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We formulate a fracton-elasticity duality for twisted moiré superlattices, taking into account that

they are incommensurate crystals with dissipative phason dynamics.

From a dual tensor-gauge

formulation, as compared to standard crystals, we identify twice the number of conserved charges
that describe topological lattice defects, namely, disclinations and a new type of defect that we
dub discompressions. The key implication of these conservation laws is that both glide and climb
motions of lattice dislocations are suppressed, indicating that dislocation networks may become
exceptionally stable. We also generalize our results to other planar incommensurate crystals and

quasicrystals.

I. INTRODUCTION

Twisted bilayer graphene (TBG) [1-4] forms an incom-
mensurate moiré lattice. The description of its electronic
degrees of freedom, to a very good approximation, can
be done using concepts of periodic crystals, due to the
weak scattering between opposite valleys [5-8]. However,
structurally, there is no periodicity in the system if the
twist angle takes a generic value. As was demonstrated
by Ochoa [9], this has profound implications for the elas-
ticity theory of TBG. Phason modes w(x,t), which cor-
respond to acoustic branches of the incommensurate lat-
tice, dominate lattice vibrations on the scale of the moiré
period and give rise to an additional twist stiffness x in
the elastic energy

Fa = Ba+ / Lo 0w, — dywa®. (1)

While in standard elasticity theory such a term is not
allowed by rotational symmetry [10], in the case of TBG
the adhesive potential between the two layers gives rise
to £ > 0. Notice that the elasticity theory of planar
quasicrystals [11-13] can also be formulated in terms of
Eq. (1). The influence of the twist term and phason
excitations on electron-lattice couplings was discussed in
Refs. [9, 14], while their role in the context of electronic
nematicity was analyzed in Ref. [15].

Phasons in TBG have a very straightforward interpre-
tation. Ignoring the structural relaxation of the lattice,
they can be identified with the relative displacement be-
tween layers [9]. To illustrate a twist of the phason mode,
we therefore consider a moiré superlattice with sixfold
rotational symmetry, described in terms of the density
profile

00(r) = _|pgle!@T0e). (2)
G

G are reciprocal lattice vectors of the moiré superlattice
and ¢g = w - G. In Fig. 1, we show the density profile
with w = 62 X r for § = 0 and with an excited phason,
i.e., for finite rotation of the twist angle 8. For simplicity,
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Figure 1. Density profile for the triangular moiré superlattice,
as given by Eq. (2), in the cases without rotation [panel (a),
o9=0(r)] and with a rotation of 6/(2m) = 0.03 [panel (b),
0o(r)]. The phason excitation is illustrated by the difference
in density profiles, g (r) = go(r) — go=0(r), which is plotted
in panel (c), and whose absolute value is plotted in panel (d).
The underlying triangular lattice is a guide to the eye.

we consider only the leading harmonics, G1, G2, and
Gs = —G1 — Gy, with |pg,| = p and G4 2 denoting the
standard primitive vectors of the triangular lattice.

The dynamics of phasons in incommensurate crystals
also differs from that of standard acoustic phonons by
the fact that it is strongly damped at long times [16,
17]. This is due to the friction that opposes the relative
motion of the incommensurate mass-density wave. In
usual elasticity, this damping does not occur because the
displacement couples to the generator of translations, i.e.
the momentum density. In TBG, however, anharmonic
terms of the adhesion potential between the layers give
rise to a finite damping [18].



In this paper, we discuss the impact of the twist stiff-
ness and phason damping on inevitable defects of the
moiré lattice such as dislocations and disclinations. To
this end, we extend the recently formulated fracton for-
mulation of standard elasticity [19-21] to incommensu-
rate crystals with overdamped dynamics by developing
an appropriate tensor gauge field theory. The analogy to
a tensor version of electromagnetism allows us to draw
general conclusions about the lattice defect dynamics of
TBG. The finite twist stiffness of Eq. (1) increases the de-
grees of freedom compared to standard elasticity theory,
giving rise to a new type of defect that we call discom-
pression. As a result, defects of the moiré lattice, which
can be described in terms of fractons, are governed by an
additional conservation law that dramatically affects the
mobility of lattice defects. In particular, we find that in
an incommensurate crystal with phason excitations, both
glide and climb of dislocations are forbidden and the dy-
namics of defects is always sub-diffusive. This implies
that dislocation networks in twisted bilayer graphene are
expected to be exceptionally stable. We also show that
our theory directly applies to other incommensurate sys-
tems such as planar quasicrystals.

