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We theoretically investigate the dynamics of solitons in two sublattice antiferromagnets under
external perturbations, focusing on the effect of Dzyaloshinsky-Moriya (DM) interactions. To this
end, we construct a micromagnetic field theory for the antiferromagnet in the presence of the external
magnetic field, DM interaction, and spin-transfer torque. In particular, we show external magnetic
field and spin current couple to Néel vector in a Zeeman-like manner when DM interactions present,
which can be used to efficiently drive antiferromagnetic solitons of different dimensions. Besides,
we study the effect of straining the local lattice. It can serve as an external handle on the Néel
field inertia and thus dynamical properties. Our findings may find applications in antiferromagnetic

spintronics.
I. INTRODUCTION

Antiferromagnets hold a promise for a faster spintronics
platform. The spin wave dynamics of an antiferromag-
netic system is controlled by an energy scale o« J, where
J is the antiferromagnetic exchange. For ferromagnets
the same scale is o vV KJ where K is a local anisotropy.
In most materials J > K. The energy scale for the anti-
ferromagnet translates to a frequency scale of a few THz.
Antiferromagnets offer another significant advantage over
ferromagnetic devices. Since the net magnetic moment
largely cancels over a unit cell, they do not produce stray
fields. This is particularly important in device design,
where we would like our individual memory components
to be isolated from one another [1-5].

However, these advantages also present a significant
handicap—of coupling antiferromagnetic solitons to exter-
nal probes. The absence of a local spin density implies a
minor response to spin currents. The response to exter-
nal magnetic fields is also tuned down by a factor of the
exchange strength. One way to manipulate these solitons
is to transfer linear momentum, exploiting the inertial
dynamics of the solitons [6—8]. This can be achieved, for
instance, by using magnons to scatter from the domain
walls. Other methods involve creating a local Berry phase
which can then be coupled to an external spin current
field. This technique was used in Ref. [9] to generate a
Magnus force for an antiferromagnetic vortex.

We know from the classic work of Schryer and Walker
[10] that, in a collective coordinate picture [L1], an exter-
nal magnetic field acts like a force on the ferromagnetic
domain wall in one dimension. This construction can be
extended generically to any spatial dimension. In the
ferromagnetic case, the gyroscopic dynamics causes the
force to act in the angular momentum channel, leading
to a precession of the domain wall.

In antiferromagnets, a local density of magnetization
is energetically costly. The dynamics is expressed in
terms of soft modes, which are spin configurations with
vanishing net spin density. In the case of a two sublattice

antiferromagnet, this is the Néel field. The magnetization
density follows the soft mode dynamics and renders an
inertial mass to the soft modes. Thus the dynamics in
the antiferromagnet is inertial—A force produces a linear
acceleration, not a precession [7, 12].

In order to propel antiferromagnetic domain walls easily,
one may then hope to use the analogue of the Zeeman field
for the Néel vector. One question naturally arises—what
would be equivalent to the magnetic field for the antiferro-
magnet? This question was addressed by Gomonay et al
[13] for the two sublattice case. They pointed out that
a Néel spin-orbit field, induced by an electrical current
[14, 15], has a Zeeman-like coupling to the Néel vector
(staggered magnetization), which they utilized to drive
the one-dimensional domain wall efficiently.

In this paper, we find another situation where such
a Zeeman-like coupling emerges in an antiferromagnet.
In particular, we show that the Dzyaloshinsky-Moriya
(DM) [16, 17] interaction is the key ingredient. The DM
interaction creates a local magnetization density which
can then respond to both external magnetic fields and
spin currents through Zeeman-like terms. In addition to
this, we investigate the effects of straining the local lattice
on the staggered magnetization field. The presence of a
nonzero strain tensor would modify the inertia of the Néel
field. Thus strain can potentially function as a handle on
the dynamics of antiferromagnetic solitons.

Our approach will be that of collective coordinates,
developed for describing the slow dynamics of magnetic
textures in ferromagnets [11] and antiferromagnets [7].
The dynamics of the texture is described through a set
of coordinates ¢;, which represent soft modes of the tex-
ture. These are usually restricted to the position and
orientations of the soliton. The kinetic energy of an an-
tiferromagnet is expressed as M;;q;¢;, where M;; is a
symmetric inertia tensor. The generalized force conjugate
to the coordinate ¢; is F; = —0U/dq; with U being the
total potential energy. The dissipative force is given by
F? = —D;;q;. The inertia and dissipation tensors are pro-
portional to each other D;; = M;;/T; the relaxation time
T is inversely proportional to Gilbert damping constant



a [6].

Although we use collective coordinates as our degrees of
freedom, we shall not use the Landau-Lifshitz equations
for the individual sublattices. Instead, we take the micro-
magnetic field theory picture presented in Ref. [6, 7, 9]
and figure out the potential energies (or gauge theories)
that are spawned by adding external perturbations. To
facilitate this, we briefly review the micromagnetic field
theory for two sublattice antiferromagnets in Sec. I1. We
then move onto the effects of the individual perturbations:
namely a magnetic field, a DM interaction, and a spin-
transfer torque in Sec. III. The meat of our discussion
lies in Sec. IV where we deal with the effect of simulta-
neous perturbations. This construction is essential for a
propulsion mechanism. Finally we gather our results in
Sec. V.

II. TWO SUBLATTICE MICROMAGNETICS

In this section, we derive the micromagnetic Lagrangian
for the two sublattice antiferromagnet along the lines of
Ref. [7]. Our description is in terms of the magnetization
field represented by the unit vectors m(r,¢). The length
of the magnetization, M, is a constant and is connected
to the underlying spin density J through the relation
M =~ J with gyromagnetic ratio -.

