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Recent experiments demonstrated emerging alternating insulator and metal phases in Mott in-
sulators actuated by a direct bias voltage, leading to oscillating voltage outputs with characteristic
frequencies. Here we develop a physics-based nonequilibrium model to describe the dynamics of
oscillating insulator-metal phase transitions and experimentally validate it using a VO2 device as a
prototype. The oscillation frequency is shown to scale monotonically with the bias voltage and series
resistance and terminate abruptly at lower and upper device-dependent limits, which are dictated
by the nonequilibrium carrier dynamics. We derive an approximate analytical expression for the
dependence of the frequency on the device operating parameters, which yields a fundamental limit
to the frequency and may be utilized to provide guidance to potential applications of insulator-metal
transition materials as building blocks of brain-inspired non-Von Neumann computers.

I. INTRODUCTION

Insulator-metal transitions (IMTs) belong to a large
class of phase transitions involving dramatic changes in
electronic structures, which are often accompanied by
lattice deformations. The vanadium dioxide (VO2), a
strongly correlated system, is perhaps the best studied
material that exhibits an IMT [1–4]. Due to the fact
that its IMT is near room temperature, VO2 has been
explored for many potential applications such as mem-
ristors, sensors, and Mott field-effect transistors [5–9].
Experiments employing a two-terminal VO2 device with
a resistor in series under a direct voltage demonstrated
the possible emergence of voltage oscillation across the
VO2 channel resulted from automatic alternation of the
insulator and metal phases [10–20]. Such electronic os-
cillators can emulate neural behavior found in animal
brains [21], and the coupling between oscillators leads
to synchronization of charge oscillations which can po-
tentially be utilized for non-Boolean computing [22].

There have been a number of theoretical models pro-
posed to describe the voltage oscillation dynamics in
VO2 [23–25]. However, all existing models were based on
the assumption that the oscillating phase is kinetically in
a quasi-steady state in its instantaneous response to tem-
perature and/or voltage stimuli. The voltage oscillations
in these quasi-steady models are purely charging and dis-
charging cycles of a capacitor with their frequencies and
oscillation windows defined phenomenologically by the
measured switching voltages and on/off resistances. On
the other hand, experiments on the voltage-induced IMT
in VO2 revealed that the switching voltages are thermally
set by Joule heating [26, 27], but a quasi-steady model in-
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corporating the thermally triggered IMT cannot produce
voltage oscillations [23] nonetheless.

Here we report a physics-based nonequilibrium model
to describe the dynamics of the IMT and the correspond-
ing voltage oscillation beyond the quasi-steady assump-
tion. In particular, It explicitly incorporates the nonequi-
librium dynamics of free charge carriers with a lifetime
on the order of 10 µs [28, 29], comparable to periods of
possible voltage oscillations. This is important since the
free carriers not only determine the device resistance, but
also can drive an IMT when their concentration is beyond
a critical value [30]. The model yields the correct voltage
oscillation characteristics validated by our experiments
and still exhibits thermally determined switching volt-
ages as observed in experiments. Importantly, we show
that the nonequilibrium carrier dynamics imposes a fun-
damental limit to the maximal oscillation frequency and
identify the physical properties of Mott insulators that
will further enhance the maximal frequency. The analy-
sis based on this model and the comparison with exper-
imental measurements clearly demonstrate the key role
of the nonequilibrium dynamics of free charge carriers in
actuating the voltage oscillation in VO2.