The impact of topological lattice defects on the me-
chanical and electronic properties of graphene and bi-
layer graphene has been widely discussed [26-28|. Lat-
tice disorder has also been recognized as a key ingredi-
ent in TBG, with experiments reporting sharp variations
of the twist angle and of uniaxial heterostrain over rel-
atively short length scales, which are manifested in lo-
cal elecronic properties [29, 30]. Here, we focus on the
topological defects of the emergent moiré incommensu-
rate lattice in TBG. While its elastic properties derive
from those of the coupled graphene layers, we adopt a
coarse-grained low-energy description, as in Ref. [9], that
does not require mapping the defects of the moiré lattice
onto individual carbon atoms.

Defects of two-dimensional lattices can be efficiently
captured in terms of a dual description of elasticity the-
ory, where disclinations emerge as effective charges, dislo-
cations as dipoles of these charges, and elastic forces be-
tween them are transmitted by gauge fields [31-36]. This
approach readily demonstrates why dislocations in com-
mensurate lattices can glide in the direction of the Burg-
ers vector b, but not climb perpendicular to it [35]. While
defects in aperiodic crystals were discussed in Ref. [37—
39], their dynamics remains an open problem.

A very elegant formulation of this duality was recently
achieved in Refs. [19-25]. It was recognized that the dual
formulation of the usual elasticity theory is, in fact, a
fracton field theory. Fracton phases describe quantum
phases of matter with excitations of restricted mobil-
ity [40]. If considered in isolation, a fracton is immo-
bile, either along certain directions or as a whole. It
can only move collectively, via interactions with other
degrees of freedom. Fractons were initially discussed in
the context of non-ergodic quantum glass models [41] and
stabilizer codes for self-correcting quantum memory [42].

More recently, it was recognized that fractons can be ef-
ficiently described in terms of tensor gauge theories [43].
The restricted mobility of fractons emerges in terms of
dipole conservation laws and gives rise to anomalous, sub-
diffusive hydrodynamics [44-47].

II. ELASTICITY THEORY OF TWISTED
BILAYER GRAPHENE CRYSTALS

We start with the action of elasticity theory [10, 33],
supplemented by the twist stiffness of Eq. (1). To include
dissipative dynamics, we use the Schwinger-Keldysh for-
malism [48]:

1

S:f/i wi(, )DLt — )i (, )
2 x,t,t’eC

; (3)

) /‘%tec [Cij_,kgwij(a:,t)wkg(w,t) + /{ﬁfu(a:,t)] .
Here, fm,tEC = [.dt [,, d*z indicates that the time inte-
gration has to be performed on the round-trip Keldysh
contour, while the spatial integration goes over the crys-
tal volume V. w;; = %(aiwj + 0jw;) is the symmet-
ric phason strain, the elastic constants Cj; ;¢ are sum-
marized in Ref. [9], and the bond angle variation is
Dy = %eijc')iwj. Damping enters through the nonlocal-
in-time contribution

DYt —t)=—8(t—t)02 +~y(t—1t), (4)

where we assume Ohmic damping Im " (w) = 7w for
the retarded self energy. Without damping, the equation
of motion become elastic wave equations, while the dy-
namics becomes diffusive at large 7. For further details
on the Keldysh formlism, see Appendix A.

