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It has been shown that many seemingly contradictory experimental findings concerning the su-
perconducting state in Sr2RuO4 can be accounted for as resulting from the existence of an assumed
tetra-critical point at near ambient pressure at which dx2−y2 and gxy(x2−y2) superconducting states
are degenerate. We perform both a Landau-Ginzburg and a microscopic mean-field analysis of
the effect of spatially varying strain on such a state. In the presence of finite xy shear strain,
the superconducting state consists of two possible symmetry-related time-reversal symmetry (TRS)
preserving states: d± g. However, at domain walls between two such regions, TRS can be broken,
resulting in a d+ ig state. More generally, we find that various natural patterns of spatially varying
strain induce a rich variety of superconducting textures, including half-quantum fluxoids. These re-
sults may resolve some of the apparent inconsistencies between the theoretical proposal and various
experimental observations, including the suggestive evidence of half-quantum vortices.

I. INTRODUCTION

If it happens that superconducting (SC) orders with
two distinct symmetries are comparably favorable for
some microscopic reason, it is possible to have a two-
parameter phase diagram (e.g. T and isotropic strain,
ε0) that exhibits a multicritical point (e.g. at ε = ε?

and T = T ?) at which the transition temperatures, Tc,
of the two different orders coincide, as shown in Fig.
(1a). For instance, a change from s± to d-wave pair-
ing is thought to occur as a function of doping in certain
Fe-based superconductors3, and it was recently conjec-
tured that the layered perovskite Sr2RuO4 (SRO)4 un-
der ambient conditions is “accidentally” close to such a
multi-critical point involving either dx2−y2 and g-wave1

or dxy and s-wave5,6 pairing. Even though both orders by
themselves transform as one dimensional irreducible rep-
resentations (irreps) of the point-group symmetries, near
such a multi-critical point the system can exhibit a vari-
ety of features usually associated with multi-component
SC order that transform according to a higher dimen-
sional irrep (e.g. a p-wave). Conversely, for a SC order
parameter that transforms according to a 2d irrep, the
point of zero shear-strain, εshear = 0, can be viewed as a
special case of such a multi-critical point in the T -εshear

plane, as shown in Fig. (1b). In both cases, the response
of the different components of the SC order parameter
to specific components of the strain tensor can produce
a variety of novel effects.

Specifically, the proximity of a multicritical point im-
plies that even small amplitude spatial variations of the
strain field can locally stabilize different distinct forms
of superconducting order in different domains. In this
paper, we treat the case of a tetracritical point involving
dx2−y2 (B1g) and gxy(x2−y2)-wave (A2g) pairing channels,
where, as in Fig. (1a), for the uniform case the coexis-
tence regime is a d + ig SC with spontaneously broken
time-reversal-symmetry (TRS). We study this problem
in the mean-field approximation, both from an effective

(a) (b)

FIG. 1. (a)a. Schematic phase diagram as a function of two
parameters - taken here to be isotropic strain (ε0) and T , in
the neighborhood of a tetra-critical point at which the tran-
sition temperatures to SC states with d-wave (i.e. B1g) and
g-wave (i.e. A2g) coincide. (b). A similar schematic phase
diagram – now where the x-axis signifies symmetry breaking
shear strain, εshear – for a system which at zero strain fa-
vors a SC order parameter the transforms according to a two
dimensional irrep., px and py (i.e. Eu symmetry).

a All figures are colored in the online version

field theory (Landau-Ginzburg/non-linear sigma model)
and a microscopic perspective. Following a similar line
of reasoning as in Ref.7 (where TRS breaking near dislo-
cations was investigated), we show that inhomogeneous
strain can lead to a highly inhomogeneous SC state in
which TRS breaking is strongly manifest only along a
network of domain-walls separating regions in which the
local strain favors one or another TRS preserving com-
bination of the d and g order parameters. However, this
only occurs when the unstrained system is close enough
to the tetra-critical point - in a sense that we make pre-
cise. We also show that appropriate strain patterns can
induce an order parameter texture with a spontaneous
fractional magnetic flux that equals a half superconduct-
ing flux quantum in under a range of circumstances.

The results we obtain are quite general as they fol-
low largely from symmetry considerations. As an appli-
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cation of these ideas, we explore their implications for
the still vexed problem of settling the symmetry of the
superconducting state in SRO4. Here, there are a num-
ber of proposals, each of which can plausibly account
for a subset of the experimental observations. Triplet
pairing of any sort has seemingly been ruled out by
recent NMR experiments8–10. Moreover, recent ultra-
sound measurements11,12, taken at face value, require a
two-component order parameter arising from the system
in the absence of strain being accidentally tuned to a
multi-critical point involving dxy & s or dx2−y2 & g wave
pairing. However, there are at least two sets of phenom-
ena that seemingly challenge these theoretical proposals:

• Below a critical temperature, Ttrsb, the SC phase
appears to break time-reversal symmetry13–15

where at zero shear strain Ttrsb ≈ Tc, while in the
presence of substantial B1g shear strain these two
transitions are split, such that Ttrsb < Tc. However,
specific heat measurements under the same circum-
stances show no signature of the TRS breaking
transition16,17. An additional constraint on theory
is the recent observation18 that Tc can be depressed
with the application of hydrostatic pressure (i.e.
compressive uniform strain ε0 < 0) without pro-
ducing a detectable splitting between Tc and Ttrsb

- an observation that was declared to rule out any
theory based on an accidental degeneracy between
two symmetry-distinct superconducting orders.

• A somewhat complicated experiment on mesoscale
crystals adduced evidence of the existence of a
topological excitation capable of admitting a half-
quantum of magnetic flux2. This has been argued19

to constitute direct evidence that the SC state is
a chiral p+ ip state, despite the contrary evidence
from the NMR studies8–10. Although additional ev-
idence of half quantum vortices has been recently
reported20, it is still possible that there is an al-
ternative explanation for the observation that does
not involve fractional vortices. However, taking the
result at face value presents us with the need to
identify a route to fractional vortices in a singlet
SC.

In this context, our present results provide, as a mat-
ter of principle, possible routes to reconcile both these
observations with the conjectured theoretical scenario.

• Despite the fact that the crystals involved in these
experiments are paragons of crystalline perfection,
the only plausible interpretation of the specific heat
data is that the TRS breaking involves a small frac-
tion of the electronic degrees of freedom. This can
be naturally accounted for by the theoretically ex-
pected extreme sensitivity of the SC order to local
strain, and the fact that the TRS breaking d + ig
order arises only in a network of domain-wall-like
regions at which |ε0−ε?| and |εshear| are vanishingly

small. Moreover, so long as the typical magnitude
of the inhomogeneous strain is larger than an ap-
plied strain, no significant splitting between Tc and
Ttrsb is expected.

• The fact that a half-quantum vortex can be the
ground-state in the presence of a suitable strain
texture similarly opens the possibility that the ex-
perimental evidence of fractional vortices in SRO is
likewise consistent with the propsed scenario.

II. GINZBURG-LANDAU THEORY

A. Setup

We consider a Ginzburg-Landau free energy density1

with order parameter (OP) fields ∆T = (D,G) in the

presence of an external magnetic field ~B = ~∇× ~A, given
by

F = V2 + V4 +K +
B2

2
(1)

V2 = α0∆†∆ + ∆† (α · τ ) ∆

V4 =
1

2
[∆†∆]2 +

β1

2
[∆†τ1∆]2 +

β3

2
[∆†τ3∆]2

+
β′3
2

[∆†τ3∆][∆†∆]

K =
κ

2
|(−i~∇− ~A)∆|2

+
κ′

2

{[
(i∂x −Ax)∆†

]
τ1 [(−i∂y −Ay)∆] + c.c.

}
Where τ is the vector of Pauli matrices.

