that are
rather universal. First, the magnitude of all fermionic
conduction-like quantities (red dashed lines) at T < T ∗

becomes smaller than their high-temperature extrapola-
tions, due to the opening of a pseudogap. Second, the
bosonic contributions to σxx, σxy/B, βxx and βxy/B di-
verge as T → Tc from above. In particular, the diver-
gence of σb

xx leads to a noticeable feature in the ρxx
plot of Fig. 1: the bosonic contribution (to conductiv-
ity) dominates that of the fermions, albeit in a limited
temperature range [72].

In Fig. 3 we address other important experimentally
accessible transport quantities. We have already dis-
cussed ρxx, shown in Fig. 3(a). In Figs. 3(b)-3(d), we
plot the Hall coefficient RH, the Seebeck coefficient Sxx,
and the Nernst coefficient ν, based on the same set of pa-
rameters. We have approximated RH, Sxx, and ν, using
Eqs. (2.5), (2.4), and (2.6), respectively, as follows

RH ≈
1

B

σxy
σ2
xx

, (6.1)

Sxx ≈
βxx
σxx

, (6.2)

ν ≈ 1

B

βxy
σxx

. (6.3)
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FIG. 2. Consequences of resistivity fits, based on Fig. 1,
as seen in other transport properties. In each plot, the red
dashed line (and the shaded area in red) represent fermionic
contributions alone; while the black solid line represents the
total from both fermions and bosons. The regime shaded
in green reflects contributions from fluctuating Cooper pairs.
Here a is the lattice constant, appearing in the units of σxy/B
and βxy/B. The fermionic contribution is rather small in all
properties as a consequence of the “bad metal” character.

In order to neglect the σ2
xy in the denominator of RH

and ν, we have restricted our focus to the weak magnetic
field limit and also to T not too close to Tc such that
|µpair| & ωbc = 2eB/Mpair. When this latter condition is
satisfied, |σxy| � σxx.

Some general features of Fig. 3 are: (i) with the excep-
tion of Sxx and κxx all other quantities (excluding ρxx)
show divergences or near-divergences in the vicinity of Tc
due to their bosonic contributions. Both RH and ν con-
tain cancelling divergences coming from the numerators
and denominators of Eq. (6.1) and Eq. (6.3), but never-
theless they lead to strong peaks in transport. (ii) The
bosonic contributions are substantial over a wide tem-
perature range above Tc, which can be also seen from
Fig. 2. This derives from the fact that the fermionic
conductivities (including σxx, σxy, βxx, βxy, κxx and κxy)
are relatively small in cuprates due to their bad-metal
character which in turn derives from the large value for
Σ0 in Eq. (5.3). Importantly, if one considers the case
of “good metals” [45] we find the bosonic contributions
are confined to the rather narrow critical regime near
Tc. (iii) Related to (ii), the change of the fermionic con-
tributions across T ∗ due to the onset of the pseudogap
is rather weak, which will be contrasted with the good-
metal case where the change is quite dramatic [45]. Fi-

nally, (iv) Regarding the behavior at high temperature
above T ∗, the quantities plotted in Fig. 3 can be divided
into two groups, {ρxx, ν, κxx/T, κxy/T} and {RH, Sxx}.
The former group depends on the inverse fermionic life-
time, Σ0. Consequently, their magnitudes are dependent
on the fact that the cuprates are bad metals. In contrast,
RH and Sxx do not depend [73] on Σ0. This is because
RH involves the ratio of σxy and σ2

xx (Sxx that of βxx and
ρxx), whose dependences on this lifetime largely cancel
each other.

D. Comparison to cuprate experiments

In this section, we give a summary of compar-
isons between our calculated transport coefficients in
Fig. 3 and experimental measurements on underdoped
cuprates [45]. At the outset, we identify problematic is-
sues concerning the Hall coefficient and the thermopower
which affect all theoretical attempts to understand these
cuprate data and make a direct comparison between the-
ory and experiment difficult.

Indeed, there is a sizeable literature dealing with
the Hall coefficient in the underdoped regime [74–82].
Among the most serious problems is that σxy is not as
singular near Tc as is predicted by Gaussian fluctuation
theories, where the expected singularity is stronger than
in σxx (see Sec. IVC). This is presumably associated with
the observation that RH ∝ ρyx starts to drop with de-
creasing T at T slightly above Tc [76, 78] and can even
change its sign as T decreases towards Tc. Moreover RH
in the normal state above T ∗ has a characteristic and sys-
tematic 1/T dependence [74, 83] of unknown origin which
serves as a background on top of which paraconductivity
and pseudogap effects emerge.

Similarly, the normal state thermopower in under-
doped cuprates [60, 84–87] (at T ∼ T ∗) is positive in
the experiments for the samples with the largest pseudo-
gap. This is opposite to the band structure predictions
with a frequency and k independent Σ0, and also oppo-
site to the sign of the Hall coefficient as has been noted
previously in Refs. [23, 25].