We shall use a notation that will prove efficient in 2D.
In it, we always start with lower index vectors or tensors
A;. The raising of their indices we define as a contraction
with the Levi-Civita symbol:

Ai = eijAj . (5)

From A; = (A;, A,) and A® = €;;A; we see that the
upper index vector A° = (A,, —A;) is the lower index
vector rotated in the clockwise direction by 7t/2. This
ensures that A - B = A;B; = A*B*. On the other hand,
(A X B)_ = A;B" = —A'B; and in particular A4;A* = 0.
The divergence and two-dimensional curl may likewise be
expressed in this notation as

VA=A,
(VxA), =0A=—04A,. (6)

For single-valued functions f, 8;0° f = 0. For multivalued
functions, the partial derivative do not commute at the
branch cuts. The most important benefit of this notation,
reminiscent of the van der Waerden spinor notation [49],
is that the correspondence between elasticity and tensor
electromagnetism [19-22] amounts to simply raising all
the indices.



A. Dual gauge theory

Building on the approach of Refs. [19-21], the first step
in formulating a dual description is to introduce the fields
Ow; — 13, Cijpewre — 045, and k¥, — M through a
series of Hubbard-Stratonovich transformations. They
can be associated with momentum, stress, and torque,
respectively. This yields the real-time action

1
S = 5/ [Cl.;’lkzaij(m,t)au(w,t) + kT M (1))
x,teC
1
~3 [ m@ONe-Ome )+ S, ()
2 x,t,t’eC

where the retarded version of I' is I‘R(w) =
w?/(w? +iyow). The last term

Sw = / [m(ﬁtwi) — Uijwij — Mﬁw] (8)
x,teC

still contains the original phason field.
(s)

The next step is to decompose w; = w; + w;”’ into a

smooth part w; and a singular part wgs) due to topolog-

ical defects. After integrating out the smooth part, we
obtain the constraint

at’]'rj = 812” ) (9)

which resembles Newton’s second law with a non-
symmetric stress

1
Yij = 045 + ieijMa (10)

consisting of the symmetric stress tensor o;; and the
torque M. Whereas 0;; also appears in ordinary crystals,
the torque only arises due to the finite twist stiffness.

The last step is to introduce (tensorial) gauge poten-
tials that enforce the constraint (9):

Nij = —0iAi; — 8¢y,

(11)
7Tj — —BZ-AZ-j .
These gauge potentials are invariant under the gauge
transformations
Aij — Aij + 81AJ— s (12)
¢j —> ¢j — 8tAj .

The stress-strain coupling Eq. (8) now takes the familiar
form of a charge/current-potential coupling:

Sy = / (AijJij — $;Q;) . (13)
x,teC

Due to the tensorial nature of the gauge fields, the charge
density

Q; = 09w’ (14)

is a vector and the corresponding current density,
Jij = (9,00 — 8,00\ | (15)

a tensor. Demanding the invariance of (13) under the
gauge transformations yields the continuity equation:

0Q;+0"J;; =0. (16)

B. Electromagnetic analogy

Let us develop, in analogy to Ref. [19-22] for standard
elasticity, a physical illuminating electromagnetic anal-
ogy of the conserved vector charge ;. Consider a single
charge

Qj(m,t) = ¢; 8(x — (1)) (17)

at position 7(¢) that moves with velocity v(t) = 7(¢).
Eq. (16) is then fulfilled by

Jij (13, t) = Uiq]‘ 6($ - ’T‘(t)) . (18)
Inserting this into the action (13) yields the Lorentz force
F; =68,/ 0r; = —(5 +v'm;)q; . (19)

The problem behaves like the electrodynamics of non-
symmetric tensor electric fields ¥* ; and vector magnetic
fields m;. This analogy also helps us understand why
the overdamped dynamics of the phasons does not spoil
the entire gauge description. The dissipative propagator
I'(t —t') for m;(t) in Eq. (7) translates, in standard elec-
tromagnetism, to a frequency-dependent magnetic per-
meability T'(w), which clearly does not violate the gauge
description of electromagnetism.