The complex scalar fields D,G are normalized so that
the stiffness constants are equal, i.e., κd = κg ≡ κ, and
that quartic isotropic coupling constant β0 = 1. We have
used units such that the Cooper pair charge 2e = 1.
The quantity α = (α1, 0, α3) represents the effect of local
strain as a two-component vector, where α3 = α3(x, y) is
proportional to the deviation of the isotropic (A1g) strain
from its critical value ε?0 and α1 = α1(x, y) is proportional
to the shear (B2g, i.e., xy) strain. The free energy at
~A = ~0 respects TRS, has a U(1) symmetry associated
with the overall superconducting phase and, for α1 = 0,
a D4h point group symmetry that involves both space
and the order parameters. For example, under a rotation
by π/2, x→ y and y → −x, D → −D and G→ G. The
quartic terms determine the favored form of the ordered
state: β3 > 0 favors coexistence of non-zero d and g
pairing and β1 > 0 favors the TRS breaking combinations
d±ig. The microscopic BdG calculations reported in Sec.
(III A) yield β1 & β3 > 0.
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B. Non-linear sigma model

In the special case, αj = βj = 0 for all j > 0 and
β′3 = 0, κ′ = 0, the free energy has a global SU(2) sym-
metry that relates the two components of the order pa-
rameter. Not too close to Tc, and to the extent that this
symmetry is not too strongly broken, the variations of
the magnitude of the order parameter are unimportant.
This allows us to associate the relevant order parameter
values with a point on a Bloch sphere n̂ ∈ S2 via the
isomorphism between CP1 and S3/U(1), i.e.,

∆ = |∆|eiχZ (2)

Z =

cos

(
θ

2

)
e−iφ/2

sin

(
θ

2

)
e+iφ/2


ni = Z†τiZ

Here, defining χd and χg to be the phases of D and G
respectively, χ = 1

2 [χd + χg] and φ = [χg − χd] are the
overall and relative SC phases and θ = 2 arctan[|G|/|D|].
Note that OPs ∆ which differ only by their global phases
χ are mapped onto the same point on the Bloch sphere.

More generally, to the extent that it is possible to ig-
nore variations in the magnitude of ∆, the problem re-
duces to a non-linear sigma model with a weakly broken
U(1)× SO(3) symmetry, derived in Appendix (V A):

F = Kκ +Kκ′ +Kn̂ (3)

+ V0(|∆|) + α̃ · n̂+
β̃1

2
[n1]2 +

β̃3

2
[n3]2 + . . .

Kκ =
κ̃

2

∣∣∣~∇χ+ ~a− ~A
∣∣∣2

Kκ′ = κ̃′n1

∏
µ=x,y

[
∂µχ+ aµ −

[n̂× ∂µn̂]1
2n1

−Aµ
]

Kn̂ =
κ̃

2

∣∣∣∣∣ ~∇n̂2
∣∣∣∣∣
2

+ κ̃′n1

{
[n̂× ∂xn̂]1

2n1

[n̂× ∂yn̂]1
2n1

− ∂xn̂

2
· ∂yn̂

2

}
,

where [n̂ × ∂µn̂]1 = n2∂µn3 − n3∂µn2 is the 1st com-
ponent of the vector n̂ × ∂µn̂, while κ̃ ≡ |∆|2κ, α̃ ≡
|∆|2〈α1, 0, α3 + β′3|∆|2〉, β̃j ≡ |∆|4βj , and . . . signifies
terms that would come from higher order terms in the
Ginzburg-Landau theory. Importantly, ~a is the Berry
connection associated with the motion of n̂ on the Bloch
sphere:

~a ≡ Z†
(

1

i
~∇Z
)

(4)

The corresponding Berry curvature is related to the Pon-
tryagin density

~∇× ~a =
1

2
εµν [n̂ · (∂µn̂× ∂νn̂)] (5)

C. Ground State

Let us first determine the ground state of a system
in the presence of a uniform strain vector α using the
Ginzburg-Landau free energy (1). For calculational con-
venience, we will consider the case β′3 = 0 and β1 = β3 =
β > 0 (in which case the free energy is invariant under
a U(1) symmetry associated with rotations of n̂ around
n2). The general case is analyzed in Appendix (V B).

The potential term V of the Ginzburg-Landau free en-
ergy can be rewritten as a sum of two terms,

V2 = −|∆|2(α0 +α ·m)

V4 =
1

2
|∆|4

(
1 + βm2

)
(6)

where m is the projection of the normalized vector n̂
onto the ê1-ê3 plane and m ≡ |m| =

√
n2

1 + n2
3, where

nj ≡ n̂ · êj . The potential is minimized when m points
in the same direction as α so that the potential term is
given by

V = −|∆|2(α0 + αm) +
1

2
|∆|4

(
1 + βm2

)
, (7)

where α ≡ |α|. Since 0 ≤ m ≤ 1, the values of |∆|
and m that minimize V are uniquely determined: for
α0 ≥ α/β ≥ 0,

|∆|2 = α0, m =
α

βα0
, (8)

which corresponds to two distinct values n̂ (related by

time-reversal symmetry) with n2 = ±
√

1−m2. For
α/β > α0 ≥ −α, we have

|∆|2 =
α0 + α

1 + β
, m = 1, (9)

so that n2 = 0. Finally, |∆| = 0 for α < −α0. Hence-
forth, we restrict our attention to the case α0 > 0 so
|∆| > 0 and that the nature of the ground state is deter-
mined by the value of α/βα0.

In the limit of small strain α � βα0 so that m ∼ 0,
n̂ points in the ±ê2 direction, which corresponds to a
TRSB d±ig state. Conversely, if α ≥ βα0 so that m = 1,
the Bloch vector n̂ points in the same direction as α as
denoted by the solid black dot in Fig. (2). This corre-
sponds to a TRS preserving state determined by the the
local strain. From now on, when we discuss a situation
in which the strain is nonzero, we shall implicitly assume
that α ≥ βα0 and thus the uniform ground state is as in
(9).

D. Domain walls

We now consider the behavior of the order parameter
∆ in the presence of spatially varying strain. As it sim-
plifies the analysis, we will do this in the context of the
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FIG. 2. Domain Wallsa. The figure is the Bloch sphere repre-
sentation of possible transitions across the domain wall where
α1(y) → ±

¯
α1 as y → ±∞, and α3(y) ≡

¯
α3 > 0 is constant.

The dashed blue arrow represents a TRS preserving transition
through a pure d state. The solid green arrow represents a
general TRSB transition restricted to a 2D plane intersecting
the Bloch sphere, the angle of which relative to the ê1-ê3-
plane is denoted by ω. In particular, if ω = π/2, then only
the relative phase φ changes from φ = π → 0.

a All figures are colored in the online version

non-linear sigma model (3). To begin with, we consider
a domain wall separating a region at y < 0 in which the
shear strain favors d−g pairing (α1 < 0) from a region at
y > 0 that favors d+g (α1 > 0). We consider the system
to be translationally invariant in the directions parallel
to the domain wall.

Far from the domain wall, the relative phase φ(y) and
amplitudes are determined by the strain. Thus, at long
distances, the only property of the order parameter tex-
ture that can depend on the nature of the domain wall
is the change in the global phase, δχ. If we choose the
global phase such that the order parameter is real at
y → −∞, across the domain wall the order parameter
must change from d− g to eiδχ(d+ g).

If TRS is preserved everywhere (i.e. if the order pa-
rameter can be chosen to be real), then the only possible
values of δχ are 0 and π. Any other value of δχ requires
TRSB on the domain wall, which consequently means
that there must be two symmetry related optimal val-
ues, ±δχ.

Below we discuss the derivation of δχ in several cases.
This is done by minimizing the free energy in Eq. (3) in
the presence of a given strain texture. To be concrete, we
will consider the case in which α3(y) =

¯
α3 is a constant

and α1(y) changes sign across the domain wall such that
α1(y) → ±

¯
α1 as y → ±∞ with

¯
α > βα0

21. The result
can be expressed as a trajectory on the Bloch sphere, as
shown in Fig. (2), where the arrow indicates the direction
of evolution as y varies from −∞ to +∞.