For antiferromagnets, each magnetic unit cell comprises
two or more magnetization fields m; which are constrained
by the exchange interaction to follow >, m; = 0. To make
this explicit, we convert the nearest neighbour exchange
into:
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Here ). m; is a sum over all the spins that constitute
the antiferromagnetic unit cell—if there are N sublattices,
the sum is over N spins. The other sum « is over the
lattice, broken down into the magnetic unit cell clusters.
The second term is dropped as it is constant and does
not enter equations of motion.

In general, to get to the continuum model, we express
the vector fields m; in terms of the appropriate normal
modes of the systems, dictated by the point group sym-
metry of the order, and expand the exchange interaction
(and the other energies) in them [12].

The particular construction of the field theory depends
on the specific lattice geometry. However, generically
they all stem from labeling the sublattice magnetizations
as individual fields and then putting them together by
expressing the respective magnetization fields in terms of
the normal modes. These are of two kinds—soft modes
which do not break the constraint ), m; = 0, and hard
modes which do, inducing a net magnetization per unit
cell.

Solitonic dynamics in ferromagnets is dominated by gy-
roscopic effects generated by the local angular momentum
density. Thus, to propel a ferromagnetic vortex in the
x direction of the xy plane, one applies a force in the y
direction [18]. Similarly, exerting a force to a domain wall
in a uniaxial ferromagnet primarily generates a precession
about the long axis [10]. To propel it forward, one has to
apply a torque to it, for example through the adiabatic
spin-transfer torque [19, 20]. This is not the situation in
antiferromagnets where a net angular momentum density
is usually a secondary effect from local anisotropy and
fights with a much larger exchange interaction.

A continuum theory of a collinear antiferromagnet with
two sublattices operates with two slowly varying (in space)
fields Mm; (r) and Mmy(r). M is the moment size and
my, my are unit vector fields. In a state of equilibrium,
m;(r) = —my(r). More generally, the two sublattice
fields are expressed in terms of dominant staggered mag-
netization n = (m; — my)/2 and small uniform magne-
tization m = m; + ms. The constraints \ml\Q =1 and
|my|? = 1 translate into

m-n=0, [n?=1-|m*/4~1; (2)

the last approximation is valid as long as |m|? < 1.

A. The kinetic term and spin wave spectrum

We demonstrate the calculation of the spin wave spec-
trum for a two sublattice antiferromagnet on a square
lattice of side length a. The only interaction present is
the nearest neighbour Heisenberg exchange with strength
J. The kinetic term for the antiferromagnet emerges from
the Berry phases of the two sublattice magnetizations
m; 2 [21]. The total Berry phase for the unit cell:

£B = j(al.r'nl + ag.l’hg). (3)

FIG. 1. This figure shows the two dimensional two sublat-
tice antiferromagnet. Red sites have their spins out of plane
and blue spins have spins into the plane. The unit cell for
each sublattice is marked in dashed lines. The exchanges are
isotropic and are marked.



Here J = S/(2a?) is the density of angular momentum

in two dimensions with S as the moment (spin) length.

While choosing the vector potentials a; o for the two
sublattices, we adopt different gauges, such that the Dirac
string of the two monopoles lie on opposite hemispheres
of the magnetization sphere. This ensures that neither
m; /o is near a Dirac string. The convenient choice is
a;(m) = a(m) and az(m) = a(—m) [6, 22, 23].

In the equilibrium state when m; = —ms, the Berry
phases of the two sublattices cancel exactly. This can be
seen for the standard gauge choice of the vector potential
ag = 0 and ay, = (cosf = 1)/sinf. The Dirac string
carries a ‘flux’ of +4m either through the north or south
pole. If we put the string through the south pole for m;
and through the north pole for ms we have in equilibrium
Lp =Jla(n) —a(—=(-n))]-n=0.

The lowest non-vanishing kinetic terms are obtained
by expanding the vector potentials using |m| as a small
parameter. Individually, a;-th; = a;(m/2 + n)-(mh/2+4n)
and ay -y = as(m/2 —n) - (m/2 —n) . Expanding to
quadratic order in |m| and |n|, the kinetic term Eq. (3)
yields the following:

£5/T = far(n) +ax(-m) - 2 (4)
+ [a1(n) —ax(—n)] -1
m; [Oa;(n) Odaz(—m)] 1m
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We have the identity Op,a;(n) — Jp,a2(—n) = 0, from
the definition of the vector potentials. This cancels the
second and third terms. In the first term, we now transfer
the time derivative to a using an integration by parts and
combine with the corresponding vector potential term
from the last line to get:

. [Oag(n)  Oda;(n)] .
i | 22 S ), (9
where we have used V, x a = —n.

The potential energy is obtained from the Heisenberg
exchange:

U:JSQZmi~mj, (6)
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where J is the Heisenberg exchange strength and in the
second line we have dropped the constant term. In the sec-
ond line, we have expressed the summation over nearest
neighbours in terms of summation over two site magnetic
unit cells a. We can see that the uniform magnetization

+ (On)* + 7(8i1211)2 )

picks up an energy contribution from the exchange in-
teraction at the zeroth order in gradients and is hence
a hard mode. The Néel field n only appears through
gradients and is the typical example of a soft mode in
antiferromagnetic systems.

B. Spin Waves

The procedure to obtain the effective spin wave field
theory is similar to the planar ferromagnet [24]: we inte-
grate out the hard field and express the theory in terms
of the soft field. This process generates an inertia for the
soft mode. Since m is hard, we shall drop its gradient
terms. Let us carry this out explicitly:

S h A ew?]. @

Now we can solve for the hard field m = (n x n)/(4J.5),
implying m is a slave variable to the Néel field n in
this treatment. Substituting this solution back into the
Lagrangian, we obtain a field theory for the soft Néel
field:

£="Ln%— 22 (wn)?, (8)

with p = 1/(8Ja?). Here we have used (n x n)? = n? as
n-n = 0, following from the unit vector constraint of n.