Given the easily anticipated problems outlined above
for Sxx and RH, comparisons between experiments and
our plots are semi-quantitatively reasonable only for the
case of the Nernst coefficient, ν. Indeed, measurements
of ν on underdoped cuprates [88–92] have a long history.
However, there are some non-universalities concerning
the Nernst effect, where there seems to be two classes of
behavior. Both La2−xSrxCuO4 and Bi2Sr2CaCu2O8+δ

exhibit a negative contribution to ν for T > T ∗, which is
to be associated with the fermions and their band struc-
ture. By contrast YBa2Cu3O6+δ and HgBa2CuO4+δ ex-
hibit a positive ν at T > T ∗ [92], inconsistent with their
band structure.

In these latter compounds, ν experiences two sign
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changes as T drops below T ∗. It changes first from pos-
itive to negative, and then back to positive at a lower
T near Tc. In Ref. [92] the first sign change at higher
temperature has been taken as evidence against pairing
fluctuations playing an important role at T ≈ T ∗. By
contrast, the experimental data of ν at T > Tc in under-
doped La2−xSrxCuO4 and Bi2Sr2CaCu2O8+δ [88–90, 92]
is rather similar to that calculated in this paper and
shown in Fig. 3(d) [45]. Before arriving at any conclu-
sions it will be important to better understand both ex-
perimentally and theoretically the non-universal aspects
of the Nernst data observed in the two classes of materials
mentioned above.

Finally, we note that the thermal conductivities κxx or
κxy do not show any distinctive features as T decreases
across T ∗, in agreement with experiments [93, 94]. Also
important is the fact that the bosonic contribution to
κxx and κxy at Tc < T < T ∗ in Fig. 3(e) and 3(f) are
respectively negligible, or only very weak. It should be

noted that experimentally, at least in κxx and possibly in
κxy (for rather exotic chiral phonons), phononic contribu-
tions should play a role and can mask possible signatures
from the charged particles.

We end by discussing to what extent we should view
cuprate transport as universal. The onset of the pseu-
dogap in the resistivity has been shown to be associ-
ated with both an upturn deviation from the linear back-
ground as well as a downturn signature. Here we have
looked at the case of a downturn which we interpret as
suggesting that the bosonic contribution from the pseu-
dogap dominates that coming from the fermions. We find
that a fit to an alternative picture where an upturn is seen
from T ∗ downwards [92], for example in La2−xSrxCuO4

and related cuprates, is possible only if the transition
temperatures are rather low; when fitted in this way, we
find that the remaining underlying transport behavior is
not substantially changed. In this case, the fermions will
be slightly more prominent in the vicinity of T ∗.
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FIG. 3. Experimentally measurable transport quantities. The resistivity plot in (a) is the same as in Fig. 1, included for
comparison. In all other plots, the color and line codings are the same as in Fig. 2. In this bad-metal case appropriate to the
cuprates, the Cooper-pair fluctuation effects become apparent slightly below T ∗.

VII. OPEN-CIRCUIT CONTRIBUTION

An anomalously large and negative value for κxy mea-
sured by Ref. [3] has led to substantial theoretical interest
in the thermal Hall conductivity. The measured thermal
conductivity, like the Nernst coefficient in Eq. (2.6), is
determined under open-circuit conditions. As shown in

Eq. (2.7), there are two terms in the expression for κ̃
↔

–
an “intrinsic” contribution arising from κ↔ and the “open-
circuit” contribution arising from γ↔ (σ↔)

−1
β
↔
. Here we are

interested in the low magnetic field limit, and so we retain
terms in the numerator of Eq. (2.8) only to linear order
in the magnetic field and in the denominator we ignore
the field dependence. We also drop the term proportional



12

to β2
xx, since it is quadratic in the particle-hole symme-

try breaking term of the fluctuation propagator, whereas
κxy is linear in this term. With these assumptions, κ̃xy
is given by

κ̃xy ≈ κxy − 2T
βxx
σxx

βxy. (7.1)

The authors of Ref. [27] have called attention to the im-
portance of the open-circuit correction, the second term
in Eq. (7.1), which has been argued to dominate κ̃xy [95].
In this section we present estimates, from the perspective
of both our numerical calculations as well as experimental
measurements, of the open-circuit correction and deduce
that it is too small by about an order of magnitude to
account for the observed sign change in the experimental
results of Ref. [3].
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FIG. 4. Open-circuit correction terms as a comparison be-
tween {ν, κxy/T/B} calculated without (solid lines) and with
(dashed line) these contributions for the system of Fig. 1.
Red: fermion contributions alone; blue: total contribution
from both fermions and bosons. In both transport proper-
ties, the open-circuit corrections are negligibly small.

Our numerical results are shown in Fig. 4. The differ-
ence associated with the open-circuit terms is reflected in
the separation between the solid and dashed lines in this
figure. Here the blue lines correspond to the total con-
tributions and the red lines to those from the fermionic
components. We find that the open-circuit terms are
negligible except in the very narrow temperature regime
when T is very close to Tc. Note that in Fig. 4 the open-
circuit correction to ν is positive. This is because βxx is
primarily negative (as can be observed in Eq. (2.6) and
Fig. 2).

We next provide numerical estimates based on experi-
mental data from the cuprates. We define ∆κ = κ̃

↔
− κ↔.