To begin with, consider some general results that fol-
low without explicit calculation:

• Away from the multicritical point: Consider
the case in which

¯
α3 > βα0. In this case, |D| is ev-

erywhere larger than |G| and even at the “center”
of the domain wall, defined as the point y = 0 where
α1(0) = 0, there is no local tendency to TRSB. The
optimal order parameter texture lies in the ê1-ê3

plane - as indicated by the dashed blue trajectory
in Fig. (2). Here the G component of the order
parameter vanishes at y = 0 and is negative on one
side and positive on the other. Obviously, the anal-
ogous considerations apply for

¯
α3 < −βα0, with

the role of D and G interchanged. In this case,
TRS is preserved everywhere, and δχ = π.

• Broad domain wall near the multi-critical
point: If |

¯
α3| < βα0, then near the center of the

domain wall, the local terms in the free energy fa-
vor a TRSB solution, d±ig. Moreover, if the strain
fields vary slowly on the scale of the superconduct-
ing coherence length, then the order parameter will
be well approximated by the uniform state corre-
sponding to the local value of the strain. Thus, the
order parameter texture is not confined to the ê1-
ê3 plane, as shown by the solid green trajectory.
This implies that both components of the order
parameter remain non-zero everywhere, and thus
that δφ = δχg − δχd = ±π. However, how much
of this phase change is accommodated by chang-
ing the phase of D or G depends on energetics;
if the D wave order is everywhere dominant, then
δχd ≈ 0 and hence δχ ≈ π/2, while if the D and
G are of nearly equal strength, then |δχg| ≈ |δχg|
and hence δχ ≈ 0. Clearly, for intermediate cases,
0 < |δχ| < π/2.

• Narrow domain wall near the multicritical
point: Here, the nature of the solution depends on
a host of microscopic details. Since “narrow” and
“broad” refer to the width of the domain wall rela-
tive to the superconducting coherence length, and
given that the superconducting coherence length di-
verges as T → Tc, at least near Tc this is likely the
most physically relevant situation. We will thus
treat this case more explicitly below.

As an explicit model of a narrow domain wall, let
α1(~r ) =

¯
α1 sign(y) where

¯
α1 > 0 and α3(~r ) ≡

¯
α3 ≥ 0 be

a constant. We consider paths in which as y goes from
−∞ to ∞, n̂(y) follows a trajectory that lies in a plane
ω intersecting the Bloch sphere - of the sorts illustrated
by the different colored paths in Fig. (2). When this
plane is perpendicular to ê2, TRS is preserved (dashed
blue line) while all other trajectories break TRS. A more
complete solution of the problem does not result in qual-
itative changes in the conclusions. With these simplifi-
cations, the domain wall energies ∆F can be computed
analytically (see Appendix (V C)).

We can then find the plane ω with minimum domain
wall energy for each set of values

¯
α1,

¯
α3 and compute the
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FIG. 3. Global phasea. The change δχ in the global phase
across a narrow domain wall where the xy component of the
strain, α1, is discontinuous. The domain wall is characterized
by α1(y) =

¯
α1 sign(y), while α3(y) =

¯
α3 is constant. δχ is

shown as a function of
¯
α1/βα0. The different curves corre-

spond to different fixed values of the uniform component of
the strain,

¯
α3/βα0.

a All figures are colored in the online version

corresponding change in global phase δχ, as shown in
Fig. (3). For

¯
α3 ≥ βα0 (i.e., way from the multi-critical

point), TRS is preserved everywhere, such that δχ = 0.
Conversely, if

¯
α3 < βα0, (near the multi-critical point),

TRS breaking near the domain wall is possible, yielding
0 < |δχ| < π/2.

E. Topological Point Defects

The domain walls we have discussed are natural strain
patterns that are plausibly generic in real materials. In
addition, because there are two components of the strain-
dependent vector, α, one can also conceive of vortex-like
defects with point-like cores in 2d or line-like cores in 3d.
Here, we consider a pattern of strain such that along any
path encircling the origin, α(~r ) rotates by 2π. Given
such a strain pattern, we can use the non-linear sigma
model to explore the properties of the resulting SC order
parameter texture that results.

1. Vorticity and associated flux

Far from the defect core, the form of the SC order pa-
rameter (up to its overall phase) is essentially determined
by the local pattern of strain. Regardless the SC order

parameter texture, the current density, ~J = −δF/δ ~A, can
be computed exactly from the nonlinear sigma model (3)
since variations in magnitude |∆| do not couple to the

vector potential ~A. From this it follows that

Jx = κ̃[∂xχ+ ax −Ax] (10)

+ κ̃′n1

[
∂yχ+ ay −

[n̂× ∂yn̂]1
2n1

−Ay
]

and similarly for Jy. Far from the core under most cir-

cumstances, ~J → ~0; indeed, beyond a London penetra-
tion depth it vanishes exponentially. Thus, we can invert

Eq. (10) to obtain an expression for ~A in terms of the

SC order parameter texture valid wherever ~J is negligi-

ble. Then, by integrating the vector potential ~A along a
contour C that encloses the origin at a distance, we ob-
tain an expression (modulo an additive integer) for the
enclosed flux Φ in units of the superconducting flux quan-
tum Φ0 = h/2e:

Φ

Φ0
=

Ω

4π
− κ′

4π

∮
C

[n̂× ∂µn̂]1Tµν drν (11)

T =

[
κ′n1 κ
κ κ′n1

]−1

where Ω is the solid angle enclosed by the contour of n̂
on the Bloch sphere.

Note that when [n̂ × ∂µn̂]1 = 0 along C, the second
term vanishes and thus the flux quantum captured is ex-
pressed entirely in terms of the Berry phase Ω/4π. In
particular, since strain stabilizes a TRS preserving state,
we will typically be interested in situations in which
n̂ · ê2 = 0 far from the defect core, insuring that this
condition is satisfied. In this case, whenever n̂ follows
a trajectory that encircles the origin (as in Fig. (4b)),
there must be an associated half-flux quantum of flux
bound to the defect.

2. Example of a strain-induced half-quantum fluxoid

We now consider an explicit version of such a strain
texture (Fig. (4a)), consisting of four domains separated
by domain walls that intersect at the origin. Thus, we
take α3(x, y) =

¯
α3F3(x) and α1(x, y) =

¯
α1F1(y), where

Fj(r) = −Fj(−r), and Fj(r)→ 1 as r →∞. We further
assume that

¯
αj > βα0 – i.e. far away from the origin we

are in the large strain regime where the preferred order
parameter is set by the strain and TRS is preserved. As
indicated by the labels, the D component is enhanced
compared the G component for x > 0. For x < 0, the G
component is favored. The combination d+ g is favored
for y > 0, while d− g is favored for y < 0.

Let us now consider a closed path C encircling the
origin (Fig. (4a)), where the preferred SC state (up to
the global phase) is denoted in each quadrant, e.g., D+g
denotes a TRS preserving SC state with dominant D
component. Since the contour C is far away from the
origin, the domain walls between quadrants are narrow,
and the strain is always sufficiently large such that TRS



6

(a)

(b)

FIG. 4. A strain induced half quantum fluxoida. (a) Real
space contour around a topological point defect, along which
the strain vector α winds by 2π. The dashed cross shows the
location of a π mismatch in the phase of the order parameter.
D+g in the x > 0, y > 0 quadrant represents order parameter
with a dominant D component and a smaller G component,
and similarly in the other quadrants. (b) Corresponding tra-
jectory of the order superconducting order parameter along
the Bloch sphere. TRS is preserved along the path. Each
segment of the contour is color/style-coded so that the same
colors/line styles in the bottom and top figure correspond to
each other.
a All figures are colored in the online version

breaking is never favored locally. Fig. (4b) shows the
trajectory of the order parameter on the Bloch sphere, in
which each segment of the contour is color/style- coded
to correspond to that in the top diagram. We then see
that the OP ∆ wraps around by 2π while being confined
to the ê1-ê3 plane and thus [n̂ × ∂µn̂]1 = 0 along the
contour. Eq. (11) thus implies that this strain texture
captures a half quantum of flux.