The ordered ground state ng (6, ¢) spontaneously breaks
the SO(3) symmetry of the system up to SO(2). Hence in
this case, there are two Goldstone modes, residing in the
coset space S? = SO(3)/SO(2), one for each continuous
degree of freedom, dispersing linearly according to w =
ck, with ¢ = +(2v/2JSa). They classically correspond
to the opposite circular polarizations of the small-angle
oscillations of dn L ng.

C. Strain

Studies of strain control of antiferromagnets [25-27]
have been mainly based on the change of electronic
structures and strain-induced spinorbit coupling, which
have been observed in metallic antiferromagnets such as
MnoAu [28] and FeRh [29, 30]. Here we explore the di-
rect influences of straining the lattice on the Néel field
dynamics. The strain to moment coupling is expressed
through the energy density [31, 32]:

oJ
Uyr = 5? Z [ 6‘;5“;)
ij @

where w,, = w, — w;, with w as the lattice displacement
field. On the nearest neighbour square lattice, the only
strain components that couple to the Heisenberg Hamil-
tonian are €;, and €,,, where €; = (Qw; + djw;)/2 is
the linear strain tensor. If the system has next-nearest

. 6Wab:| m; - 1mj, (9)



FIG. 2. Schematic of strain serving as a handle on dynamics
of solitons in two dimensions. The strain modifies the inertia
associated with Néel field. It can also introduce anisotropies,
leading to anisotropic spin wave velocity.

neighbour interactions, we can couple to those using the
off-diagonal strain €,,. The off diagonal strain will appear
in two dimensions for non collinear magnetic ordering, for
instance the Mn3X group of 120° ordered antiferromag-
nets [33-35].

To lowest order in gradients, the strain couples to the
uniform magnetization m and gradients of the Néel vec-
tor g;n. The dominant effect is through a coupling to
the uniform magnetization m. This produces an energy
density:

emmi + eyym2

Uyp = J'S? v (10)

a2
where J' = (9;J) and we have assumed 0, J = 9,J from
the local cubic symmetry. This modifies the inertia for

the Néel field:
1 1 Ie.
e sl -

where now p; is the inertia in the i*" direction. Note that
the cross-strain €., is absent to first order here as we
are restricting ourselves to nearest neighbour interactions.
It serves as an external handle on the Néel field inertia
which can be exploited to control its dynamical properties,
especially in the case of solitons (see Fig. 2). This presents
a new avenue to manipulate the frequency response for
two sublattice antiferromagnets.

The next higher order coupling is to the gradients of
the soft Néel field. This coupling modifies the spin wave
velocity and makes it anisotropic. This is expected since
strains induce an additional two fold anisotropy in the
plane. The velocities are now given by:

! !
c=c <1 + Jjemma I+ Jjeyy> ; (12)

with ¢ = :t(2\/§JSa).
D. Solitons

We are interested in the situations where the only spa-
tial dependence of the staggered magnetization field n is
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FIG. 3. On the top we show the constituent sublattice mag-
netizations my 2. These sublattices combine to form the anti-
ferromagnet. A typical soliton in one dimension is a domain
wall shown on the bottom. The domain wall is a soliton inter-
polating between the two unidirectional ground states of the
one dimensional antiferromagnet.

at the location of topological defects. These regions are
characterized by a Skyrmion density defined using the
Néel vector field [36, 37]:

1 On On

Here (g;,q;) are collective coordinates conjugate to each
other. Typical examples for the two sublattice case are—
domain walls characterized by the conjugate set of location
and orientation of the domain wall (Z, ®), and the vortex
with it core center (X,Y) serving as the conjugate set.

Uniaxial domain wall: The uniaxial domain wall is
produced by an easy axis anisotropy. Choosing this to lie
along the z axis we get:

A on |?

K
U(n) = 5 ‘a + ?|€3 X l’l|2. (14)

Here A > 0 characterizes the strength of exchange, K > 0
is the easy axis anisotropy, and ez = (0,0, 1). This system
has two uniform ground states n = +es, linear excitations
in the form of spin waves with the dispersion w? = (K +
Ak?)/p, and nonlinear solitons in the form of domain walls
which interpolate between the two ground states. Static
domain walls in n = (sin 6(z) cos ¢, sin 8(z) sin ¢, cos 6(z))
have width A = /A/K and are parametrized in spherical
angles 0(z) and ¢(z) as follows:

-7
cosf(z) = £+ tanh z 3

o(z)= .  (15)

Position Z and azimuthal angle ® represent the two zero
modes of the system associated with the global symmetries
of translation and rotation see Fig. 3. Weak or local
external perturbations do not alter the shape of the soliton
significantly and mostly induce the dynamics of Z and ®.

Planar vortexr : This topological feature is stable in
two spatial dimensions with an easy plane anisotropy,
K < 0 in Eq. (14). The uniform ground states are



n = (cos¢,sing,0).

is parametrized as:

A vortex centered at the origin

Here n € Z is the vortex winding number. The magneti-
zation leaves the plane at the cores and this is captured
by the function f(¢) with f,,(0) =1 and f,,(c0) = 0. The
core size is controlled by the same length scale as the

domain wall, A = \/A/|K|.

IIT. EXTERNAL PERTURBATIONS

We now consider the situation where the only spatial
dependence of the staggered magnetization field n is at
the location of defects. The theory we work with is

2
E:Jr’l~(n><m)— (%) m2_uext[47n7m]v (17)
where we have absorbed the Heisenberg exchange strength
into a spin susceptibility x. ¢ in the theory is an exter-
nal (pseudo)vector field (it can be a general tensor field,
such as the strain tensor we have discussed). Our main
objective is to see how ¢ modifies the Lagrangian density,
in particular how it couples to the soft mode n. Once
we have an understanding of these couplings, we can
study their effects on solitons in the staggered magneti-
zation order, such as uniaxial domain walls and planar
vortices. We outline the manner in which these solitons
can be effectively moved in space by coupling to the order
parameter.