From Eq. (7.1)

∆κxy
T
≈ −2Sxxβxy, (7.2)

where we have used Sxx ≈ βxxρxx. The value of Sxx
and βxy can be extracted from published experimen-

tal data for La2−xSrxCuO4 at hole doping x ≈ 0.07,
which is close to the doping level x = 0.06 of one sam-
ple studied in Ref. [3]. From Ref. [60] we obtain S/T =
1.0µV/K2. From Fig. 4 of Ref. [89] we infer βxyρxx/B ≈
200 nV/(K · T). Using ρxx = 0.3 mΩ · cm for x = 0.08
from Ref. [96], we obtain βxy/B = 66 mA/(m ·K · T).
We use the x = 0.08 ρxx data for our estimate since we
do not expect a significant change of ρxx from x = 0.08
to x = 0.07. Inserting these values for Sxx and βxy into
Eq. (7.2) for B = 15T and T = 30K leads to

∆κxy
T

= −0.06
mW

m ·K2 . (7.3)

Comparing with the corresponding experimental data [3]
for x = 0.06 at B = 15 T and T = 30K, this appears to
be too small by more than one order of magnitude to be
relevant [97].

VIII. CONCLUSIONS

In this paper we have shown how to address the broad
class of fermionic and bosonic transport coefficients in a
consolidated fashion in the linear magnetic field regime.
Our theory is based on a reservoir approach developed
for non-interacting particles. As an illustration, we ap-
plied these ideas to the normal state of the superconduct-
ing cuprates, under the hypothesis that the pseudogap
phase consists simultaneously of both (gapped) fermions
and bosonic pairs. This paper deals with the challenge of
looking at a wide array of transport coefficients in super-
conductors with such a pseudogap. The challenge comes
from the fact that the two types of charge carriers can
have competing or enhancing contributions. Understand-
ing which of these dominates and in which experiment is
an important goal of our paper.

For the boson channel there is a general consensus that
these Aslamazov-Larkin-like contributions can be mod-
elled as essentially independent bosons. Thus the cen-
tral formulae of this paper [Eq. (3.4)] are on a rather
firm footing. The situation is more complicated with
respect to the fermions, where the independent particle-
assumption is only an approximation. In the applica-
tions to the cuprates involving fermionic contributions,
while we cannot argue that we have fully incorporated the
Ward identities or gauge invariance, we do include inter-
action effects through the “pseudogap self energy” term.
This is responsible for the important Fermi arc effects.
As shown in Ref. [59], the neglected vertex corrections
(for the longitudinal response) are relatively small.

Most importantly, despite our more approximate treat-
ment of the fermionic contributions, one can see from
Fig. 2 that the dominant features to the transport co-
efficients are the bosonic contributions, which generally
have a tendency to diverge or become very large. That
they are so apparent over a wide range of temperatures
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is an important conclusion of this paper. We associate
this with the “bad metal” character of the cuprates which
allows the bosons to be more dominant. Thus, because of
this bad-metal character we do not expect a full many-
body approach to qualitatively change our conclusions
about transport in the cuprates.

In the process of looking at the broad class of transport
coefficients, we have quantitatively studied the experi-
mentally observed behavior of the resistivity of a pro-
totypical underdoped cuprate. We consider the entire
range of temperatures from T ∗ to Tc, assuming that the
resistivity derives from both fermionic and fluctuating
Cooper pair (bosonic) contributions. Our goal was to at-
tribute different features in the temperature dependence
to each of these two sources for charge transport and in
the process provide information about the origin of the
pseudogap. In the vicinity of Tc there is no question that
the behavior is dominated by fluctuating Cooper pairs.
Around T ∗, however, there is a notably subtle feature in
the resistivity data, usually a slight downturn from the
linear background. We view the observation that this is
so slight as very important.

Generally we can presume that the T ∗ signature in-
volves both bosonic and fermionic contributions. Because
the latter arise from the opening of a gap in the excitation
spectrum, it is not difficult to anticipate that rather dra-
matic effects could be evident at T ∗. Indeed, calculations
in this paper suggest that it is rather challenging [45] to
avoid these abrupt changes in the resistivity; it is equally
problematic to arrive at improved conductivity (relative
to the linear background) just below T ∗, when this is
associated with the onset of a fermionic excitation gap.

How do we understand the resistivity data, then? In
our work we used only one adjustable parameter to fit
the resistivity data and found that one can indeed re-
cover a subtle downturn feature at T ∗, but only when
two key and well-known aspects of the cuprates are in-
cluded: they are highly resistive or bad metals and the
opening of the gap is itself rather subtle and associated
with d-wave Fermi arcs. Also important is the fact that
Cooper-pair fluctuations must persist, albeit weakly, up
to T ∗. It is important, however, to distinguish these from
“critical” fluctuations which we find are present only very
close to Tc.

What does this indicate about the origin of a pseudo-
gap? A key finding is that this behavior in the resistivity
makes it difficult to contemplate substantial changes in
the fermionic spectral function associated with T ∗. It is
not unreasonable to assume that this quite possibly rules
out new forms of order or Fermi surface reconstructions.
Rather it suggests that T ∗ is associated with the onset
of some form of fluctuating order. Indeed, this is consis-
tent with inferences from thermodynamics where there
are little or no indications of a true phase transition at
T ∗ [33]. The presence of fluctuating order associated with
the pseudogap suggests that bosonic degrees of freedom

may be present and contribute to transport features at
and below T ∗. If the fluctuations are in the particle-
particle channel and thus charged, this leads to a similar
set of complications as was discussed in this paper.