At an intuitive level, the same conclusion can be
reached by considering the nature of the order param-
eter texture along the various line segments in Fig. (4a).
Since it is energetically favorable to keep the dominant
piece of the SC order parameter uniform, the overall
phase (δχ) is constant along any of the segments other
than the red one (dashed cross), along which the dom-

inant portion of the order parameter changes sign, fa-
voring δχ = π. Of course, this change in phase will in
actuality be spread out along the entire path, but this
argument captures the π phase mismatch along the close
path that results in a half quantum vortex.

III. MICROSCOPIC ANALYSIS
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FIG. 5. (a)a Phase diagram of the microscopic Hamilto-
nian, Eq. (12,13), as a function of the interaction strengths
λd, λg, calculated within self-consistent mean-field theory, in
the absence of strain. Near degeneracy λd ∼ λg, the mid-
dle portion denotes the TRSB d+ ig state, while the bottom
and top regions represent a pure d and pure g state, respec-
tively. 3 representative point (I, II, III), one in each phase,
are used in further calculations. (b) The top two panels de-
pict the evolution of the uniform state at point (I) with shear
gd′ and isotropic gs strain. The solid line represents the rel-
ative phase φ given by the left y-axis, while the dashed lines
represent the amplitudes |D|, |G|, given by the right y-axis.
Similarly, the bottom two panels represent the evolution of
the uniform state for sample points (II) and (III) under shear
gd′ strain.

a All figures are colored in the online version

We now address these same issues from a more mi-
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croscopic perspective in the context of Bardeen-Cooper-
Schrieffer (BCS) mean-field theory. Specifically, we solve
the self-consistency equations for a generic 2D Hamilto-
nian with attractive d and g-wave interactions, and with
spatially varying band-structure parameters that encode
the same patterns of spatially varying strain discussed
above.

Let the full Hamiltonian Hfull = H0 + H1 be defined
on a 2D square lattice. The free Hamiltonian H0 is char-
acterized by the (single-band) TRS-preserving hopping
matrix t so that

H0 = −
∑
~r ′,~r ,s

[t(~r ′, ~r ) + µ] c†~r ′sc~rs (12)

and the attractive (pairing) interaction term H1, as-
sumed to be spatially uniform, is

H1 = −
∑
τ=d,g

λτ
∑
~r

P †τ (~r )Pτ (~r ) (13)

P †τ (~r ) =
∑
~r ′,s,s′

fτ (~r ′ − ~r )c†~r ′s′ [iσ2]s′sc
†
~rs

where λτ > 0 with τ = d or g encodes the strength
of the interaction in the designated symmetry channels.
Here fτ are TRS preserving form factors that transform
according to the requisite distinct irreducible representa-
tions of the point-group symmetry:

fd(~r ) =
1

4
δ(r = 1)

[
x2 − y2

]
(14)

fg(~r ) =
3
√

3

32
δ(r =

√
5)[xy(x2 − y2)]

where the factor of the Kronicker-δ in each expression is
1 when ~r connects, respectively, first and fourth nearest-
neighbor sites. The hopping matrix elements can likewise
be expressed in terms of these and the local strain as

t(~r + ~r ′, ~r ) = δ(r′ = 1) + tδ(r′ =
√

2) (15)

+ gs(~r )� fs(~r ′) + gd′(~r )� fd′(~r ′)

where gs(~r ) and gd′(~r ) parameterize, respectively, the
spatial profile of the isotropic and shear strain, and �
is the symmetrization of the product term, e.g., gs(~r )�
fs(~r

′) ≡ 1
2 [gs(~r ) + gs(~r + ~r ′)]fs(~r

′). Here, fs(~r ) and
fd′(~r ) are form factors with isotropic and shear [xy] sym-
metry of the underlying lattice, which we take to be

fs(~r ) = δ(r = 2), fd′(~r ) = δ(r =
√

2) [xy] (16)

We construct a mean-field BCS trial Hamiltonian H,
given by

H =
∑
~r ′,~r ,s

T (~r , ~r )c†~rsc~rs (17)

+
∑
~r ′,~r

[
∆(~r ′, ~r )c†~r ′↑c

†
~r↓ + h.c.

]

The full self-consistency field equations (SCFs) can then
be derived by extremizing the resulting variational free
energy in the standard fasion – details are given in Ap-
pendix (V D). It should be noted that in order to guar-
antee that the results satisfy the equation of continuity,

i.e., ~∇ · ~J = 0, it is generally insufficient to only solve
the SCFs for the gap function - both T and ∆ must be
determined self-consistently (see Appendix (V E) for a
proof).

A. Uniform states

To begin with, we study the uniform case tuned close
to the multi-critical point. In Fig. (5a) we show the
mean-field ground-state phase diagram of the micro-
scopic model defined above as a function of the pairing
interactions, λd and λd, in the absence of “strain” (i.e.
for gs = gd′ = 0), for t = 0.4 and for the chemical µ cho-
sen so that the mean electron density per site is n ≈ 0.3.
There are three distinct phases in this case: a pure d
wave phase for λd sufficiently larger than λg, a pure g
wave phase for sufficiently large λd, and a relatively nar-
row coexistence phase centered at the the line λd = λg.
The latter phase has a relative phase φ = ±π/2, i.e., it
is a d± ig phase, for all parameters studied here.

To illustrate the effect of shear strain, we chose rep-
resentative points in the phase diagram indicated by the
three points in Fig. (5a), and explore the evolution of the
ground-state order upon application of uniform strain,
i.e. non-zero gd′ or gs. Shown in Fig. (5b) are the magni-
tude of the d and g components of the order parameter,
|D| and |G|, as well as the relative phase, φ, for these
three cases:

• The top two panels of Fig. (5b) show the evolution
with strain of the case in which we are most inter-
ested - the strain-free ground state has d± ig pair-
ing. As the shear strain, gd′ , is varied, |D| and |G|
remain comparable, although both increase slightly,
roughly in proportion to |gd′ |2 - which is a density of
states effect. More dramatically, the relative phase
evolves smoothly, up to a critical value at which
TRS is restored, i.e. where φ reaches either 0 or π,
which marks the point of a transition to d + g or
d − g pairing respectively. In contrast, as a func-
tion of the isotropic strain gs, the evolution from
the d+ig state to a pure g or pure d state involves a
change of the relative amplitudes |D| and |G|, while
the relative phase φ = ±π/2 remains constant.

• The lower two of Fig. (5b) represent the shear
strain evolution under conditions in which at zero
strain either the d or g component is absent. In
both cases, the component that is dominant at zero
strain remains dominant; indeed, its overall magni-
tude increases in much the same way as in the top
panel. As required by symmetry, the component
that vanished in the absence of strain exhibits an
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FIG. 6. Domain Wallsa. The top panel shows the behavior
of the SC order parameter across a domain wall at which the
shear strain gd′(x) changes sign when the system is detuned
from the multi-critical point such that gs(x) = 0.3. The bot-
tom panel shows the same sort of domain wall for a system
near the multi-critical point so that gs(x) = 0. The spa-
tial variation of gd′ , shown in the mini-plot, is of the form
gd′(x) = 0.4 tanh(x/l) where l = 5 and |x| ≤ L = 50. The
solid line represents the relative phase φ with values given
by the left y-axis, while the dashed lines are the amplitudes
of the D and G components with values given by the right
y-axis.

a All figures are colored in the online version

initial linear increase in magnitude with increasing
strain. However, in this case, the relative phase is
a discontinuous function of strain; the ground-state
always preserves TRS and jumps from being d+ g
to d− g as the sign of the strain changes.