These external vector fields couple either to the uniform
magnetization m(r,t) or the staggered magnetization
n(r,t) in the Lagrangian. This is broadly guided by
symmetries like time reversal and mirror planes of the
spin Hamiltonian. Fields, which couple to m, produce
a gauge coupling to n, on integrating out m. This is
the case with perturbations like an external magnetic
field h(r,t) or a spin transfer torque characterized by
the electron drift velocity u(r,¢). Such terms require a
spatial or temporal variation of the external vector field
to produce solitonic motion [9, 38].

The coupling to n gives rise to terms like (A4;;¢in;)k,
where k = 1,2 is the cases we study. Here, (; represents
an external field sourced from a combination of terms like
the Dzyaloshinski-Moriya interaction, external magnetic
fields, or combinations. This term acts as a potential
energy density which can generate a force (or torque) on
a soliton. Note here, that an antiferromagnetic soliton by
virtue of Eq. (8) is inertial, i.e. a force propels an anti-
ferromagnetic domain wall instead of making it precess.
We show that Dzyaloshinski-Moriya interactions generate
such terms and can be used to propel solitons.

Dissipation: An additional ingredient that needs to be
added to the field theory is the dissipation term. This

is done using the standard Rayleigh dissipation density
function with the Gilbert damping parameter «:

SN
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Converted to the collective coordinate picture we find
that for the antiferromagnets the dissipation tensor is
proportional to the inertia tensor, D;; = M,;/T where
T = p/2aJ is the relaxation time. The dissipation is
captured in a force term F}’ = —D;;¢g; in the dynamical
equations for the solitons.

In the course of working out these contributions to
the energy density, one particularly useful identity we
repeatedly use is:

(Mxn)-(Axn)=A-nxnNxn)]=A-n (19)

This identity follows in a straightforward manner from
n? = 1 — (m?/4) ~ 1. Corrections to this assumption
modify the inertia p. Since A in our theory is already a
perturbation, these are higher order corrections and will
be suppressed.

A. Magnetic field

The external magnetic field couples to the uniform
magnetization Y = —Mh - m to form a Zeeman term.
This adds to the Lagrangian density:

2
Lim,n]=Jn-(nxm)— (2/;) |m|? + Mh-m. (20)

A straightforward minimization with respect to m gives
m = xyJnxn/M?+xh/M, which violates the constraint
m - n = 0. To ensure the perpendicularity, we resolve h
into a component perpendicular ton, h; =n x (h x n)
which enters the Zeeman coupling m - h; to produce a
term (n x H) - (n x m).

Now on solving for m, we obtain m = xJ (nxn)/M?+
x(n x h) x n/M. Substituting this into the Lagrangian
we obtain:

: 2

L(n) = W’ (21)
with the inertia p = x/v2. The Lagrangian is identical
to that of a particle in a rotating frame with an angular
velocity «y|h|, causing a texture in n to precess. There is
an additional contribution to the energy in the form of
Ur = —p|yhxn|?/2, which adds to the crystal anisotropy
term in the energy functional and resembles the potential
energy that leads to the centrifugal force in the rotating
frame.

Let us take a closer look at each of the terms in Eq. (21).
The term pn?/2 is the kinetic energy of staggered mag-
netization, which endows antiferromagnetic solitons with
an inertial mass. Supposing a soliton is parametrized
by a set of collective coordinates q = {q1,¢2,...} such



as the position of a domain wall, the coordinates of a
vortex core etc., the variation of n in time is mediated
by the change of these collective coordinates: n = ¢;0y,n.
The soliton’s kinetic energy is then M;;¢;d;/2, where
M;j = p [ dV Og,n - 9, is the inertia tensor [39].

The potential term p|vh x n|?/2 in Eq. (21) expresses
local anisotropy favouring the direction of n orthogonal
to the effective field h. This term modifies the potential
landscape U(q) of a soliton:

Ula, h(r)] = Ulq, 0] — / v M. (22)

To get an idea of what kind of anisotropy this term induces,
let us take a look at the energy density for the uniaxial
domain wall in Eq.(15) with the easy axis along Z as
shown in Fig.3. We now introduce a magnetic field h =
ho(cos ¢, sin ¢, 0) modifying the energy density:

U=——cos?’ — ——(n x h)? (23)

2
— cos? 6 — m[cos2 6 + sin” O sin® (¢ — )],
with K > 0.

The magnetic field chooses the azimuthal plane for the
Néel domain wall and hence acts as an angle-selector. For
a particular direction of the field (cosf) the minimum
energy occurs when |¢ — ¢| = m/2. In the figure (Fig.3)
we point the magnetic field along X which prefers a Néel
wall in the yz plane. The easy axis anisotropy, however,
is unaffected in this configuration. This leaves the soliton
size unchanged.

To modulate the size of the soliton A = \/A/K we
need to apply a field along the easy axis h = hgz. In
this configuration the anisotropy K defined in Eq. (15)
is modified to K — K = K — py*h3. Now for the easy
axis scenario since K > 0 this leads to an expansion,
while for the easy plane scenario where K < 0 this leads
to a constriction of \. Thus the magnetic field breaks
the SO(3) symmetry of the Néel vector and allows an
external control of the soliton size. A similar analysis for
the domain wall is presented in [40] including corrections
from a non-uniform magnetic field.