In summary, there is a growing sense that understand-
ing the full complement of thermoelectric transport prop-
erties may shed light on the still-controversial origin of
the cuprate pseudogap. In contrast to the low-field limit
we consider, recent emphasis has been on ultra-high mag-
netic field phenomena where the superconductivity is
driven away but vestiges of the pseudogap in the normal
state are presumed to persist, now down to temperature
T = 0. It remains to be seen whether this “pseudogap
ground state” does or does not reveal the pristine normal
state of the superconducting materials. Nevertheless, a
clear implication is that it is important for theories to
address, as we do here, the broad class of transport prop-
erties, and not just a selected few.
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Appendix A: Transport in conventional
superconducting fluctuation theory

In this appendix we give a comparison between the
conventional GL fluctuation theory in the normal-state of
a superconductor [11] and the strong-pairing fluctuation
theory of Sec. IVB. In addition, we provide a brief review
of transport literature in the GL fluctuation theory.

1. Fluctuation propagator

We first outline how the formula given in Eq. (3.4)
can be applied to the case of the GL fluctuation the-
ory [11]. This bosonic transport encapsulates the contri-
bution from fluctuating Cooper pairs, and in a diagram-
matic framework it corresponds to the Aslamazov-Larkin
(AL) fluctuation diagram [11]. This approach is tradi-
tionally based on Gaussian fluctuations in the normal-
state, and as a result it does not directly incorporate a
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normal-state pseudogap.
In the GL fluctuation theory [11], the inverse fluctua-

tion propagator is defined by

t−1
0 (p) =

∑
k

G0(k)G0(p− k)ϕ2
k−p/2 + g−1. (A.1)

Here, p = (iΩm,p) with Ωm a bosonic Matsubara fre-
quency. The inverse propagator can also be expressed as
t−1
0 (p) = Π(p) + g−1, where Π(p) is the pair suscepti-
bility. The small-momentum expansion of the retarded
fluctuation propagator is [11]:

t−1
0,R(z,p) = izγGL − εp. (A.2)

Here, γGL = γ1 + iγ2 is the GL parameter and εp is
the dispersion relation for fluctuating Cooper pairs. In
GL fluctuation theory, γ2 ∼ Tc/EF [11] where EF is the
Fermi energy, and particle-hole symmetry is only weakly
broken. As a result, the transport coefficients βxx, σxy,
and κxy, which are proportional to γ2, have a small pref-
actor.

The parameters in Eq. (A.2) are given by [11]

γ1 =
πNF
8Tc

, (A.3)

γ2 = −1

2
NF

(
∂ lnTc
∂E

)
E=EF

, (A.4)

εp = NF
(
ε+ ηp2

)
. (A.5)

Here, the single-spin density of states at EF is de-
noted by NF , ε = ln(T/Tc) ≈ (T − Tc) /Tc, and
η = 7ζ(3) [~vF /(16dπkBTc)] for ultraclean systems in
d spatial dimensions, where vF is the Fermi velocity.
The coherence length, ξ0, is related to η by ξ2

0 = η;
the temperature-dependent coherence length is ξ(T ) =
ξ0/
√
ε. Note that, ξ(T ) is defined in this manner be-

cause the fluctuation regime near the critical temperature
is of primary concern. In particular, the above defini-
tions should be distinguished from the zero-temperature
coherence length in BCS theory: ξBCS = ~vF /(π∆0) is
the zero-temperature BCS coherence length and ξ0 ≈
0.74ξBCS is the fluctuation coherence length, for an ulta-
clean three-dimensional system. In summary, all of the
bosonic transport contributions in GL fluctuation theory
can be determined by using Eq. (3.4), the fluctuation
propagator in Eq. (A.2), and the spectral function

Ab(z,p) = Re[2it0,R(z,p)]. (A.6)

We end by summarizing the relationship between
Eq. (4.1) and Eq. (A.2) as follows:

γ1 = ZΓ; γ2 = −Zκ, (A.7)
NF ε = Z|µpair|; NF η = Z/(2Mpair). (A.8)

We relate the coherence lengths via 1/(2kBTcMpair) →
η, and |µpair|/(kBTc) → ε. As a consequence, one can
deduce the central results for the transport contributions
arising from Eq. (3.4), for both GL and strong-pairing
fluctuation theories, by mapping the appropriate terms.

2. Literature summary of transport results

For the benefit of the reader, here we provide a brief
list of the most pertinent literature on the transport co-
efficients in the GL fluctuation theory. In addition to the
bosonic transport of fluctuation pairs, the normal-state
fluctuation theory of a superconductor contains fermionic
contributions known as the Maki-Thompson (MT) and
Density of States (DOS) terms [11]. The formation of
fluctuating Cooper pairs causes a decrease in the density
of fermions, which gives rise to the DOS term, and it also
causes scattering of electrons, which is respresentative of
the MT term.