We relate these results to the Ginzburg-Landau theory
as follows: In the absence of strain, the system is tuned
to the tri-critical condition α1 ≈ α3 ≈ 0 when λd ≈ λg.
Moreover, since the system exhibits d + ig order in this
case, the requisite inequalities β1 > 0, β3 > 0 are au-
tomatically satisfied. The shear strain can be identified
with α1 ∝ gd′ . Conversely, even relatively small values
of |λd − λg|/|λd + λg| > 0.1 are enough to produce a
sufficiently large value of α3 such that even at T = 0,
|α| > β/|α0|. Also notice that we have taken relatively
strong interactions; this condition becomes exponentially
more restrictive the weaker the overall coupling, |λd+λg|.
The extent to which the system needs to be “fine-tuned”
near to the tetra-critical point is quantified as the nar-
rowness of this coexistence phase in the zero-temperature
phase diagram.

B. Domain Walls

We next address the domain wall behavior for a sys-
tem near and away from the multi-critical point. To cir-

cumvent the difficulty of large coherence lengths at small
interaction strength, we use large interaction strengths
λd = 3.2 and λg = 4.9, chosen such that in the absence
of strain, the uniform system is near the multi-critical
point, i.e.., in a d + ig state. We then introduce an x-
dependent shear strain with a domain wall along the y-
axis, along which the system is translationally invariant.
As a specific example, we take gd′ = 0.4 tanh(x/l) where
l = 5 and |x| ≤ L = 50. We take gs(x) to be constant.

Fig. (6) (top) shows the profiles of the order pa-
rameters and relative phase φ as a function of x in the
case gs = 0, i.e., near the multi-critical point. φ twists
through π/2 passing through the domain wall, indicating
the TRS is broken there. Fig. (6) (bottom) shows a TRS
preserving domain wall for gs = 0.3, i.e., away from the
multi-critical point.

C. Half quantum vortex

Finally, to construct a tractable situation in which the
previously discussed phenomenological analysis leads to
a half-quantum vortex, we consider the previous system
on an infinite cylinder with periodic boundary conditions
in the x-direction and translational invariance along the
y-direction. The circumference of the cylinder (in the
x-direction) is 400 sites. We then vary the microscopic
terms [gs(x) and gd′(x)] corresponding the evolution of α1

and α3 shown in Fig. (4). Solving the full SCF equations,
we obtain D(x) and G(x) as shown in Fig. (7).

The results corroborate the expected behavior from the
Ginzburg-Landau theory. Notice that the x-labels on top
of Fig. (7a) indicate the expected state at each position
along the contour. Most importantly, the relative phase
φ winds by 2π around the cylinder, from which it follows
that δχ = π. This result is translated into a trajectory
on the Bloch sphere in Fig. (7b). Note that the trajec-
tory of the order parameter is close to the ê1-ê3 plane,
but deviates from it somewhat in parts of the trajectory,
indicating that TRS is broken in certain regions along
the path. Correspondingly, in this calculation, we expect
the flux induced by the strain pattern to deviate slightly
from Φ0/2 [see Eq. (11) and the discussion that follows].

IV. CONCLUSIONS

In this paper we have primarily explored the effect of
inhomogeneous strain on the superconducting OP tex-
tures of a system tuned close to a tetra-critical point
at which two different superconducting components have
equal Tc’s. Such a tetracritical point can arise due to
symmetry - when in the absence of strain the two com-
ponents form a two dimensional irreducible representa-
tion of the point group symmetries. However, we have
primarily focused on the case in which the tetracritical
point arises from tuning a symmetry preserving parame-
ter near to a critical value - a situation that might arise
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FIG. 7. Half quantum vortex pinned by strain texturea. (a)
The behavior of the OP ∆ = (D,G) as a function of x. The
two components of the strain, gs(x) ∝ α3 and gd′(x) ∝ α1,
are shown on the right. The domain walls are of the form
± tanh(x/l) with l = 5, and the cylinder’s circumference is
400 sites. The solid line represents the relative phase φ given
by the left vertical axis, while the dashed lines represent that
amplitudes |D| and |G| (right vertical axis). The bottom hori-
zontal axis represents the x position, while the top horizontal
axis is labeled with the uniform state corresponding to the
given strain texture at that position. (b). Trajectory of the
OP ∆ = (D,G) projected onto the unit Bloch sphere. The
arrow represent the direction of the contour. The gray circle
line emphasizes the ê1-ê3 plane.

a All figures are colored in the online version

accidentally in a small subset of superconducting mate-
rials.

In this situation, even relatively small local strain can
readily detune the system from the tetracritical condition
sufficiently that a single component OP is locally favored.
However, if on average the system is near enough to this
critical value, it is also natural to find domain walls be-
tween regions of different dominant strain in which the
system is approximately tetra-critical. This, in turn, can
lead to TRS breaking on such domain walls, and thus
to a state which globally breaks TRS but in which the
symmetry breaking is locally significant only on a net-

work of such domain walls. We have also shown that
appropriate patterns of inhomogeneous strain can bind a
half-quantum vortex.

These results may have interesting implications for a
number of materials that show evidence for either an
exact or a near-degeneracy of two SC orders, including
UPt3

22–24, URu2Si2
25,26, UTe2

27, doped Bi2Se3
28,29, cer-

tain Fe based superconductors30–32, and of course SRO.
Most importantly, such a near degeneracy necessarily im-
plies an enhanced sensitivity to variations in local strain,
which can lead to a variety of otherwise unexpected be-
haviors. Note, however, that half quantum vortices and
other topological defects can also arise as dynamical ex-
citations in multi-component superconductors in the ab-
sence of any strain effects33–39.

It is worth noting that while our results are quite gen-
eral, they are obtained within mean-field theory, and ne-
glect thermal fluctuations of the superconducting order
parameter. These can lead to interesting effects close to
the Tc in multi-component superconductors40–43.

This study was undertaken with the SC state of SRO
in mind. It is well established that the SC state is highly
strain-sensitive. There are also a variety of experimental
observations - ultra-sound anomalies key among them -
that are most naturally consistent with an assumed near
degeneracy between a d and g wave SC component. How-
ever, a variety of other experimental results appear, at
first, difficult to reconcile with this scenario2,15,18,44. The
present results suggest a route to understanding some of
these additional observations. This includes a suppressed
thermodynamic signature of the TRS breaking transition
and the possibility of half quantum vortices, even though
some aspects of the actual experiment2 - for instance the
dependence on an in-plane field - still need be addressed.

As mentioned in the introduction, a key issue concerns
the strain-induced splitting between the SC and the TRS
breaking transitions. It has been found that x2 − y2

(B1g) shear strain can produce a significant increase in
Tc, with a small decrease in Ttrsb

16 - i.e. a split transition
- while hydrostatic pressure (which produces A1g strain)
can produce a pronounced depression of Tc but no de-
tectable splitting of the transition18. These observations
are trivially accounted for if one assumes that α3 has
a strong (albeit quadratic) dependence on shear strain
but only weakly dependent on isotropic strain while α0

depends on both components of the strain.

How stringent a condition this places on the isotropic
strain dependence of α3 depends on the magnitude and
character of the strain inhomogeneities - i.e. the width of
the SC transition. To the extent that we can ignore the
effect of xy (B2g) shear strain (i.e. for α1 ≈ 0), it follows
that so long as there are regions of d and regions of g wave
SC, there must be domain walls between them at which
TRS breaking can arise. Thus, a spilt transition will be
apparent only when the mean value of α3 is greater than
its variance.