We remark that, in the easy axis case, the soliton profile
is no longer stable when K — 0 as the applied magnetic
field increases; the system undergoes a spin-flop transi-
tion into a spin-flop phase, where the Néel vector lies
within the plane perpendicular to the magnetic field. In
the easy plane case, one can utilize the magnetic field
to enhance the easy-plane anisotropy, which is essential
for the conservation of spin winding and thus is appli-
cable in energy storages [41, 42] and related transport
experiments [43—45].

The cross term pyh-(nxn) in Eq. (21) is linear in time
derivative n and thus quantifies the effective geometric
phase for the dynamics of staggered magnetization. This
is analogous to the Coriolis effect in a rotating frame. In
the Lagrangian of a soliton, it turns into A;¢;, a coupling

to an external gauge field
On
Ai(q) = /de’yh- — Xn). (24)
9q;

The equations of motion for an antiferromagnetic soli-
ton have the form of Newton’s second law for a particle
of unit electric charge in this gauge field:

M;;q;/T. (25)

The “magnetic field” F;; = —Fj; is the curl of the gauge
potential:

0A; 8Ai B on On
Fj = 4 aqj = —2/dV pyh- <8 3%) . (26)

M;;G; = —0U/0q; + E; + Fijq; —

The “electric field”

- (On
E;, = f/de'yh~ (8% X n> , (27)

arises when h depends on time explicitly.

B. Dzyaloshinski-Moriya Interaction

We now examine the effect of adding the antisymmetric
exchange or DM interaction [16, 17] to the Lagrangian.
This interaction exists in an antiferromagnet with bro-
ken inversion symmetry intrinsically or at interfaces like
sample edges and extended domain walls. It is charac-
terized by the energy density Upmr = D - (S; x S;) =
J?D - (m; x m;) where the direction of the DM vector
D is given by the Moriya rules [17].

Their net effect is to induce a weak ferromagnetism in
the material, which then couples to external torques and
fields. In the presence of a homogeneous DM interaction,
the theory takes the form:

2
L=Jn -(nxm)— <J;/;<) m|*> — 7°D - (n x m). (28)

This adds an extra term to the solution for the staggered
magnetization m = yJn x n/M? — xD x n/42. On
integrating out the uniform magnetization we obtain:

plir— TD)*

L= 2

(29)
Note that here, unlike in the case of the external magnetic
field, there is no additional anisotropy induced by the DM
vector. The Lagrangian suggests a steady-state transla-
tion for the Néel soliton n’ = n — JD with a velocity
v = JD. In other words it acts as a potential for n.

The cross term with the kinetic term gives rise to a
vector potential of the form:

ADM

—-pJ / dV— . (30)



For the material bulk where the DM vector is a constant,
this does not produce an electromagnetic field density
F;;. However, there are two situations where an exception
occurs. One is when 0;0;n — 0;0;n # 0 as in the case
of the antiferromagnetic vortex core where n is singular
[24]. In this case, the vector potential A; yields a density
Fxy = (—2mnpJ)ey - D. Here 71 is the vorticity density
and & is the azimuthal unit vector.

It is unlikely that this effect is finite in the two-
sublattice case as the DM vector tends to point out of
the plane. However, it might be present in non collinear
antiferromagnets like MngGe. The other situation occurs
at interfaces where the DM vector can become space de-
pendent. In that case, the electromagnetic tensor strength
is given by F;; = pJ(9;jn - 0;D — 0;n - ;D).

C. Spin-Transfer Torque

For metallic antiferromagnets, we can transfer angu-
lar momentum to each individual sublattice through a
conduction band electron current [46]. The local mag-
netic moments couple to the electron spins through an s-d
exchange[47]. The coupling polarizes the conduction band
to follow the orientation of spins on individual sublattices.
This mechanism gives rise to the adiabatic spin transfer
torque.

For the ferromagnet, the adiabatic spin transfer torque
modifies the time derivative in the Landau-Lifshitz equa-
tion to a convective derivative d; — 0y +u - V [18]. Here
u is the drift velocity of electrons related to the electric
current j = enu—with n as the concentration of electrons.

This manipulation can be extended to the two sublattice
antiferromagnet [19]. The kinetic term:

m-(nxn)—m-[(d+ (u-V))n xnl. (31)

This correction modifies the induced magnetic moment
m = (xJ/M?)(n+ (u-V)n) x n, which suggests that
nonuniform Néel fields will induce a magnetization in the
presence of a spin current. The Lagrangian reads:

plt (u-V)n]*

L= 3

(32)

The most immediate effect of this coupling is to modify
the spin wave velocities. Comparing this with Eq. (7), we
can see that the potential energy density is now:

_us?

U=

(Vn)? — g[(u - V)n]2. (33)
Consider an adiabatic spin current of the form u = (u,, 0).
This modifies the spin wave velocity in the x direction
to ¢, = c[1 — (uz/(2¢%))], where ¢ = 2v/2JSa. Thus for
a generic current direction the spin wave will no longer
be isotropic in the plane and will get corrections of the
order of |u|/c?. This, along with strain can be used to
modify spin wave magnitudes and polarizations in the
two sublattice antiferromagnet.

The adiabatic spin transfer torque needs a local Berry
phase density to effect propulsion of a soliton. This im-
plies that the spin transfer torque needs to be applied in
addition to a perturbation that creates a local magnetiza-
tion density to propel an antiferromagnetic soliton. For
instance, in Dasgupta et al [9] an external magnetic field
was used to generate a local Berry phase density. This
coupled to the spin transfer torque to produce a Magnus
force for the antiferromagnetic vortex.