II. PHYSICS-BASED NONEQUILIBRIUM
MODEL

To focus on the dynamics of the oscillating IMT rather
than the two-phase morphological patterns, we assume
the VO2 channel of the device to be both homogeneous
and charge-neutral during the entire IMT process. We
describe the thermodynamic state of VO2 during the
IMT using an electron-correlation order parameter ξ as
well as a structural order parameter η with ξ = 0 and
η = 0 representing the metallic rutile (R) phase and
ξ ∼ −1 and η ∼ 1 the insulating monoclinic (M1)
phase [31–34]. The order parameters evolve to minimize
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the total free energy of the system, and for a homoge-
neous and charge-neutral system, the total free energy
density f(T ; ξ, η, n), where T is the temperature and n is
the free electron density. We note that f is referencing to
that of the metallic R phase. The free energy density f
contains two contributions: the intrinsic bulk free energy
density fb(T ; ξ, η) and the free energy density of excess
free charge carriers feh(T ; ξ, n), i.e., f = fb +feh [33, 35–
37]. The intrinsic bulk free energy density fb is approxi-
mated by a Landau polynomial with respect to the order
parameters [31]. Since the time constants of the relax-
ation of the order parameters are on the order of picosec-
onds or less [30, 38] far shorter than the typical voltage
oscillation periods in VO2 oscillators (& 1 µs), we as-
sume that the order parameters describing the IMT es-
tablish equilibrium instantaneously for a given tempera-
ture and carrier concentration (considering the tempera-
ture and carrier concentration to be independent natural
variables), i.e.,

∂f

∂ξ
=
∂fb
∂ξ

+ 2γξ[n− ni(T ; ξ)] ≈ 0, (1)

∂f

∂η
=
∂fb
∂η
≈ 0, (2)

where we have used the relation ∂feh/∂ξ = 2γξ(n −
ni) [33]. ni ≈

√
NcNv exp(−γξ2/2kBT ) is the intrinsic

free carrier density, where kB is the Boltzmann constant
and Nc and Nv are the effective densities of states of
the conduction and the valence bands, respectively [33].
Here the energy gap Eg naturally depends on the elec-
tronic order parameter and is approximated by Eg ≈ γξ2
where γ is the energy gap of the M1 phase [31–33]. Sim-
ilar to the thermal driving force (∂fb/∂ξ, ∂fb/∂η), the
term 2γξ(n−ni) in Eq. (1) is the electronic driving force
that can reduce the electron correlation (ξ) and induce
phase change. This term distinguishes the current model
from the existing quasi-steady models [23–25]. Due to
this term, for a given temperature [n is subsequently de-
termined by its equation of evolution Eq. (3)], ξ will not
be at equilibrium since the resulted n will not necessarily
be at equilibrium.

Existing experiments showed that the lifetime of the
minority carriers in heavily doped VO2, τ , is around
10 µs [28, 29], comparable to the typical oscillation peri-
ods. We use this value to approximate the VO2 intrinsic
carrier lifetime because to our knowledge there is no other
reported measurement of the intrinsic carrier lifetime in
the literature. Therefore, it is critical to explicitly in-
corporate the carrier dynamics in a theoretical model for
voltage oscillation. Here we describe the dynamics of free
electrons using

dn

dt
= K(n2i − n2), (3)

where K = 1/2nrτ is the recombination rate and nr is a
reference electron density.

The temperature evolution in VO2 subject to a voltage
drop V is simply described by the heat equation with a
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FIG. 1. (a) Schematics of the VO2 oscillator. Va is the bias
direct voltage, Rs is the series resistor, Vs denotes the voltage
drop across the series resistor, and C represents the parasitic
capacitance explicitly or it could be an external capacitor.
(b) Oscillation patterns of Vs/Va, the VO2 resistance R, the
order parameters, and the temperature T at Va = 7.8 V and
Rs = 4.7 kΩ. The light-blue and the light-red shaded re-
gions indicate the processes of the MIT and the IMT, respec-
tively. The numbered red crosses correspond to the phases in
Fig. 2(a).

heat source arising from Joule heating,

Cv
dT

dt
+

du

dt
=

V 2

RLxLyLz
− h(T − Ts)

Lz
, (4)

where Cv is the heat capacity per unit volume of the
metallic R phase, Ts is the ambient temperature, h is the
convective heat dissipation coefficient, and u is the inter-
nal energy density arising from f . The internal energy
density of the metallic R phase can be approximated by
CvT , so CvT + u constitutes the total internal energy
density of VO2 (f and u are referencing to those of the
metallic R phase, respectively). Lx, Ly and Lz are the
width, length (in the direction of the electric field), and
thickness of the VO2 channel of a device, respectively.
R = Ly/LxLzeµn is the resistance of the VO2 channel,
where e is the elementary charge and µ is the carrier
mobility. Note that R depends on the real-time nonequi-
librium density of free electrons n, not the equilibrium
density ni. The du/dt term takes into account the la-
tent heat effect of the first-order IMT [35].