Besides the effects of dissipation, a crucial new aspect
of the incommensurate moiré lattice elasticity is the vec-
tor continuity equation (16) that can be rephrased in
terms of two conserved scalar densities:

@ — 9.0,
p(t) j’Q] , (20)
o = Q;
with continuity equations
3 +9;0' 055 =0,
tP J (¥ (21)

p) + 39 J;;=0.

The transverse density p*) also appears in standard
elasticity, where it was identified as the density of
disclinations, with @; denoting the Burgers vector den-
sity [19, 34]. The longitudinal density p(® is the new
conserved charge present only in incommensurate crys-
tals.



C. Interpretation of the charges

The charges of the elastic gauge theory are topolog-
ical lattice defects that make the displacement field w;
multivalued [36]. We can write the singular part of a
dislocation displacement field as

_ ImLog(2)

wQ) (x) b, (22)

27
where z = x7 + iza, Log(z) is the principal branch of
the logarithm with a branch cut along the negative x;
axis, and b = b1é; + byés is the Burgers vector. At the
origin the partial derivatives do not commute, yielding
Qj(x) = b; 8(x), which confirms that the vector charge
is the Burgers vector density.

Next, we construct a disclination from a Dirac string of
dislocations. By integrating LOOO dz) w9 (z) — 2, 5),
ignoring all except the singular parts, and setting b = 0
and by # 0, we obtain

Im[z Log(z)]

(5:8) () — _
w'®" (x) bo ot

és, (23)
with Q; = 02820 (—21) 8(22), pl = b0 (1) 8 (),
and p® = by 8(x). This confirms that p(*) is the den-
sity of disclinations. In addition, the result for p® im-
plies that a disclination also corresponds to a Dirac string
along the negative z1-axis made of dipoles (~ &'(x2)) of
the longitudinal charge.

Similarly, we may consider a Dirac string of disloca-
tions whose Burgers vectors point along the branch cut,
instead of perpendicular to it (b; # 0 and by = 0),

Im|z Log(z)]| ..
w0 () = b, 2 Log(2)] %g( e, . (24)
The charges are Q; = b181;0(—x1)8(z2), p¥ =

—by 8(x), and p®) = b;O(—x1) §'(x2). Since w** points
parallel to the Dirac string, and its jump in value is pro-
portional to the distance from the origin, it represents an
abrupt change in the strain. We shall thus call this defect
a discompression. Below Eq. (23) we showed that a discli-
nation is equivalent to a Dirac string of discompression
dipoles. The result for p® implies, in turn, that a dis-
compression equals a Dirac string of disclination dipoles.
These “fusion rules” for the various defects are sketched
in the lower part of Fig. 2.

In Fig. 2, we show these defects for a triangular lattice.
Disclinations and discompressions are energetically very
expensive as both come along with macroscopic regions
of compression or bond-angle mismatch. More formally,
both are forbidden as single charges by an appropriate
generalization of Weingarten's theorem [36]. Hence, a
moiré lattice is charge neutral with regards to p(-*), while
their dipoles and higher moments remain perfectly valid
excitations. Fig. 2(c) illustrates the known fact that a
dislocation corresponds to a dipole of disclinations (pan-
els (a) and (b)) with dipole moment perpendicular to the
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Figure 2. Various defects for a triangular lattice and the rela-
tions between them. (a) Positive disclination (b2 = 2//3).
(b) Negative disclination (b2 = —2/v/3). (c) Dislocation
as a dipole of disclinations. (d) Positive discompression
(b1 = 1/2). (e) Negative discompression (b1 = —1/2). (f)
Dislocation as a dipole of discompressions. The table summa-
rizes the fusion rules that explain how to represent charges in
terms of Dirac strings of dipoles of other charges.

Burgers vector b. Our analysis shows that a dislocation
[Fig. 2(f)] can also emerge from two discompressions of
opposite charge (panels (d) and (e)). The dipole moment
is now oriented along the Burgers vector. Single discom-
pressions of Fig. 2(d) and (e) can be generated in terms
of a Volterra process where we cut along the negative x1-
axis and displace matter above and below the cut in op-
posite directions parallel to the cut, before glueing back
together. This is distinct from disclinations of Fig. 2(a)
and (b) where the displacement is perpendicular to the
cut and opens a wedge.