IV. COMBINED INTERACTIONS

Single perturbations couple to the Néel field in Eq. (21),
Eq. (29), and Eq. (32) through n. This gives rise to
vector potentials. Under certain circumstances where
the perturbation is itself nonuniform in time or space,
this leads to a finite electromagnetic tensor. However,
as shown in Ref. [9], a perturbation that is nonuniform
in time does not produce a net propulsion of a soliton.
Nonuniform drag forces [13] and spatially nonuniform
magnetic fields do induce a propulsion [38, 10]. However,
in this paper we want to restrict our search to spatially
uniform situations which are easier to reproduce in the
laboratory.

A better alternative for antiferromagnetic solitons is to
use a combination of two (or more) perturbations. This
is the situation which we now turn to. The theme of two
of these combinations is similar. If we have a magnetic
field h(r,t) or a DM interaction D(r,t) locally (at the
location of the soliton) inducing a small magnetic moment
which the spin current u(r,t), latches on to and generates
a displacement of the soliton. The other combination,
a DM interaction and an external magnetic field, will
lead to an energy density which we show is structurally
identical to Néel spin orbit torque used in Ref. [13].

A. DM interaction and external magnetic field

If these two types of terms are simultaneously present
in the system, the Lagrangian density takes the form:

2
Lim,n]=Jn-(n X m)— (j;;t() |m|? (34)
+Mh-m— 7°D - (n x m).

We can solve for the induced magnetization:

m:%ﬁxn+%(nxh)xn—%Dxn. (35)

This can be plugged back into Eq. (34) to obtain:

p [t +~(n x h) — (M/7)D}*

L= 5

—U(n,D,h). (36)
The cross term of interest is:

Z/fDM.h = —pM n- (D X h). (37)



U(Z)/pMDh

FIG. 4. A domain wall profile Eq. (38) with ® = 7/2 in a one-
dimensional antiferromagnet. The graph shows the potential
U(Z), measured in unit of pM DhA, for the domain wall in the
presence of DM vector D = Dy and magnetic field h = h%.
Here we set the size of the domain wall to be A = 1 and set
the system to be Z € [—10, 10]. We see the potential is nearly
linear and only bends close to two boundaries. The resultant
constant forces acting on the domain wall, balanced with the
dissipative force, leads to a steady velocity vsteady Eq. (43).

This term acts as a ‘Zeeman’ term but for the staggered
magnetization with an effective magnetic field hog = (D X
h). Note that, in the presence of a DM interaction, the
induced extra uniform magnetization is m o< (D xn). It is
this induced ferromagnetic moment that ‘Zeeman’ couples
with the external magnetic field. This coupling has been
previously studied in the context of weak ferromagnets
[36, 50]. Their analysis was done in the continuum with
a quadratic kinetic term.

Here we look at it in the context of the two sublattice
antiferromagnet, cast in the collective coordinate scheme.
This achieves two goals—firstly, it becomes clear that
the term is a force on an massive particle (the soliton).
Secondly, once we have the collective coordinate scheme
set up we can quickly determine the effect of this term on
the dynamics of the regular solitons— uniaxial domain
wall, vortex, Skyrmion, and hedgehog. This analysis has
so far not been presented in the literature.

To cause a net displacement in the position of the
soliton, we require: (D X h)f # 0, where ¢ is the unit
vector along a zero mode direction of the soliton. For
example, for the domain wall ¢ is along the easy-axis. This
requires, in particular, a DM vector that is not aligned
along the easy axis. To illustrate this idea, we explore
the dynamics of antiferromagnetic solitons of different
dimensions. Their steady-state velocities are also given.

Uniaxial domain wall: We adopt the static domain
walls parametrized in spherical angles 6(z) and ¢(z) as
follows

z—7

cosf(z) = tanh , o(2) =9, (38)

where position Z and azimuthal angle ® are two collective
coordinates, standing for two zero modes of the system.
We now expand the first term in the Lagrangian Eq. (36):

D\ 2
£:ph2+g|vnxh|2+p<M>
~y

2 2
+pya-mxh) - Map
— pMD - (n x h). (39)

We assume a simple configuration with D = Dy and
h = h%. Both D and h are constants. Here pn?/2 endows
the domain wall with a mass M. As shown before, the
magnetic field modifies the easy axis anisotropy. The
term proportional to D? is a constant and thus does not
enter the equation of motion of the domain wall.

The total “electromagnetic” force acting on the domain
wall Eq. (38) along £ direction, derived from the vector
potential in the second line of Eq. (39), vanishes in this
situation. The last line in Lagrangian Eq. (39) gives rise
to a potential energy for the domain wall:

L cosh[(Z — L)/
. dzn, = pMDhAIn cosh[(Z T D)/

(40)
where we have parametrized the one dimensional anti-
ferromagnet with z € [-L, L]. One can therefore write
down the equation of motion for the domain wall:

U(Z) = pMDh /

MZ=—-MZ|T +F, (41)
where F'= —dU/dZ. We consider the situation that the
domain wall is far away from two boundaries of the 1D
antiferromagnet. The force due to the potential U(Z) is a
constant F' = 2p M Dh, independent of the position of the
domain wall, in this scenario (see Fig. 4). The domain
wall mass M is

M:p/dz

From Eq. (41), we can read off the velocity of steady
motion:

% (42)

dn
dz A

DhT
Usteady — MDKTN = QPM%7

(43)
which is linearly proportional to the strength of DM
interaction, applied magnetic field, viscous relaxation
time, and is inversely proportional to the mass of domain
wall, as one may expect. Note that the mass M has a lower
bound p/L, set by the system size. We also remark that
one cannot crank up the magnetic field incontinently, as it
also contributes to magnetization (recall m = xyh/ M+ - -,
when h | n), which would ultimately invalidate our
description at large fields.