We consider a VO2 oscillator device schematically de-
picted in Fig. 1(a). A VO2 two-terminal device is con-
nected to a direct voltage source Va through a series re-
sistor Rs. C denotes the parasitic capacitance of the
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FIG. 2. (a) Phases at a sequence of moments represented by the order parameters superimposed on the intrinsic bulk free
energy density landscape for Va = 7.8 V and Rs = 4.7 kΩ. The red crosses in (a) correspond to those in Fig. 1(b). The
temperature at each moment is shown. The M1 and R minima are marked in 1© and 4©, respectively. (b) I-V characteristics
of VO2 at Va = 7.8 V and Rs = 4.7 kΩ. The x coordinate is the voltage drop across the VO2 channel. I1 and I2 are the
current through VO2 (including the capacitor current) and the current through the resistor (excluding the capacitor current),
respectively.

circuit, or an external capacitor that could be added to
the circuit. The voltage drop across the series resistor Vs
satisfies the Kirchhoff’s law, V = Va − Vs and

Vs +R

(
C

dVs
dt

+
Vs
Rs

)
= Va. (5)

If steady states are assumed, the electronic driving force
is zero and thus the switching voltage is solely deter-
mined by the Joule heating effect, consistent with exper-
iments [26, 27].

Before moving to the simulation results, we analyze
some qualitative behaviors that can be predicted by the
nonequilibrium model. We expect that the VO2 resis-
tance, which directly depends on the free electron den-
sity n, will not strictly follow the quasi-steady resistance
determined by the VO2 temperature. This is clear from
Eq. (3), which indicates that n will lag behind ni. The
time constant for the temperature evolution CvLz/h will
be far shorter than the voltage oscillation periods for thin
films (small Lz and large h). In this case, Eq. (4) corre-
sponds to quasi-steady states and the voltage oscillation
period is determined by the free electron lifetime and the
RC time constant. The oscillation period will be longer
for longer free electron lifetimes and larger RsC values.

III. NONEQUILIBRIUM CHARACTERISTICS
OF OSCILLATING IMTS

In our experiments, the two-terminal device in
Fig. 1(a) employs a VO2 thin film grown on a sapphire
substrate, and is supplied with a direct voltage with a
resistor in series [35]. The parameters used for model-
ing the device characteristics by simultaneously solving
Eqs. (1-5) are the same as those in experiments [35]. Fig-

ure 1(b) shows the calculated oscillation patterns of var-
ious variables at Va = 7.8 V and Rs = 4.7 kΩ. The
processes of the metal-insulator transition (MIT, marked
as light blue) and the IMT (marked as light red) are
identified by falling and rising parts of the ξ pattern, re-
spectively. The voltage drop across the series resistor has
an oscillation amplitude around 18% of the bias voltage.
It rises quickly and falls relatively slowly with a ratio of
the rise and fall times of 0.26 and transits from rise to
fall smoothly, consistent with experiments [10, 11, 22].
|ξ| and |η| never reach exactly 0 and 1, indicating that
VO2 is never in the fully metallic or fully insulating state.
The peaks of ξ and the troughs of R have a delay of
0.19 µs to the peaks of temperature, meaning that the
VO2 channel at the highest temperature is actually not
the most metallic, which is a clear evidence of the non-
instantaneous response of the electronic phase to temper-
ature. The temperature reaches 450 K consistent with
the experiment [16]. The peaks of ξ also have a short
delay to the troughs of η. Furthermore, the peaks of R
have a delay of 0.19 µs to the troughs of ξ, revealing
that the VO2 resistance has a finite response time to the
electronic phase.