D. Consequences of the continuity equations

Eq. (16) implies the conservation of the total Burgers
vector. Let us analyze this vector conservation law in
terms of the continuity equations (21) of the scalar den-
sities that both contain two spatial derivatives. This im-
plies, in addition to the conservation of the total disclina-



tion and discompression charges, that both of their total
dipole moments are conserved as well:

%/de ap pt =0. (25)

Both charges are therefore immobile fractons. Only cor-
related movements at fixed dipole density are allowed.

E. Energetics and equations of motion

Thus far we analyzed conservation laws that follow
from the gauge invariance of the dual theory. To under-
stand the actual dynamics of defects requires, however,
an analysis of the energetics of vector charges. To this
end we determine the equations of motion of the gauge
fields that mediate the stresses. The Euler-Lagrange
equation of A;; is:

6,52“ (t) = /dt/ FR(t — t/)giﬂ'j (t/) — Jij (t) 5 (26)

with iij = C’iglucrkg + €56~ M. 1t is the analog of Am-
pere’s law in electrodynamics. The analog of Gauss’s law
0'3i; = @, follows from the variation of the potential ¢;

and demonstrates that ); is indeed the source of stress.

We can use Ampere’s law to determine the dynamics
of the quadrupolar moments. To achieve this, we first
contract the Euler-Lagrange equation (26) with §,; and
€;;. This gives

atci;,llceokf = 0i(T"m;) — Jii (27)
%&M = 0;(TRx"y — J, ", (28)

where
(TRm;) (. t) = /dt’ TRt —t)m(z,t). (29)

Now we use the conservation laws (21), partially inte-
grate the quadrupolar moments twice, and then use the
equations of motion. This yields

d o
i f e [ ewnoiois, (30)
1% 1%
= 72/ Jii +/ Gj(2xi<]ji — |(B|281J”)
Vv %4
27 _
(:) 2/ 8tC“.}€€akg
|4

+/ BJ(QxZJ“ - ‘$|281JU - QFRWJ')
\4

and

d 21 ;
&/ j|2p0 & —/ 2,2 0;0" Jij (31)
% 1%
:_2/ Jii+/ 0; (|z|*0;J"; — 21,77
1% v

4
(2=8)7/6tM
K Jv

+ / 8 (|x|*0;J"; — 2,07, — 2T Frd)
\4

Finally, we rewrite the sources by exploiting the Euler-
Lagrange equations of the action (7), Cijreore = wij and
M = k1, and thus obtain

d

5 | Calzlptt) =

d

&S(“) : (32)

The source terms for disclination quadrupoles is
S =9 / d%z d;w; (33)

and corresponds to a costly volume change of the system.
In turn,

SO =4 / d%z 9, (34)

for discompression quadrupoles corresponds to a global
twist. These quadrupoles can easily be interpreted if one
considers an isolated dislocation Q;(x) = b; 8(x — 7(t))
whose [ d2z|z|?p® = 2b7r;(t) and [d%z |z p® =
—2b;7;(t). Thus the quadrupolar moments are the com-
ponents of the dislocation position parallel and perpen-
dicular to the Burgers vector. Eq. (32) was obtained up
to boundary terms. The boundary terms vanish or, more
physically, cannot be changed by local operations that act
in the bulk of the medium. Thus (32) expresses how in
the bulk the sources of changing quadrupolar moments
are the energetically costly compression and disorienta-
tion of the crystal.

In our analysis we freely used expressions that are valid
only on-shell, the various conservation laws (16, 21, 25,
32), equations of motion (A8, 26, C’i;’luokg = Oyw;, M =
k), expressions for the sources S and S()| etc., can
all be formulated as rigorous statements that apply to
the respective path-integral averages. This is proved by
using the Schwinger-Dyson equations.