To quantitatively estimate the velocity of the domain
wall, we use v ~ 1.76 x 10Ms~ 1T~ 7 = 1 h/atom, the
applied magnetic field h = 1T and the relaxation time



T ~ 60ps [51]. The size of the domain wall is determined
by the exchange strength and the easy-axis anisotropy
which is typically A ~ 10nm. For the DM interaction, we
use J2D ~ 0.5meV /atom, for example in MnzSn [52, 53].
This gives us a steady velocity vsteady = 50 km/s, which
is comparable with the limiting (Walker) velocities of
various antiferromagnetic materials [54-50].

Antiferromagnetic vortex: The dynamics of the anti-
ferromagnetic vortex in the presence of an external out-
of-plane magnetic field, h = hgZ, and an in-plane DM
interaction mirrors the Magnus force dynamics presented
in [9].

Magnus force type dynamics is unexpected and novel
in the broader context of antiferromagnetic solitons with
this as a possible new addition, for a review see [37]. The
nature of the Magnus force and the dynamics it engenders
in the antiferromagnetic vortex is different from the same
phenomenon in the ferromagnetic vortex. Firstly, the
dynamics is inertial thus a steady state is not instantly
achieved. Secondly, the strength of the Magnus response
is proportional to the external magnetic field hyg.

With an out of plane magnetic field a finite Skyrmion
charge is generated for the antiferromagnetic vortex, g =
(npyho/2T) [9, 37, 57]. Here 7 is the winding number
of the vortex. This in turn creates a finite gyromagnetic
density Gxy = —Gyx = g = 2mnpyhg. This effect is
notably absent for an in-plane magnetic field.

The in plane DM interaction provides a finite potential
energy in the vortex center coordinate channels. With a
DM vector of the form D = (D, D2, 0) we get a ‘Zeeman’
energy density:

U= —tho/dmdy(Dznm — Diny) (44)
= thoT](DQX — D1Y),

where 7 is a structural factor that depends on the di-
mensions of the sample, see Fig. 5. We provide an
estimate for a sample with a circular geometry in the
Appendix.A. This energy density is analogous to that
of a planar ferromagnetic vortex with an in-plane mag-
netic field [58]. Assuming a circular geometry, n = 7R,
the force acting on our antiferromagnetic vortex is then
F = —mtRpMho(D2,—D1). Here R is the radius of the
sample.

The collective coordinate equations of motion for the
vortex core reads:

i} . Mxx. M

MxxX = Fx +gY — ;XX - ;fY Y, (45)
- Myy .. Mxy .

MyyY = Fy gX T Y T X.

The various mass tensors here are geometry dependent
and need to be calculated in specific setups or numerically
determined. The individual components are proportional
to the integrals: Mxx « I, Mxy = Myx « I3, and
Myy o I3, see App. A. We take the symmetric limit,
such that MXX = Myy =M and MXY =0.

au

o 5 1olL_J
(a) (b)

FIG. 5. Potential energy densities for the ‘Zeeman’ U
n - (h x D) term in the collective coordinate space. The
magnetic field is out of plane h = hoZ and the DM interaction
is in plane. The sample geometry used was a square of side 20
units. On the left (a) is the density produced by D = (D1, 0)
and on the right is the density produced by D = (0, D2). As
noted in the text the densities are linear in X and Y in the
regime where the vortex core is well inside the boundary.

This gives the steady state velocity (see Fig. 6) for the
vortex core as:

D1gT — Do M DogT + D1 M
v:Tp./\/lhoRﬂ< 19 2 297 + D1 ),

M2+ g2T2 '~ M2 + g2T?2
(46)

with magnitude being

B TRpM |D|hoT
1+92T2/M2 M

We note that, similar to the steady motion of a domain
wall Eq. (43), |v| o< |D|mRhoT /M when the gyromagnetic
density is small g < M/T.

If we were to consider a DM interaction that points out
of plane D = Dyz, we would need an in-plane magnetic
field to drive the vortex core. An in plane magnetic field
H = (hy, hy,0) does not create a skyrmion charge for the
vortex and hence no Magnus force is generated. Assuming
a spherical geometry again, we have a force on the vortex
core F = mRpMDy(hy, —h;). The steady state velocity
in this case is v = nRpMDT (h,, —hy)/M.

Antiferromagnetic Skyrmion: This situation is sim-
plified for antiferromagnetic solitons where n(r) config-
uration covers the whole unit sphere—Skyrmions and
hedgehogs [9, 37], killing the possibility of an induced
gyrotropic term.

The standard profile for an antiferromagnetic Skyrmion
is n = (sin®cosP,sinO cos P,cosO). For a single
Skyrmion located in the xy plane at (X,Y) = R we
have O(Jr — R|) = ¢g(|r — R|)—a monotonous function
such that g(|[r —R|) = 0 when [r —R| > Ry, and g = 7 at
r = R. Here Ry is the Skyrmion radius. The azimuthal
function ® is the same as the vortex with a vorticity of 1.
This profile can be used to calculate the potential energy
density from the crossed DM and external field.

With an out of plane magnetic field h = hyZ and an in
plane DM vector D = (D1, D2, 0) we get the same form for
the energy density as the vortex, Eq. (44). However, the
geometric factor 7 is different as the integration kernels

v (47)



now include, and depend on, the exact form of the function
g(|r — R]). If we take the simplest linear form:

g:{ﬂ(l—'%‘—s?)
0

then the structural factor = —m2. This should be
worked out numerically for realistic Skyrmion profiles for
an accurate estimate. Using this we get a steady state
velocity Vekyr = —m2pMho(T/M)(—Da, D1). With the
fields reversed in configuration the velocity is Vgiyr =
—7m2pMDy(T/M)(hy, —hy) .

The dynamics here is notably independent of system

0<|r—R|< Ry

(48)
|r - R| 2 Rsk‘v

dimensions as Skyrmions are local defects unlike vortices.