Next we examine the evolution of the phase and the
free energy landscape during the oscillation [Fig. 2(a)].
From a trough of the ξ pattern to its trailing peak [red
crosses in Fig. 1(b)], the phase evolves from the vicinity of
the M1 minimum of fb to the vicinity of the saddle point.
From the peak to the next trough, the phase returns to
the vicinity of the M1 minimum yet following a different
route from the pathway on which it appears. The phase
never resides exactly at the minimum or the saddle point
of fb, indicating that during the oscillation the state is
always transient. The non-steady phase trajectory cor-
responds to non-steady flows in the I-V plane as shown
in Fig. 2(b). Both the current through VO2 (I1) and
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FIG. 3. (a) Experimentally measured (markers) and simulated (lines) frequency scaling with the bias voltage Va at Rs = 4.7 kΩ
and 10 kΩ. The scaling calculated with different τ and C is shown. I: Rs = 4.7 kΩ, τ = 7 µs, C = 250 pF; II: Rs = 10 kΩ,
τ = 7 µs, C = 250 pF; III: Rs = 4.7 kΩ, τ = 11 µs, C = 550 pF; IV: Rs = 10 kΩ, τ = 11 µs, C = 550 pF; V: Rs = 4.7 kΩ,
τ = 14 µs, C = 700 pF; VI: Rs = 10 kΩ, τ = 14 µs, C = 700 pF. (b) Experimentally measured (markers) and analytical
(lines) frequency scaling with Rs at different Va. (c) Numerically simulated (solid lines) and analytical (dotted lines) frequency
scaling with Va at various Rs. The colored numbers indicate the corresponding Rs values in units of kiloohm. The light yellow
and light blue shades mark the regions of oscillation and no oscillation, respectively. (d) Numerically simulated (solid lines)
boundaries of the range of oscillation superimposed on the frequency map over the bias voltage and series resistance obtained
by the analytical formulae.

the current through the series resistor (I2) possess the
negative differential resistance (NDR) with non-steady
intermediate NDR states. In contrast, a quasi-steady
model [23–25] is not possible to access the non-steady
intermediate states that connect the fully metallic and
fully insulating states.

We then study the oscillation frequency scaling with
the bias voltage and series resistance. The calculations
show that the frequency increases monotonically as the
voltage increases [Fig. 3(a)]. As Va increases, the oscilla-
tion suddenly emerges at a finite low bias and then gets
overdamped at a high bias, which mark the low and high
bias limits on the calculated frequency scaling curves. In-
deed, VO2 remains in the M1 phase for sufficiently low
voltages and is excited permanently to the R phase for
sufficiently high voltages. These are all consistent with
our experimental results. The simulations also reveal
that larger τ and C reduce the slopes of the frequency
scaling curves and shift the curves to lower bias. For
τ = 14 µs and C = 700 pF [35], the calculated frequency
scaling curves are in very good agreement with the exper-
imentally measured ones. Some discrepancies in the Va
range of oscillation may be attributed to the homogene-
ity assumption such that the nucleation temperature of
the M1 phase in the homogeneous R phase is lower than
that in the realistic inhomogeneous VO2 samples. The
lower the M1 nucleation temperature is, the lower the
upper voltage limit for oscillation, because for bias volt-
ages higher than the upper voltage limit the temperature
will stay high so that the M1 phase cannot nucleate and
the voltage oscillation ceases. Therefore, the upper volt-
age limit for oscillation calculated for the homogeneous
VO2 is lower than that measured for the generally inho-

mogeneous sample. The homogeneity assumption is not
expected to significantly affect other observed quantities,
because we already used in the simulations the experi-
mentally measured resistances, free carrier lifetime, etc..
Figure 3(c) presents the calculated full frequency scal-
ing with Va at various Rs, whose slope decreases with
increasing Rs.

IV. ANALYTICAL FORMULAE AND
FUNDAMENTAL LIMIT FOR OSCILLATION

FREQUENCY

To better understand and engineer the Mott electronic
oscillators, we derive approximate analytical expressions
for the angular frequency ω and range of oscillation by
linearizing Eqs. (1-5) around the superheating state [35],

ω2 ≈ αV 2
aQ(Q+ 1)

4GthCR2
s

, Q =

√
1− 4Gth∆TRs

V 2
a

, (6)

v(Rs) < Va < 1.71
√
αGthC∆TRs − 0.121

√
Gth

αC
, (7)

Rs >
1.51

αC∆T
, (8)

with v(Rs) being a branched function of Rs,

v(Rs) ≈


2
√
Gth∆TRs, Rs <

4

αC∆T
,√

αCGth

2
∆TRs +

√
Gth

2αC
, Rs >

4

αC∆T
.