The AL contribution to the Nernst effect, which dom-
inates as T → Tc, was computed in Refs. [21, 22], and
similarly the contribution to the thermopower was con-
sidered by Maki [98]. The AL, MT, and DOS contribu-
tions to the longitudinal thermal conductivity were com-
puted in Ref. [20], while the AL contribution was origi-
nally considered in Ref. [99]. The literature on the electri-
cal conductivity is even more extensive; the MT and DOS
diagrams were originally considered in Ref. [100] and si-
multaneously the AL, MT, and DOS diagrams were in-
dependently studied in Ref. [101]. For completeness we
note that the diamagnetic susceptibility was originally
studied in Ref. [102] and only recently the shear viscos-
ity has been investigated in Ref. [103]. A complete set of
references can be found in Refs. [11, 104].

Let us now turn to the fluctuation results for the in-
trinsic thermal conductivity, in the low-field limit, where
there has been some initial controversy surrounding the
longitudinal contribution and where the transverse con-
tribution is more subtle. The first fluctuation calculation
of longitudinal thermal conductivity was performed by
Abrahams et. al [99]. These authors noted that the AL
diagram “corresponds to the contribution of the super-
fluid flow to the current”. Since superfluid flow produces
no entropy [29] it does not transport any heat, and con-
sequently Abrahams et. al concluded that, as the critical
temperature is approached, the AL diagram is expected
to have zero longitudinal thermal conductivity. As a re-
sult, the main focus of these authors was the thermal
response of the DOS and MT diagrams.

Later fluctuation literature [17, 18, 105] erroneously
concluded, due to a mistreatment of the heat vertex,
that the longitudinal fluctuation thermal conductivity is
singular. In confirmation of the result in Ref. [99], a
hydrodynamic analysis [106] argued that thermal fluctu-
ations have a nonsingular κxx. A complete and correct
microscopic calculation of κxx by Niven and Smith [20]
ultimately showed that the singular contributions in the
MT and DOS diagrams cancel and the AL diagram itself
is non-singular, in arbitrary dimensions and for arbitrary
strengths of impurity scattering.

In subsequent work, Ussishkin et. al [19] correctly sum-
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marized the nature of the divergences in κxy in GL fluc-
tuation theory, and, in agreement with Ref. [20], they re-
port that κxx is nonsingular in two and three dimensions.
We emphasize that these results and the final conclusions
related to other transport coefficients are consistent with
those of the present paper, as discussed in Sec. IVC.
The derivation of transverse thermoelectric and trans-
verse thermal responses requires the inclusion of magne-
tization currents.

While there have been numerous publications devoted
to particular transport coefficients in the GL theory,
there are very few papers with a unified discussion of
all the transport coefficients. In Ref. [19], there is a table
of the d = 2 and d = 3 results for κ and β (denoted by
α in this reference). The review in Ref. [104] discusses
electrical and thermoelectric conductivities, but it does
not discuss thermal conductivity fluctuation results. In
this paper it is emphasized that the underlying structure
of the bosonic contributions to all transport coefficients
in both conventional and strong-pairing fluctuation the-
ory can be put into the unified form contained in a single
transport equation, Eq. (3.4), for ultraclean systems.

Appendix B: Detailed comparison between bad and
good metals

In this appendix we discuss the contrast between the
cases of good and bad metals. This is done by varying
the size of the underlying linear contribution to the re-
sistivity, through Σ0, for the purpose of showing what
happens when the relative weight of the fermionic and
bosonic contributions is changed. What is more notable
in the good-metal case is that (even with Fermi arcs still
present) there are now abrupt features in the fermionic
contributions to transport setting in at T ∗, which are in
contrast to the relatively subtle features seen in experi-
ment. Additionally, the bosonic contribution is now re-
stricted to the more conventional critical regime, around
Tc. These calculations are pedagogical, and meant to as-
sist in understanding the more physical example of a bad
metal in the main text.

Indeed, the results for the bad-metal case are already
presented in Figs. 2 and 3; while those for the good metal
are shown in Figs. B.1 and B.2. In our calculation, the
good metal differs from the bad one by a 50-fold reduc-
tion of the normal-state scattering rate, Σ0 in Eq. (5.3),
while all other parameters as well as their temperature
dependences remain the same [107]. This means that the
absolute value of the bosonic contribution is the same for
both cases.

Comparing Fig. B.1 to Fig. 2, we observe that one
of the most important distinctions is that, in the phys-
ically more relevant bad-metal case, the bosonic contri-
bution can be substantial even at relatively high temper-
atures near T ∗, whereas its relevance is highly restricted
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FIG. B.1. Conduction properties in the good-metal case. In
each plot, the red dashed line and the shaded area in red
represent fermionic contributions alone; while the black solid
line represents the total contribution from both fermions and
bosons. The regime shaded in green stands for contributions
from bosons. The fermions are quite prominent in the good-
metal case.

to a narrow temperature range near Tc in the good-metal
case. This is because from the bad to good metal, the
bosonic contribution does not change while the fermionic
counterpart increases by about 50 (for quantities such as
σfxx) or 502 (for quantities such as σfxy/B) due to the de-
crease of Σ0 in Eq. (5.3). We note that, in Fig. B.1(c),
βxx is expected to diverge logarithmically at T = Tc (see
Sec. IVC), which is, however, cut off by finite-size effects
in our numerical calculation.