From Eq. (32) we may therefore conclude that a climb,
i.e. the motion perpendicular to b; of a dislocation, is ac-
companied by an energetically costly change in the vol-
ume of the crystal. In addition, a glide, i.e. the motion
parallel to b; of a dislocation, is accompanied by an en-
ergetically costly change of the orientation of the crystal.
While the first result holds in any crystal, the second
is due to the non-zero twist stiffness of incommensurate
ones. In its presence the motion of dislocations is for-
bidden entirely instead of just being restricted to one
direction.



F. Sub-diffusive hydrodynamics

Thus far we have analyzed the motion of isolated
dipoles and quadrupoles. The situation becomes more
complicated for higher-order multipoles. However, us-
ing the hydrodynamic description of fractons [44—47] one
readily finds that there cannot be a Fick’s law where gra-
dients of the vector charges yield currents (i.e. J;; o 9;Q;
or o< 8'Q);), leading to ordinary diffusion of all charges. If
this were true, the mere existence of scalar charges would
induce a current J;; ~ p(“), which is not allowed. Ex-
panding in gradients, the leading symmetry-allowed term
connects J;; with a third spatial derivative of @;. This
gives rise to a coupled dynamics of the two scalar densi-
ties that form two sub-diffusive modes with dispersions
w = iBi k‘4.

III. GENERALIZATION TO GENERIC
PLANAR QUASICRYSTALS AND
INCOMMENSURATE CRYSTALS

Finally, we demonstrate that our results are not re-
stricted to TBG and apply directly to planar quasicrys-
tals and incommensurate crystals with two length scales.
To this end we relate the elastic gauge theory with twist-
ing term considered in the main text to the elasticity the-
ory of two-dimensional quasicrystals. In these systems,
the low-energy elastic variables are doubled compared to
periodic crystals [11-13]. In addition to the phonons u,
there are phasons w that can be shown to have a twist
stiffness like in Eq. (1). The defects of the system are
characterized by two Burgers vectors b, = ¢du and
b, = ¢§dw [12]. Our results imply that pure displace-
ment dislocations can glide, whereas those that involve
b,, cannot. This remains true even in the presence of
phonon-phason coupling.

A symmetry analysis of the problem yields the follow-
ing result for the elastic energy [11-13]:

Eel = %Cij,kfuijukf‘f'Rij,kéuijwké‘i‘%Kij,kaijwkZ7 (35)
where u;; = %(@'uj + 0ju;) is the usual symmetric strain
tensor describing phonons and w;; = J;w; is the non-
symmetric phason tensor.

For the moment, let us focus on the case of a twelvefold
symmetric planar quasicrystals that has the special prop-
erty of no phonon-phason mixing, i.e., R;jr = 0 [13].
Because of the high rotational symmetry, the elastic con-
stants Cj; e have the same form as those of isotropic
media:

Cijee = N0ij0ke + 11 (8ikdje + 8iedj) - (36)
On the other hand,

Kijre = K18;x050 + Ko(8:;0k0 — 8:00j1) + R3€%€£(Zv
37)

where €7, = €3, = 0 and €j, = €5 = 1. We

note that K;; ¢ satisfies only the major index symmetry
Kijre = Kieijs but not the minor ones Kij ke #* Ky ke
and Kij’kg 75 Kij,zk'
To make contact with our system (3), we merely have
to recognize that Kj; z, can be rewritten as
~ K

Kijre = Cijre + 7 Cis€ke (38)

where
Cijke = N8k + i (8850 + 8:0851) + f(geisjefe (39)

is the minor-index-symmetric part that satisfies éij7k@ =
C’ji,kf = C’ij,ék and has 5\ = Kg and ,LNL = %(Kl 7K2).
The minor-index-antisymmetric part plays the role of a
twisting term with stiffness

Thus the phonon displacement field u; behaves like in
the elasticity theory of a conventional crystal, while the
phason w; is governed by an elastic energy identical to the
one of twisted bilayer graphene, given in Eq. (1) or (3).
Hence all our conclusions about the mobility of defects
of the phason modes carry over.