Here α = βkB/γτ is a parameter dependent only on
intrinsic properties of VO2, where β is a dimensionless
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material-specific constant. ∆T = Tsh − Ts where Tsh
is the superheating temperature. Gth = LxLyh is the
effective thermal conductance of the device.

Figure 3(b,c) shows the oscillation behaviors predicted
by the analytical formulae Eqs. (6-8), which match well
with the experimental and simulation results. For fixed
Va, Rs, and C, the frequency increases as the ambient
temperature Ts increases, in agreement with experimen-
tal measurements [12]. The calculated Rs range of os-
cillation is narrower than the measured one, similar to
the case of Va range of oscillation for the same reason.
We further use the analytical formulae to generate the
frequency map over the bias voltage and series resis-
tance and plot it together with the numerically simu-
lated ranges of voltage oscillation [Fig. 3(d)]. The region
of oscillation has a shape of a sector, in excellent agree-
ment with the experiment [10]. It terminates at around
Rs = 1 kΩ yet extends to infinite Rs.

To understand the important role of the nonequilib-
rium dynamics of free charge carriers in the voltage oscil-
lation, we compare the frequency scaling from the exper-
imental measurements, our nonequilibrium model, and
the quasi-steady model [24, 35] in Fig. 4. The frequency
scaling from the quasi-steady model is qualitatively dif-
ferent from the experimentally measured ones yet with
large quantitative deviations. In contrast, both the mag-
nitudes of the frequencies and the dependence of the fre-
quency on the bias voltage and series resistance obtained
from our nonequilibrium model show remarkably good
agreement with our experimental results, demonstrating
the critical role of the nonequilibrium charge carrier dy-
namics in the voltage oscillation.

The nonequilibrium carrier dynamics also imposes a
fundamental limit to the maximal frequency achievable
in a VO2 oscillator. This is contrary to the previous
understanding that the oscillation frequency will go ar-
bitrarily high as the RC time constant and the heat-
dissipation time constant approach zero. Indeed, the
slow internal carrier dynamics will dominate the oscilla-
tion process when the external charging/discharging and
heating/cooling dynamics become sufficiently fast. Using
Eqs. (6-8), we can project the maximal frequency limit
of a VO2 oscillator [35],

νM ≈ 0.193αTsh = 7 MHz. (9)

νM is a fundamental limit to the frequency, i.e., it only
depends on the intrinsic parameters of the material. To
approach the maximal frequency limit, one needs to lower
the ambient temperature, increase the series resistance,
and then tune up the voltage to the high bias limit of
oscillation. The ability to shift the resonance frequency
dynamically makes VO2 attractive for forming oscilla-
tor arrays [22]. Equation (9) also provides guidance on
searching for new IMT materials that could form elec-
tronic oscillators with gigahertz oscillation frequencies,
that is, materials with short carrier lifetimes and small
energy gaps in their insulating phases.

V. CONCLUSIONS

We presented a nonequilibrium model to predict and
understand the dynamics of oscillating IMTs in Mott in-
sulators and experimentally validated it by measuring
the voltage oscillation in a two-terminal VO2 oscillator.
The nonequilibrium dynamics of free charge carriers is
critical for generating the experimentally observed oscil-
lation behavior, unambiguously demonstrating that the
phase transition during the voltage oscillation is partially
electronically driven. Such nonequilibrium carrier dy-
namics may be the missing dynamics in understanding
the chaotic voltage oscillation observed in another Mott
insulator NbO2 [39]. We also derived approximate ex-
pressions for the oscillation frequency scaling and range
of oscillation, revealing that the nonequilibrium carrier
dynamics imposes a fundamental limit to the maximal
frequency. Subsequently the material property parame-
ters that can enhance the fundamental frequency limit
are clearly identified. This physics-based model offers a
foundation for future studies of the dynamics of oscil-
lating IMTs and provides guidance on designing high-
frequency electronic oscillator devices based on IMT ma-
terials.
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