The present considerations are encouraging in the
sense that they illustrate a plausible explanation of a set
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of previously puzzling experiments in SRO. However, it
is important to reiterate that this analysis sheds no in-
sight of what is probably the most vexing aspect of the
proposed scenario: why are these two symmetry distinct
forms of SC order nearly degenerate with one another
without need of any fine tuning?
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Therefore, we can write

(−i∂µ −Aµ)∆ = (∂µχ+ aµ −Aµ −Hµ) ∆ (20)

Hµ =
1

2
(n̂× ∂µn̂) · τ (21)

Using the (anti-)commutation relations of the Pauli ma-
trices, we can then efficiently derive the nonlinear sigma
model, e.g.,

∆†H2
µ∆ =

|∆|2
2

tr
[
H2
µ (τ0 + n̂ · τ )

]
(22)

= |∆|2
∣∣∣∣∂µn̂2

∣∣∣∣2 (23)

Similarly, we have

∆†Hµ∆ = 0 (24)

<
[
∆†Hxτ1Hy∆

]
= −n1

(
∂xn̂

2
· ∂yn̂

2

)
(25)

<
[
∆†Hµτ1∆

]
=

1

2
[n̂× ∂xn̂]1 (26)

B. General ground state

Here, we present the exact solution of the ground state
of the general Ginzburg-Landau free energy in the pres-
ence of a uniform strain vector α. To provide a more
intuitive picture of the general ground state, this section
first treats the less restrictive case where β1 6= β3 but
β′3 = 0. We then present the ground state in full gener-
ality.

It should be noted, however, that the uniform ground
state does not depend on the kinetic terms K and thus
we can always renormalize D,G so that β′3 = 0.

1. β1 6= β3 and β′3 = 0

In the case where β1 6= β3 are positive and β′3 = 0, the
potential term of the Ginzburg-Landau free energy can
be rewritten as

V2 = −|∆|2(α0 + α1n1 + α3n3) (27)

V4 =
1

2
|∆|4(1 + β1[n1]2 + β3[n3]2) (28)

Where n̂ is the Bloch vector corresponding to the OP ∆.
It’s then clear that the potential V is a strongly joint-
convex function of |∆|2, |∆|2n3 and |∆|2n1. Therefore,
convex optimization guarantees that the ground state of
the uniform system is unique and given by

|∆|2 = α0, ni =
αi
βiα0

(29)

Provided that [n1]2 + [n3]2 ≤ 1. Conversely, in the case
where the above solution is not feasible, i.e., [n1]2 +

[n3]2 > 1, the unique ground state is given by

|∆|2 =
α0

1− λ (30)

|∆|2ni =
αi

βi + λ
(31)

Where λ ∈ [0, 1) is chosen so that [n1]2 + [n3]2 = 1.
In particular, the ground state corresponds to a Bloch
vector n̂ which is in the ê1-ê3 plane and thus does not
break TRS.

2. Full generality: V is stable and superconducting

In full generality, we still require that the Ginzburg-
Landau energy is stable, i.e., the potential term V →∞
in the limit where |∆| → ∞. This corresponds to the
condition

4β3 − β′23 > 0 (32)

Similarly, we are only concerned with nontrivial super-
conducting ground states, which corresponds to the con-
dition

2α0β3 − α3β
′
3 > 0 (33)

Therefore, our general ground state solution is subject
to the 2 conditions above. The potential term of the
Ginzburg-Landau free energy can be rewritten as

V2 = −|∆|2(α0 + α1n1 + α3n3) (34)

V4 =
1

2
|∆|4(1 + β1[n1]2 + β3[n3]2 + β′3n3) (35)

By our stability condition (32), the potential term V is
a strongly joint-convex function in terms of |∆|2, |∆|2n1

and |∆|2n3. Therefore, convex optimization guarantees
that the ground state of the uniform system is unique
and given by

|∆|2 = 2× 2α0β3 − α3β
′
3

4β3 − β′23
> 0 (36)

|∆|2n3 = 2× 2α3 − β′3α0

4β3 − β′23
(37)

|∆|2n1 =
α1

β1
(38)

Provided that [n1]2 + [n3]2 ≤ 1. Conversely, in the case
where the above solution is not feasible, i.e., [n1]2 +
[n3]2 > 1, the unique ground state is given by

|∆|2 =
2

4(β3 + λ)− β′23
(39)

×
[
2(β3 + λ)α0 − α3β

′2
3 + 4α3

(β3 + λ)λ

β′3

]
|∆|2n3 = 2× 2(1− λ)α3 − β′3α0

4(β3 + λ)− β′23
(40)

|∆|2n1 =
α1

β1 + λ
(41)
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Where λ ≥ 0 is chosen so that [n1]2 + [n3]2 = 1. In par-
ticular, the ground state corresponds to a Bloch vector
n̂ which is in the ê1-ê3 plane and thus does not break
TRS.

C. Narrow Domain Wall Calculations

In this section, we present detailed calculations of a
narrow domain wall between the transition of the TRS
states d − g → d + g. To be more concrete, let us
consider the case where α3(y) =

¯
α3 is constant, while

α1(y) =
¯
α1 sign(y) changes sign as y = −∞→ +∞. The

quartic terms are set to β1 = β3 = β > 0, β′3 = 0 as
before and the strain vector magnitude satisfies

¯
α ≥ βα0

so that the uniform ground state at y → ±∞ is denoted
by a Bloch vector n̂ pointing in the same direction as
the strain vector

¯
α and that the magnitude |∆|2 = α0.

Without loss of generality, we shall also assume that

¯
α1,

¯
α3 > 0 so that the angle ψ of the strain vector

¯
α ≡

¯
α(sinψ, 0, cosψ) satisfies 0 < ψ < π/2 as shown

in Fig. (2).

We then calculate the domain wall energy ∆F of pos-
sible transition paths as illustrated by the dashed blue
and solid green lines in Fig. (2) where the magnitude
|∆|2 of the OP ∆ is assumed to be constant and = α0.
In particular, the blue arrow represents a TRS preserving
transition, while the green arrow denotes a TRSB tran-
sition restricted to a 2D plane at angle ω with respect to
the ê3-axis.

1. TRS preserving transition

We shall first consider a TRS preserving transition as
described by the dashed blue path in Fig. (2). Notice
that we implicitly assumed that ψ < π/2. If on the other
hand, ψ > π/2, then we would consider the complement
path wrapping from underneath the Bloch sphere. Since
the transition preserves TRS so that the Bloch vector is
in the ê1-ê3 plane, we can restrict the azimuthal angle
φ ≡ 0 for y ≥ 0 and φ ≡ π for y < 0. Therefore, we
can rewrite the Ginzburg-Landau free energy in terms of
polar angle θ and average phase χ, i.e., if y ≥ 0 so that
θ ≥ 0, then

F = V2 + V4 +K (42)

V2 = −|∆|2(α0 +
¯
α cos (θ − ψ)) (43)

V4 = +
1

2
|∆|4(1 + β) (44)

K =
κ

2
|∆|2

χ̇2 +

(
θ̇

2

)2
 (45)

It’s then clear that χ = const and that

κ

2

θ̈

2
=

¯
α sin(θ − ψ) (46)

θ̇2 +
8
¯
α

κ
cos(θ − ψ) = const (47)

Using the boundary conditions θ → ψ and θ̇ → 0 as
y →∞ and that θ = 0 at y = 0, we see that

θ̇2 =
8
¯
α

κ
(1− cos(θ − ψ)) (48)

θ̇

2
= −

√
4
¯
α

κ
sin

(
θ − ψ

2

)
(49)

θ = ψ − 4 arctan

(
tan

(
ψ

4

)
e−y/ξ

)
(50)

Where ξ =
√
κ/4

¯
α is the characteristic length of the

domain wall. We can similar solve for the transition in
the case where y ≤ 0 so that in general,

θ =

[
ψ − 4 arctan

(
tan

(
ψ

4

)
e−|y|/ξ

)]
(51)

φ =
π

2
(1− sign y) (52)

We can then calculate the domain wall energy ∆F =
F−F0 for y ≥ 0 where F0 = F [ψ] is the Ginzburg-Landau
free energy of the uniform ground state, i.e.,

∆Ftrs =

∫ +∞

0

[F [χ, θ, φ]− F0]dy (53)

= κα0

∫ +∞

0

(
θ̇

2

)2

dy (54)

=
κα0

ξ

∫ ψ

0

− sin

(
θ − ψ

2

)
dθ

2
(55)