Another distinction between Fig. B.1 and Fig. 2 is
that, in the good-metal case, the magnitude of all of the
fermionic conductivities, {σfxx, σfxy, βfxx, βfxy} (and also
{κfxx/T, κfxy/T/B} in Fig. B.2), drops rapidly as T low-
ers below T ∗, resulting in a cusp like feature at T ∗.
This is in sharp contrast to the bad-metal case where
the change in T dependence of fermionic conductivi-
ties across T ∗ is rather weak. The sharp drop in the
good-metal case originates from an increase in the effec-
tive fermion scattering rate, which changes from Σ0 at
T > T ∗ to Σ0,eff. = Σ0 + (∆pg(T )ϕk)2/γ (see Eq. (5.3);
here, we consider k = kF and ω = 0). Even just slightly
below T ∗, Σ0,eff. � Σ0 because ∆pg ∼ γ � Σ0. This
rapid increase in scattering rate leads to the rapid drop
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FIG. B.2. Consolidated results for transport: Good-metal case. In all plots, the color and line codings are the same as in
Fig. 2. The upturn in the resistivity for the good metal near Tc is driven by the fact that the fermions experience a pseudogap
in their excitation spectrum and that the effective fermion scattering rate is significantly enhanced below T ∗ due to the Fermi
arc effect (see text).

of all conductivities below T ∗. The effect of scattering
rate change across T ∗ is much weaker for bad metals be-
cause there Σ0 ∼ ∆pg ∼ γ are all comparable.

We turn now to Fig. B.2. One notable feature is that
the upturn of the fermionic ρfxx at T < T ∗ in Fig. B.2(a)
is more pronounced in the good-metal case, as compared
to Fig. 3(a). The sharp upturn corresponds to the rapid
drop of σfxx in Fig. B.1 right below T ∗.

The behaviors of RH, Sxx, and ν in Fig. B.2 are quite
similar to those in Fig. 3 except that, for good metals, (1)
the fermionic contribution to RH has a more pronounced
upturn at T < T ∗, because Rf

H ∝ 1/nf and the effect of
loss of fermionic carrier density nf is stronger, and (2)
the magnitude of ν is much larger because νf ∝ 1/Σ0.
The similarity comes from that Sf

xx and Rf
H are rather

insensitive to Σ0.

Another similarity between Fig. B.2 and Fig. 3 is that
in both cases the bosonic κbxx is negligible, which fol-
lows because κbxx does not diverge as T → Tc in 2d (see
Sec. IVC). This is in contrast to the bosonic contribu-
tion to κbxy which shows a weak logarithmic divergence
as T → Tc. This divergence is not visible in Fig. B.2(f)
due to finite-size effects in our numerical calculations.
Note also that in Fig. B.2, the fermionic contributions to
κxx/T and κxy/T are so large that the bosonic contribu-
tions become almost invisible.

Overall, the comparisons between Fig. 3 and Fig. B.2
again underline the fact that the bosonic contributions
are much more prominent over a large temperature range
above Tc in the more physical case of a bad metal.

Appendix C: Detailed comparison between cuprate
data and our theory

In this section we focus on qualitative temperature de-
pendences of the transport quantities while deferring a
brief discussion on their magnitudes to Appendix D.

1. Hall Coefficient

We start with the Hall coefficient. There is a large
body of Hall measurements on underdoped cuprates [74–
82, 108, 109], focusing on different hole doping, temper-
ature, and magnetic-field regimes. The Hall coefficient
measured on moderately hole-doped YBa2Cu3O6+δ at
low temperature and high magnetic field exhibits pro-
nounced quantum oscillations [108] with a small oscilla-
tion frequency F ∼ 530 Tesla, which corresponds to a
Fermi surface area only about 2% of the Brillouin zone
and suggests that the bare large hole-like Fermi surface
gets reconstructed.

In this paper, we focus on the weak magnetic field
and high temperature (T > Tc) limit, where we assume
no such reconstructions. In this limit, the Hall coeffi-
cient, RH, measured on underdoped cuprates shows a well
known 1/T dependent background [74, 83], whose origin
remains undetermined. One explanation [110] presumes
two distinct normal-state lifetimes, one for σfxx and an-
other for σfxy. In our calculations we do not consider such
a distinction; instead, we use the same Σ0 in Eq. (5.3)
for both σfxx and σfxy. Consequently, our calculated RH
in Fig. 3(b) is essentially temperature independent at
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T > T ∗, as expected in a single-lifetime scenario.
The other key feature of the low field Hall data on

underdoped cuprates is that, below some characteris-
tic T slightly above Tc, RH decreases with decreasing
T [76, 78] and can even change its sign as T drops be-
low Tc, in sharp contrast to Fig. 3(b) where RH contin-
ues to grow as T → Tc from above. Very near Tc our
calculated RH eventually saturates because RH is dom-
inated by the bosonic contribution, and it is ∝ ρbyx ∝
σbxy/(σ

b
xx)2, where the divergences of σbxy and (σbxx)2 can-

cel out each other (see Sec. IVC). This saturation is not
shown in Fig. 3(b) because our theory is valid only for
|µpair| ∝ |T−Tc| & 2eB/Mpair (eB > 0). Experimentally,
the downturn of RH seems to come from σbxy displaying
a weaker singularity than σb

xx as T → Tc [74, 78].
An alternative way to reconcile theory with experi-

ments is to assume that the divergent part of the bosonic
σbxy carries a sign opposite to that of σfxy [74]. However,
we emphasize that this sign, dictated by the particle-hole
asymmetry factor κ in our theory (see Sec. IVC), is not
arbitrary but correlated with the underlying fermionic
band structure that gives rise to Cooper pairs. For the
band structure we use, κ is found to be negative in
Ref. [111], leading to the positive σbxy in Fig. 2(b).