The situation is more complicated for quasicrystals
with fivefold or eightfold symmetry. In these cases,
Cij ke is still isotropic, as in (36), and K g still has the
form (37), although with K3 = 0 in the case of fivefold
symmetry, and can therefore be decomposed according
to (38). Most significantly, a phonon-phason coupling of
the form

Rijke = R(8i1 — 8i2)[0i;0ke + 0irdje — 8iebjk]  (41)

is allowed. Consequently, one has to redo the whole gauge
formulation.

The end results, however, turn out to be insensitive
to phonon-phason coupling. Specifically, for the phonon
field one finds the usual results [19-21]:

Ol +070' I3, =0, (42)
d

&/dzx z, pM =0, (43)
d d

at d*z \93|2P5f) = 557(}) ) (44)

where Qu; = 00", Ju; = (@0 — 20;)u”, pll) =
6jQuj, Jqfij = %(Jm‘j + Juji); and S&t) = 2fd2$ o;u;.
For the phason fields one similarly finds that (16), (21),
(25), and (32) continue to hold, but with the appropriate
Quj = aiaiwﬁ‘s), Jwij = (0;0; — atai)w]('s)v Pv(f) = 0;Quyj,
pg) = 0" Quj, Sf,f) =2 [ d%z d;w;, and Sl(,f) =4 [d*z 9.
Therefore, the glide of defects that have a finite phason
Burgers vectors b,, = § dw is suppressed, and the param-

eter that controls the supression is the effective twisting
stiffness (40).



Details of the phonon-phason coupled gauge theory: It
is convenient to introduce an additional index p,v €
{u,w} that differentiates the phonon and phason dis-
placement fields. That way, wy; = Ui, Uwi = w;,
Uyij = Uij; Uwij = Wij, and

Cuijuke = Cijke s Cuwijuwke = Kijre,  (45)
CUij7’u’M = kai,uij = Rz’j,kg . (46)

The appropriate generalization of the action (3) we may
now write as

1
S = §/ um(t)Dgl(t — )y ()
x,t,t’eC

1
- 5 C;u'j,ukfuuijuuké .
x,teC

Next, we introduce the Hubbard-Stratonovich fields
Opupi — T and Clijuketuie — Xpi5, integrate out the
regular parts of w,;, and then enforce the constraints
Oy = 032,45 through gauge potentials:

(47)

Yuij = _6tA5ij — 'Y pu, (48)
Tuj = _aiAgijv

Ywij = —0tAwij — 0" dwj (49)
Twj = _aiAwij ’

where A°. . = AS

wij wji 1s symmetric. This yields the action

1
5= / T T = )

w7 ’
1 (50)

+ 5/ e ikt i Skt + Suw

where ', (t — ') = EDu(t — t’)B_; and
Sun= [ [AZGI5 + url?)
x,teC [ ! / (51)

+ AvijJvij — GujQuj] »

with the previously defined charges and current densities.

In this action we see why the phonon-phason coupling
does not affect the argument leading to the quadrupolar
conservation laws. On the one hand, the charge conserva-
tion laws are a consequence of the local gauge symmetry
and from the form of the source term (51) we immediately
see that they are unaffected by C;i;,ukf or Rijre. On
the other hand, let us take a look at the Euler-Lagrange
equations of A,;; that allowed for an additional partial

integration in (30) and (31):

5y (1) = / A TRt — )0y () — Juis(t) . (52)

Once one expresses X, = C Y ke in terms of the

wig, vkl
original fields w;;, one finds that X,;; = wu,; according

to the Euler-Lagrange equations of ;. Thus Clju ke

again drop out of the argument. Therefore, C ;1 for-
mally influence the argument only through the symmetry
properties that they entail for ¥,;;. Physically, however,
Clijvie also set the energy scales of glide and climb sup-
pressions.