=
2κα0

ξ
sin2

(
ψ

4

)
(56)

2. TRSB transition

Let us now consider the special TRSB transition as
described by the path with ω = π/2 in Fig. (2), so
that the polar angle θ of the Bloch vector n̂ remains
constants and = ψ < π/2, while the azimuthal angle φ
twists π → 0. Therefore, we can rewrite the Ginzburg-
Landau free energy in terms of azimuthal angle φ and
average phase χ, i.e., if y ≥ 0 so that 0 ≤ φ ≤ π/2, then

F = V2 + V4 +K (57)

V2 = −|∆|2(α0 + α1 sinψ cosφ+ α3 cosψ) (58)

V4 = +
1

2
|∆|4(1 + β(1− sin2 ψ sin2 φ)) (59)

K =
κ

2
|∆|2

χ̇2 +

(
φ̇

2

)2

− χ̇φ̇ cosψ

 (60)
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By the Euler-Lagrange equations, it’s then clear that if
the average phase χ satisfies the initial condition χ(y →
−∞) = 0, then

χ =
φ− π

2
cosψ (61)

In particular, the average phase χ changes by ∆χ =
−(π/2) cosψ as φ twists π → 0. We can similarly solve

for φ using the boundary condition φ̇, φ→ 0 as y → +∞
so that

κ

2

φ̈

2
= sinφ(

¯
α− βα0 cosφ) (62)

φ̇

2
= −1

ξ
sin

(
φ

2

)√
1− ε cos2

(
φ

2

)
(63)

Where ε = βα0/
¯
α and ξ =

√
κ/4

¯
α is the characteristic

length of the domain wall. Notice that by our ground
state discussion (9), the finite strain

¯
α satisfies ε ≤ 1 and

thus the square root is well-defined. We can then solve
the first order differential equation so that

φ = 2 arccos

(
1− η√

(1 + η)2 − 4ηε

)
(64)

Where

η = C exp

(
−y
√

1− ε
2ξ

)
(65)

π

2
= φ(η = C) (66)

We can then calculate the domain wall energy ∆F =
F−F0 for y ≥ 0 where F0 = F [ψ] is the Ginzburg-Landau
free energy of the uniform ground state, i.e.,

∆Ftrsb =

∫ +∞

0

[F [χ, θ, φ]− F0]dy (67)

= κα0 sin2 ψ

∫ +∞

0

(
φ̇

2

)2

dy (68)

=
κα0

ξ
sin2 ψ (69)

×
∫ π/2

0

sin

(
φ

2

)√
1− ε cos2

(
φ

2

)
dφ

2
(70)

This can be solved analytically if necessary with the sub-
stitution x = cos (φ/2). In particular, in the extreme
large strain limit

¯
α � βα0, the domain wall energy is

approximated by

∆F ≈ 2κα0

ξ
sin2 ψ sin2

(π
8

)
(71)

3. General TRSB transition

Let us finally consider a general TRSB transition as
described by the solid green path in Fig. (2). To sim-
plify the problem, we will only consider general TRSB

FIG. 8. General TRSB Domain Wall. The top figure is
the Bloch sphere representation of a general TRSB transi-
tion through the domain wall α1(y) =

¯
α1 sign(y). The arrow

representing the transition path is assumed to be in a plane
at angle ω with respect to the ê1-ê3 plane. The bottom figure
is the transition rotated of angle ω about the +x-axis in the
clockwise direction.

transitions which occur in a 2D plane as shown in Fig.
(8), where the transition plane is at an arbitrary angle
ω with respect to the vertical plane. If ω = 0, then the
transition corresponds to the TRS preserving transition
(dashed blue arrow), and if ω = π/2, then it corresponds
to the special TRSB transition. Since the Ginzburg-
Landau free energy has a global SU(2)-symmetry, we
can rotate the system about the +x-axis of angle ω in
the clockwise direction so that the transition occurs in a
plane parallel to xy-plane and thus can be parametrized
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in terms of azimuthal angle φ, while the polar angle θ
is held fixed, as shown in Fig. (8). This corresponds

to using the rotated order parameter ∆̃ = U∆ where
U ∈ SU(2) corresponds to the described rotation R. We
then rewrite the Ginzburg-Landau free energy so that if

˜
α = R

¯
α is the rotated strain vector and ϕ ≡ π/2− φ is

the azimuthal angle relative to the +y-axis, then

F = V2 + V4 +K (72)

V2 = −|∆|2(α0 +
¯
α cos2 θ) (73)

− |∆|2
¯
α sin2 θ cos (ϕ−$)

V4 = +
1

2
|∆|4(1 + β) (74)

− 1

2
|∆|4β

(
sin θ cos θ

cosψ

)2

(cosϕ− cos$)
2

K =
κ

2
|∆|2

[
χ̇2 +

(
ϕ̇

2

)2

+ χ̇ϕ̇ cos θ

]
(75)

Here θ is held fixed and φ transitions in a manner such
that

ϕ ≡ π

2
− φ = −$ → 0→ $ (76)

As y goes from −∞ → 0 → +∞, where θ,$ are de-
termined by the boundary condition

˜
α ∝ n̂(y → +∞),

i.e.,

sinψ = sin θ sin$ (77)

cosψ cosω = sin θ cos$ (78)

cosψ sinω = cos θ (79)

In particular, θ = π/2, $ = ψ for the TRS preserving
transition, and θ = ψ,$ = π/2 for the special TRSB
transition.

By the Euler-Lagrange equations, it’s then clear that
if the global phase χ satisfies the initial condition χ(y →
−∞) = 0, then

χ =
φ

2
cos θ − 1

2

(π
2

+$
)

cos θ (80)

Hence, the average phase χ changes by ∆χ = −$ cos θ
as y = −∞→∞. We can similarly solve for ϕ so that

ϕ̇

2
= −1

ξ
sin

(
ϕ−$

2

)
(81)

×
√

1− (ε sin2 ω) sin2

(
ϕ−$

2
+$

)
Where ε = βα0/

¯
α ≤ 1 and ξ =

√
κ/4

¯
α is the characteris-

tic length of the domain wall. It should be noted that the
equation can be solved analytically for arbitrary ε ≤ 1,
albeit in implicit form, i.e., f(ϕ) = y for some function
f . It should be noted that the explicit form ϕ = ϕ(y) is
not necessary to compute the domain wall energy ∆F .

Indeed, we have

∆F =

∫ +∞

0

[F [χ, θ, φ]− F0]dy (82)

= κα0 sin2 θ

∫ +∞

0

(
φ̇

2

)2

dy (83)

=
κα0

ξ
sin2 θ (84)

×
∫ $/2

0

sinx

√
1− (ε sin2 ω) sin2 ($ − x)dx

In the extreme large strain limit
¯
α � βα0, the domain

wall energy is approximated by

∆F ≈ 2κα0

ξ
sin2 θ sin2

($
4

)
(85)

D. Full self-consistent equations

In this section, we derive the full self-consistency field
equations (SCFs) for the full Hamiltonian Hfull = H0 +
H1 defined in Eq. (12), (13). Let us first write the cor-
responding BCS Hamiltonian H as

H =
∑
~r ′,~r ,s

T (~r ′, ~r )c†~r ′sc~rs (86)

+
∑
~r ′,~r

(∆~r ′,~r c
†
~r ′↑c

†
~r↓ + h.c.) (87)

=
[
c†↑ c↓

]
Ĥ

[
c↑
c†↓

]
, Ĥ =

[
T ∆
∆† −T̄

]
(88)

To simplify notation, let us introduce the notation 1~r =
|~r 〉〈~r | for the projection operator and the 1-particle den-
sity matrices (1-pdms)45 of the BCS Hamiltonian H,
i.e.,

γ(~r ′, ~r ) = 〈c†~r↑c~r ′↑〉 = 〈c†~r↓c~r ′↓〉 (89)

α(~r ′, ~r ) = 〈c~r↓c~r ′↑〉 = −〈c~r↑c~r ′↓〉 (90)