This adds to the methods that can be employed to move
antiferromagnetic solitons such as the non-adiabatic spin
transfer torque [59]. Though this is probably a much
more minor effect owing to the Skyrmion profile strongly
suppressing the value of the integral.

Antiferromagnetic hedgehog: To illustrate the cross
term (37) can be used to efficiently drive a hedgehog [60,
61] in three dimensional antiferromagnets, we consider
an isotropic hedgehog configuration n(r) = no(r — R.)
with ng(r) = r/|r| and collective coordinates R.. The
‘Zeeman’ energy potential for the hedgehog is given by

UR.) = pM/d3rh -D x n(r), (49)

where h and D are the magnetic field and the DM vector,
respectively. This potential gives rise to a constant force

F=-VgU-= —pM/d3rh- [D x Vg, ngp(r — R.)]

=pM(h x D) - /d3r Veno(r)

_ 47 R?
3

pMh x D. (50)

when the hedgehog is far away from the boundary of the
sample. Note this force is dependent on the radius R of

the sample, which is a general feature of nonlocal solitons.

The equation of motion for the hedgehog core is

MR,=F — %RC, (51)
T
where M = M,, = My, = M., = p [d3V [0,n0(r)]?
is the mass of the hedgehog (note that all off-diagonal
elements vanish for the configuration ng). This gives us
the steady state velocity

_47R?  ThxD
B M

v (52)

whose direction is dictated by the orientations of the
magnetic field and the DM vector.
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FIG. 6. The motion of an antiferromagnetic vortex core in the
presence of DM vector D = DX and magnetic field h = hoZ.
The steady state velocity for the vortex is given in Eq. (46)
(setting D2 = 0). The direction of the motion is determined
by tan@ = —M/gT.

B. DM interaction and adiabatic spin transfer
torque

A combination of these two interactions produces the
Lagrangian density:

Lm,n] = J(Dyn) - (n x m) (53)
(M m?> - 7°D - (n x m
Gy ) = 7D ()

where the convective derivative D, = 0; + (u- V). We
can solve for the induced magnetization:

m=-""-(D,n) xn— %D X n. (54)
v

This can be plugged back into Eq. (53) to obtain:

The cross term generated here is proportional to
u;(0in;)D;. This is clearly a total derivative term which
has no effect in the bulk of a material where the DM
vector is constant. However, at all interfaces and edges
of the sample where the DM vector changes direction or
magnitude or both, this term has a finite contribution.
Across a sample boundary perpendicular to x;, this term
adds an energy:

Uboundary = pJUzD : (Ain)’ (56)

where A;n stands for the change in the Néel order across
the boundary. Depending on the sign of the DM interac-
tion, the system will then choose to have the Néel vector
along a boundary to orient parallel to or perpendicular
to the DM vector. Note that this boundary anisotropy is
controlled by the direction of the adiabatic spin transfer
torque u, as the gradient is attached to that term.

(55)

V. DISCUSSION

In this paper we studied the two sublattice antiferro-
magnet in the presence of external perturbations. The



method we employed was to write a field theory for the
Néel field n and the uniform magnetization m. The
perturbations can then couple to these fields. One of
our primary points is that to effectively move antiferro-
magnetic solitons we need to consider a combination of
external perturbations. In all of this, our main motive is
to identify avenues through which internal features like
the inertia of n, the location of solitons and their sizes
can be controlled externally.

We work out these couplings for strain fields which
modifies the inertia of the Néel vector. It does so by
coupling through a magneto-elastic coupling. An external
magnetic field can be put to multiple uses. A static field
modifies the shape of the soliton and its configuration.
It can also be used to create a local Berry curvature
which can be coupled to using a spin current [9]. A
dynamical magnetic field, h(r,t), can be used to generate
an effective electromagnetic tensor and propel domain
walls [38]. Crucially, what we find, is that in combination
with a Dzyaloshinsky-Moriya interaction a magnetic field,
providing a Zeeman like interaction for the Néel vector
which was discussed in weak ferromagnetism[36, 50], can
be used to directly drive the antiferromagnetic solitons.
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Appendix A: Energy density of the
antiferromagnetic vortex

Here we provide the details for the energy density of
the antiferromagnetic vortex in the presence of an out
of plane magnetic field and an in-plane DM interactions.
The configuration we use is D = (D1, D2, 0) and h = hoZ.
The energy density is given by the first line of Eq. (44).

To calculate a form for the energy density let us consider

a vortex profile of the form, n = &20
m2+y2

at the origin. To calculate the energy density what we
do is displace the vortex core slightly from the origin
(0,0) — (04, 0,) and subtract the two energies of the two
spin profiles.

with the core

AU=UX=6,,Y =6, -UX =0,Y =0], (Al)
which is then integrated over space [ dzdy AU to get the
energy in the collective coordinate space AU. The force
is then—F = —(AU/4,,AU/é,). The displaced energy
density is then:

U= p/\/lhg/d:rdy (—Daong + Diny) (A2)
AU = tho [Dg(]l(sw — IQ(SU) —|— Dl(IQ(Sw — Ig(sy)] 5

with the integrals

y2 1‘2

= [ ety 1= [ b

Ty

I = / dxdyi(ﬁ T (A3)
Under the assumption that we are working with a sym-
metric sample we can see that Iy = 0. The other two
integrals, I; and I3 need to be worked out for specific
sample geometries. We can analytically work out the very
simple situation where the sample has a circular geometry
of radius R and the vortex core is displaced slightly. In
this case we can convert the integrals to spherical coor-
dinates on the plane and we obtain I; = I3 = mR. This
then produces the energy AU = pMmRho(D20, — D16y)
and the force F = pMmRho(—D3, Dy).
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