We could hypothesize that some additional physics due
to vortices (not included in our theory), such as discussed
in Ref. [112], can lead to a negative σbxy and account for
the downturn of RH. Future work is needed to fully re-
solve this issue. We note that in Ref. [113] disorder ef-
fects have been invoked to produce a divergence of (σbxx)2

stronger than that of σbxy, which leads to a downturn of
ρyx near Tc in amorphous thin films. Whether this dis-
order mechanism which would lead to a ρyx downturn is
relevant in underdoped cuprates is unclear.

Although we have not been able to surmount them, we
note that these challenges to transport theory are generic
and not restricted to our particular physical picture.

2. Thermopower

We next consider the Seebeck (thermopower) coeffi-
cient, Sxx. Seebeck data on hole doped cuprates [60, 84–
87] are no less puzzling than that of the Hall coefficient.
For our focus on low magnetic field and T > Tc in under-
doped cuprates, one finds that Sxx shows a broad positive
peak at a temperature scale∼ T ∗ before it vanishes below
Tc. In contrast, our numerical Sxx in Fig. 3(c) is almost
entirely negative. This is a consequence of the same band
structure needed to explain the Hall coefficient. A small
positive contribution appears at T right above Tc and
comes from the bosonic contribution which dominates at
T ≈ Tc: Sxx = βxx/σxx ∼ βbxx/σbxx. This reflects the fact
that βbxx is positive although the fermionic contribution
βfxx is negative.

The issue that the observed sign of Sxx is opposite to

what one calculates from the simple tight-binding band
structure has already been noted in Refs. [23, 25]. In
Ref. [23], a pseudogap, whose origin is different from the
one we consider here, is used to reconstruct the bare
fermionic band structure in order to obtain a positive
Sxx. However, the theory does not explain the posi-
tive Sxx at T > T ∗ where the pseudogap presumably
vanishes. Also considered in the literature was a fre-
quency dependent normal state scattering rate (Σ0 in
Eq. (5.3)) or an anisotropic k-dependent Σ0 [114]. In
principle, both of these can lead to a sign change of Sxx
for T > T ∗. Recently a frequency dependence in Σ0 has
been assumed to explain the unexpected sign of Sxx in a
heavily overdoped cuprate [115] where one encounters a
similar situation.

Although we have not been able to surmount them,
we note, again, that these challenges to transport theory
are generic and not restricted to our particular physical
picture.

3. Nernst Coefficient

Measurements of the Nernst coefficient ν on un-
derdoped cuprates [88–92] have a long history. The
experimental data of ν at T > Tc in underdoped
La2−xSrxCuO4 and Bi2Sr2CaCu2O8+δ [88–90, 92] looks
qualitatively similar to our results in Fig. 3(d). At
T > T ∗, ν is small and negative. Below T ∗ it crosses
zero and exhibits a large positive peak centered at a
temperature smaller than the magnetic-field dependent
Tc. The peak region below Tc is usually attributed to
vortex physics which is not included in our theory, while
that above Tc is conventionally attributed to fluctuating
Cooper pairs [19, 21]. Early experiments have proposed
that the behavior above and below Tc may arise from
fluctuating vortices [88–90], although this scenario has
been challenged [116].

The Nernst data on underdoped cuprates display
some non-universal characteristics. In contrast to
La2−xSrxCuO4 and Bi2Sr2CaCu2O8+δ, another pair of
cuprates YBa2Cu3O6+δ and HgBa2CuO4+δ exhibit a
positive ν at T > T ∗ [92], which is not consistent with
the simple fermionic band structure. In these latter com-
pounds, ν experiences two sign changes as T drops below
T ∗: it first becomes negative and then becomes positive
again as T approaches Tc. In Ref. [92], the first sign
change has been taken as evidence against pairing fluc-
tuations playing an important role at T ≈ T ∗, since the
contribution from fluctuating Cooper pairs is always ex-
pected to be positive. However, such a conclusion can
only be reached if we better understand the origin of the
variation of ν from one family to another.

In summary, our plots for ν display reasonably good
agreement with experiments on La2−xSrxCuO4 and
Bi2Sr2CaCu2O8+δ but are not consistent with the be-
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havior in YBa2Cu3O6+δ and HgBa2CuO4+δ. This chal-
lenge to the notion of universality is an open question
which (to the best of our knowledge) has not been ad-
dressed theoretically.