IV. CONCLUSIONS

The dual formulation of elasticity theory that exploits
the concept of fractons allows for rather general insights
into the mobility of dissipative incommensurate crystals,
such as twisted bilayer graphene. In particular, we find
that these systems have, in distinction to usual crystals,
completely immobile dislocations in the low defect den-
sity limit that become sub-diffusive in the high-density
limit. Hence, while the electronic properties of graphene
can, to a very good approximation, be treated using con-
cepts of periodic crystals [5—8], the incommensurate na-
ture of the material is much more visible in its mechan-
ical properties. In order to estimate whether the effects
discussed here are quantitatively relevant, we follow [9].
Here,  is shown to be of the order of 106V /nm? sin(©/2).
For twist angles © ~ 1° this yields x ~ 0.1eV/nm?.
Hence, on the length scale of the moiré crystal ~ 10nm,
this stiffness is clearly relevant in a wide temperature
regime.

Our results are not unique to twisted bilayer graphene.
As we demonstrate in section III, they can be generalized
to generic planar quasicrystals and incommensurate crys-
tals. The lack of mobility of defects stabilizes networks of
defects, such as the soliton network discussed in Ref. [9].
Another implication is that these incommensurate sys-
tems should mechanically be rather brittle.

The power of the formalism that led to the results
of this work is drawn primarily from the deep intuition
that follows from the analogy to electromagnetism, in-
cluding multipole expansions or the electromagnetism of
dissipative media. An interesting open question is how
the properties of these defects, and particularly the dis-
compressions, impact the global mechanical properties
of TBG, as well as its local electronic spectrum, where
stable defect configurations on the electronic spectrum
are expected to lead to localized bound state formation.
For isolated disclinations and discompressions one might
even expect topologically protected bound states in the
electronic spectrum [50].

Note added: After this work was completed, we be-
came aware of interesting related works concerned with
a fracton description [51] and topologically protected de-
fect motion [52] of quasicrystals.
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Appendix A: Schwinger-Keldysh formulation of the
elasticity theory

In order to include damping of fractons, we perform
the analysis on the Keldysh contour [48]. We consider
the generating functional:

W[hl] _ /Dw eiS[w]—ifc hi(t)w;(t) ) (Al)

Here, fx,tec -+ = [.dt [, d®z--- indicates that the
time integration has to be performed on the round-trip
Keldysh contour, while the spatial integration goes over
the volume V. The action of the problem is given in
Eq. (3), where the damping term enters through the
nonlocal-in-time contribution

D7l (t—t) =

—8(t — )02 +y(t 1), (A2)

with friction self energy term ~(t). Let w; () and w; (t)
refer to the phason modes on the upper and lower con-
tour, respectively. Transforming the Keldysh degrees of
freedom to quantum and classical fields

1 _
ﬁ(wj'(t) + w; (t)) ,

the self energy as function of frequency takes the form

w(t) =

K2

(A3)

0 ’YR(W>)
= . A4
v(w) (’YA(W) ~E (W) (A4)
We assume Ohmic damping
Im~ R (w) = yowe™I@l/we (A5)

with upper cutoff w.. The real part of v (w) is deter-
mined via a Kramers-Kronig transformation, where con-
stant terms 77(0) have to be subtracted. In addition,

B (W) = -2 coth(%) Im % (w) (A6)

follows from the fluctuation-dissipation theorem. Hence,
the retarded Fourier transform is at low energies given
by

1

R _
D™ (w) = T

(A7)

At low frequencies, the damping term is the dominant
one. The equations of motion for the displacement fields
w; are

82’LU]'

= [ At/ ARt —t)w; (¥

Gt = [ 4t () as)
+ 0i[Cijpewre + S€ijrdw) -

For strong damping and long times [dt'~v%(t—t') —

—v00¢, and the dynamics is diffusive. When we per-

form the Hubbard-Stratonovich transformations, we ob-
tain Eq. (7) with

<_
T(t—t')= 8,D(t — )8y . (A9)
The retarded version of I' becomes
R w2 A
r = 10
@)= (A10)

In the limit 79 — 0, T'®(w) — 1.
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