The Hartree-Fock energy 〈Hfull〉 = 〈H0〉+ 〈H1〉 can then
be computed via Wick’s theorem so that

〈H0〉 = 2 tr(T γ) (91)

〈H1〉 = −2
∑
τ=d,g

λτ
∑
~r

tr
(
2fτα

†1~rαf
†
τ 1~r (92)

+ f†τ γ1~r γfτ1~r + γ1~r f
†
τ γfτ1~r

)
The self-consistency field equations (SCFs) can then
be derived from extremizing the variational free energy
δF ≡ δ〈Hfull〉 − TδSH = 0 and written in operator form

T = t−
∑
τ=d,g

λτ
∑
~r∈Λ

(
(fτ1~r f

†
τ γ1~r + h.c.) (93)

+1~r f
†
τ γfτ1~r + fτ1~r γ1~r f

†
τ

)
∆ = −2

∑
τ=d,g

λτ
∑
~r

(fτ1~rαf
†
τ 1~r + tr) (94)
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Where tr implies the transpose term = 1~r f
†
τα1~r fτ =

1~rαf
†
τ 1~r fτ , and we used the fact that α, fτ are sym-

metric, i.e., αT = α, fTτ = fτ . The proposed format
of writing the SCFs in operator form has the advantage
of working in any basis set, and in particular, we can

work in real space |~r 〉 or momentum space |~k〉. This will
simplify our algebra later on. The corresponding BdG
equations can similarly be written as

γ = unEu
† + v̄(1− nE)vT (95)

α = −1

2

(
u tanh

(
βE

2

)
v† + transpose

)
(96)

where nE is the diagonal matrix with entries of the Fermi
distribution nE = (eβE + 1)−1 and u, v are chosen so
that the following unitary matrix W diagonalizes the first
quantized Hamiltonian Ĥ, i.e.,

Ĥ = W

[
E 0
0 −E

]
W †, W =

[
u −v̄
v ū

]
(97)

Notice that the BdG equations (95) can also be written
in the more compact form45

Γ = W

[
nE 0
0 1− nE

]
W † (98)

Where

Γ =

[
γ α
α† 1− γ̄

]
=

1

eβĤ + 1
(99)

1. Uniform system in momentum space

The full SCFs can be further simplified in a uniform
system, so that the 1-pdms γ, α (89), hopping matrix

t and form factors fτ are diagonalized in ~k-space. In
particular,

γ(~k) = 〈c†~k↑c~k↑〉 = 〈c†~k↓c~k↓〉 (100)

α(~k) = 〈c−~k↓c~k↑〉 = −〈c~k↑c−~k↓〉 (101)

In this case, the SCFs (93) are reduced to

T (~k) = t(~k)−
∑
τ=d,g

λτ

(
fτ (~k)JfτγK + h.c) (102)

+ Jγ|fτ |2K + |fτ (~k)|2JγK
)

∆(~k) = −4
∑
τ=d,g

λτfτ (~k)Jαf†τ K (103)

Where we use the notation J· · ·K as the average value

summed over ~k-space, i.e.,

JhK =

∫
(−π,π]2

d2~k

(2π)2
h(~k) (104)

Notice that the specific form of our ∆-function (102),

i.e., ∆(~k) = Dfd(~k)+Gfg(~k) for complex constants D,G
implies that the SCFs indeed yield a two-component OP
theory. Similarly, the BdG equations are reduced to

γ(~k) =
1

2

(
1 +
T (~k)

E(~k)

)
n(~k) (105)

+
1

2

(
1− T (~k)

E(~k)

)(
1− n(~k)

)
α(~k) = − ∆(~k)

2E(~k)
tanh

(
βE(~k)

2

)
(106)

Where n(~k) = (eβE(~k) + 1)−1 is the Fermi distribution of
the Bogoliubov quasi-particles with dispersion relation

E(~k) =

√
T (~k)2 + |∆(~k)|2 (107)

E. ∇ · J = 0 in BCS theory

Let H[ψ] denote the BCS Hamiltonian with parame-
ters ψ = (ξ,∆). Let the particular choice of parameter ϕ
be such that H[ϕ] satisifes the full self-consistency equa-
tions with respect to the full Hamiltonian Hfull, i.e.,

∂

∂ψ

∣∣∣∣
ψ=ϕ

〈Hfull〉ψ =
1

β

∂

∂ψ

∣∣∣∣
ψ=ϕ

S[ψ]) (108)

Where S[ψ] is the von-Neumann entropy of H[ψ] defined
by S = − tr (ρ log ρ) where ρ is the Gibbs distribution
of the BCS Hamiltonian H[ψ], and 〈· · ·〉ψ is the ther-
mal average at temperature T with respect to the BCS
Hamiltonian H[ψ].

We shall subsequently show that at any temperature
and every lattice site ~r , the charge density ρ(~r ) is con-
stant in BCS theory, i.e.,

∂ρ(~r )

∂t

∣∣∣∣
t=0

= 0 (109)

As a corollary, we can apply the continuity equation
∂tρ(~r ) = ∇ · J(~r ) ≡∑~r ′ J(~r ′, ~r ) to obtain

〈∇ · J(~r )〉ϕ ≡
∑
~r ′∈Λ

〈J(~r ′, ~r )〉ϕ = 0 (110)

Indeed, let us introduce the notation for gauge trans-
formation at lattice site ~r , i.e., if M is an operator, e.g.,
the full Hamiltonian Hfull or the BCS Hamiltonian H[ψ],
then define

M(s) = eisρ(~r )Ae−isρ(~r ), s ∈ R (111)

In this case, notice that

H[ϕ](s) = H[ϕ(s)] (112)
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where ϕ(s) denote the parameters

T (~r ′′, ~r ′)(s) = T (~r ′′, ~r ′)eis(δ(~r
′′,~r )−δ(~r ′,~r )) (113)

∆(~r ′′, ~r ′)(s) = ∆(~r ′′, ~r ′)eis(δ(~r
′′,~r )+δ(~r ′,~r )) (114)

Also notice that the BCS partition function Z[ϕ(s)] is
independent of s since the trace is invariant under unitary
gauge transforms and thus〈

∂Hfull(s)

∂s

〉
ϕs

=
1

Zϕ
tr

(
e−βH[ϕs] ∂Hfull(s)

∂s

)
(115)

= +
1

Zϕ

∂

∂s
tr
(
e−βH[ϕs]Hfull(s)

)
(116)

− 1

Zϕ
tr

(
Hfull(s)

∂

∂s
e−βH[ϕs]

)
(117)

The first term is = 0 since the trace is invariant under
unitary transforms. Setting s = 0, we see that

−
〈
∂Hfull(s)

∂s

∣∣∣∣
s=0

〉
ϕ

=
1

Zϕ
tr

(
Hfull

∂

∂s

∣∣∣∣
s=0

e−βH[ϕs]

)
(118)

=
∂

∂s

∣∣∣∣
s=0

1

Zϕ
tr
(
Hfulle

−βH[ϕs]
)

(119)

=
∂

∂s

∣∣∣∣
s=0

〈Hfull〉ϕs (120)

=
∂ϕs
∂s

∣∣∣∣
s=0

∂

∂ψ

∣∣∣∣
ψ=ϕ

〈Hfull〉ψ (121)

=
1

β

∂ϕs
∂s

∣∣∣∣
s=0

∂

∂ψ

∣∣∣∣
ψ=ϕ

S[ψ] (122)

=
1

β

∂

∂s

∣∣∣∣
s=0

S[ϕs] (123)

Notice that S[ϕs] is independent of s since the trace is
invariant under unitary gauge transforms. Hence, the
right-hand-side is = 0 and thus we arrive at the statement

〈
∂ρ(~r )

∂t

∣∣∣∣
t=0

〉
ϕ

= −
〈
∂Hfull(s)

∂s

∣∣∣∣
s=0

〉
ϕ

= 0 (124)
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