4. Thermal conductivities: κxx and κxy

The longitudinal thermal conductivity has a long his-
tory in the cuprate field [117–119]. The electronic con-
tribution to κxx shows a broad peak as a function of tem-
perature at T < Tc, which is believed to arise from an
enhancement of the quasiparticle mean free path as su-
perconductivity emerges. Interestingly, κxx does not ex-
hibit distinctive features as T decreases across T ∗. This is
in agreement with the theoretical plot in Fig. 3(e) which
shows that the bosonic contribution is almost negligible
and the fermionic contribution is very smooth.

Similarly, κxy measured at low fields [93, 94, 120, 121]
also shows a broad maximum below Tc, which is again
attributed to the increase of the quasiparticle mean free
path. Much effort [122–126] has been devoted to un-
derstanding the behavior of κxy at very low T , deep in
the superconducting state, where an intricate interplay
between d-wave Bogoliubov quasiparticles and vortices
presents a challenge to theory. While until now there has
been relatively little focus on the normal state, a series
of high field κxy measurements [3, 5], where the super-
conductivity is suppressed, were recently performed on
underdoped cuprates. Here it is presumed that this will
reveal the low-T and high field normal state underlying
the superconducting phase as well. This high-field be-
havior is beyond the scope of the present paper, although
establishing a baseline for the behavior even at low fields
(with heat magnetization current effects included) is a
useful contribution made here.

In Ref. [94], κxy was measured at low field and over a
wide temperature range from T & Tc ∼ 90K all the way
to room temperature, which is above the corresponding
T ∗ ∼ 190K [127]. In this temperature regime, the ob-
served κxy/B is well fit by a power law, 1/T 1.2, with
no discernible feature at T ∗. The fact that the exper-
imentally observed κxy in Ref. [94] is quite smooth at
T ∗ seems to be consistent with our numerical results in
Fig. 3(f) where the bosonic contribution to κxy is rela-
tively small and its divergence near Tc is only logarith-
mic (see Sec. IVC). (This divergence can be easily cut off
by other effects not included in the current treatment).
Making a quantitative comparison is not possible at this
stage. In particular, the small contribution from fluctu-
ating Cooper pairs can be easily masked by chiral phonon
contributions, if present. In this regard, it will be useful
in the future to conduct further experiments that con-
nect the low-field high-T regime with the high-field low-T
regime.

Appendix D: Quantitative comparison between
theoretical and experimental transport coefficients

in the cuprates

The discussions of the previous section already im-
ply that one cannot expect a general agreement between
our theory and experiments over the entire temperature
range. Nevertheless, in Table I, we display our theoreti-
cal values of various transport quantities in actual units
for two temperatures, T = 1.1Tc and T = T ∗. These
values are obtained from Fig. 3 using the unit conversion
from Table. II. Table I does show that both the sign and
magnitudes of the Nernst coefficient ν at T = 1.1Tc and
T = T ∗ are in good agreement with those of optimally
doped Bi2Sr2CaCu2O8+δ [90]. In this way, a quantitative
fit to the longitudinal resistivity seems to imply a good
fit as well to the Nernst coefficient.

Quantity RH[ cm3

C
] Sxx[µV

K
] ν[ µV

K·T ] κxx
T

[ mW
K2·m ]

κxy

TB
[ µW
K2·m·T ]

T = 1.1Tc 1.1× 10−2 −1 7× 10−2 4.8 2.0

T = T ∗ 7.0× 10−4 −16 −5× 10−3 3.3 0.8

TABLE I. Magnitudes of the theoretical transport quantities. While RH at T = T ∗ roughly agrees with the corresponding
experimental data for optimally doped Bi2Sr2CaCu2O8+δ [79], its value at T = 1.1Tc is too big. Sxx at T = T ∗ has the right
order of magnitude but its sign is opposite to that of underdoped Bi2Sr2CaCu2O8+δ [84]. Both the sign and magnitudes of ν
at T = 1.1Tc and T = T ∗ are in good agreement with those of optimally doped Bi2Sr2CaCu2O8+δ [90]. The magnitude of κxx
at the two temperatures is in rough agreement with experiments [117–119]. The theoretical κxy/B at both temperatures is an
order of magnitude smaller than that observed in Ref. [94].
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Quantity B σxx σxy/B RH =
ρyx

B
βxx βxy/B Sxx = βxx

σxx
ν κxx/T κxy/T/B

Latt. unit ~
ea2

e2

~d
e3a2

~2d
a2d
|e|

ekB
~d

e2kBa
2

~2d
kB
e

a2 kB
~

k2B
~

1
d

k2B
~

1
d
ea2

~

Numerical value 4.56× 103 3.17 6.96× 10−4 6.91× 10−4 27.3 6.0× 10−3 86.2 1.89× 10−2 2.36 0.52

SI unit Tesla (T) 1
mΩ·cm

1
mΩ·cm·T

cm3

C
A

K·m
A

K·m·T
µV
K

µV
K·T

mW
K2·m

µW
K2·m·T

TABLE II. Units used for different quantities. To obtain the second and third rows we have used a = 3.8Å, d = 30.7/4 = 7.67
Å for cuprates [128], where a is the in-plane lattice constant and d is the inter-layer spacing per CuO2 plane. Although all
quantities are calculated for 2d in the main text, we switch to 3d in this table and show explicitly their dependences on the
third dimensional length scale, d, for easier comparison to experiments.
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