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Abstract 
Polar chiral structures have recently attracted much interest within the scientific community, as they pave 

the way towards innovative device concepts similar to the developments achieved in nanomagnetism. 

Despite the growing interest, many fundamental questions related to the mechanisms controlling the 

appearance and stability of ferroelectric topological structures remain open. In this context, ferroelectric 

nanoparticles provide a flexible playground for such investigations. Here, we present a theoretical study 

of ferroelectric polar textures in a cylindrical core-shell nanoparticle. The calculations reveal a chiral 

polarization structure containing two oppositely oriented diffuse axial domains located near the cylinder 

ends, separated by a region with a zero-axial polarization. We name this polarization configuration 

“flexon” to underline the flexoelectric nature of its axial polarization. Analytical calculations and 

numerical simulation results show that the flexon’s chirality can be switched by reversing the sign of the 

flexoelectric coefficient. Furthermore, the anisotropy of the flexoelectric coupling is found to critically 

influence the polarization texture and domain morphology. The flexon rounded shape, combined with its 

distinct chiral properties and the localization nature near the surface, are reminiscent of Chiral Bobber 

structures in magnetism. In the azimuthal plane, the flexon displays the polarization state of a vortex with 

an axially polarized core region, i.e., a meron. The flexoelectric effect, which couples the electric 
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polarization and elastic strain gradients, plays a determining role in the stabilization of these chiral states. 

We discuss similarities between this interaction and the recently predicted ferroelectric Dyzaloshinskii-

Moriya interaction leading to chiral polarization states. 

 

I. INTRODUCTION 

Research on ferroelectric materials has received growing interest over the past years, driven in 

part by the potential of these material systems for low-power technological applications in a 

broad spectrum of domains [1, 2], ranging from high-density data storage to optical nano-

devices. A central aspect of this field of research is the formation of ferroelectric domain 

structures [3], and more generally the micro- and nanoscale structure of the polarization field [4]. 

Traditionally, research on ferroelectrics is centered on the study of bulk materials and thin films 

[5, 6, 7], but recently ferroelectric nanoparticles have also attracted increasing interest [8, 9, 10, 

11, 12, 13, 14]. In ferroelectric thin films and nanoparticles, the polarization structure is strongly 

affected by electrostatic (depolarizing) fields [15, 16, 17, 18], as well as by strain and strain 

gradients [19, 20, 21, 22] via the flexoelectric effect [23, 24, 25, 26].  

Although the foundations for the theoretical description of ferroelectrics have been 

established decades ago [27], understanding the complex physical properties of these material 

systems remains a challenge for fundamental research. Recent progress in this field, achieved to 

a large extent through advanced imaging techniques [28] and by employing modern numerical 

simulations [29], includes the discovery of highly complex polarization structures, such as flux 

closure [5, 30] and bubble domains [31], meandering [32, 33] and/or labyrinthine [11, 34] 

structures, non-Ising type chiral domain walls [35], polarization vortices in thin layers [36, 37, 

38], nanodots [39] or nanopillars [40], or polar skyrmions [41, 42].  

While skyrmions and other chiral structures have dominated the past decade of research 

in magnetism [43], these topological states have received less attention by the ferroelectric 

community. Only recently a strong interest has emerged in chiral polarization structures, which 

can be attributed to the observation of skyrmion states in ferroelectrics [41-42]. However, the 

theoretical understanding of these structures is not as advanced as it is in the case of their 

magnetic counterparts, and the mechanism that underpins the formation of skyrmions in 

ferroelectrics is not fully understood. The fundamental interaction stabilizing the magnetic 

version of these structures in chiral ferromagnets [44, 45] is the Dzyaloshinky-Moriya Interaction 

(DMI). The DMI favors the formation of helical structures with a well-defined handedness as 

they occur, e.g., along the radial direction of skyrmions. As scientists working on ferroelectrics 

hope to replicate the success that chiral structures have witnessed in magnetism, the possibility 
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of a “ferroelectric DMI” has recently been discussed [46]. However, Erb and Hlinka [47] showed 

that only very few exotic ferroelectrics could theoretically sustain an intrinsic DMI-type 

interaction since it requires particular symmetry properties of the crystal lattice. Here we discuss 

the flexoelectric coupling as an alternative mechanism that can generate chiral polarization states 

in ferroelectrics. 

The thermodynamic description of the flexoelectric effect is given by the Lifshitz 

invariant in the free energy expansion [22]. It is known that, in magnetic materials, the 

occurrence of similar Lifshitz invariants converts directly into an antisymmetric coupling known 

as the DMI [48, 49], which favors the formation of helicoidal structures with a specific chirality. 

The existence of a ferroelectric counterpart of the DMI was recently predicted by first-principles 

simulations [46]. The ferroelectric analogue of the DMI was discussed in the context of Lifshitz 

invariants by Strukov and Levanyuk [50], and more recently by Erb and Hlinka [47], who argued 

that a ferroelectric DMI can exist. In addition to the remarkable similarity in the mathematical 

form of the flexoelectric Lifshitz invariant and DMI, the flexoelectric term appears to have a 

similar impact as the DMI in terms of the formation of chiral structures.  

By means of the finite element modeling (FEM) based on the Landau-Ginzburg-

Devonshire (LGD) theory, this paper shows that an anisotropic flexoelectric effect can give rise 

to a previously unexplored type of polarization state with distinct chiral properties. Remarkably, 

these homochiral properties are not induced by a DMI term. This finding suggests that the 

recently discussed DMI in ferroelectrics is not the only possible mechanism for the formation of 

homochiral polarization states, and that anisotropic flexoelectric effects offer an alternative 

pathway to stabilize such structures in ferroelectric nanostructures. We discuss common aspects 

of the DMI and the flexoelectric effect, which are both derived from Lifshitz invariants in the 

framework of the Landau theory of second-order phase transitions [22].  

 

II. CONSIDERED PROBLEM AND MATERIAL PARAMETERS 

Using a LGD phenomenological approach along with electrostatic equations and 

elasticity theory, we model the polarization, the internal electric field, and the elastic stresses and 

strains in a core-shell nanoparticle using FEM, where the ferroelectric core is made of BaTiO3 

and has a cylindrical shape. The aspect ratio of the nanocylinder radius 𝑅 to its length ℎ is 

significantly higher than unity. The z-axis is parallel to the cylinder axis (Fig. 1). The shell is an 

elastically soft paraelectric or high-k semiconductor with a thickness ∆𝑅 ≪ 𝑅 and screening 

length Λ ≥ 1 nm. The coverage can be artificial (e.g., a soft organic semiconductor or vacancy-

enriched SrTiO3) or natural, and in the latter case it would originate from the polarization 
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screening by surrounding media. The core-shell nanoparticle is placed in a very soft elastic 

medium. 

 
FIGURE 1. A cylindrical ferroelectric nanoparticle (core) of radius 𝑅, covered with an elastically soft 

semiconducting shell with a thickness ∆𝑅 ≪ 𝑅 and screening length Λ of 1 nm, placed in an isotropic 

elastically soft effective medium. The direction of axial polarization 𝑃! is shown by the straight orange 

arrow, and lateral components 𝑃",$ are shown by the curled red-blue arrow to highlight their vortex-type 

structure. 

 

The LGD free energy functional G of the nanoparticle core includes a Landau energy – 

an expansion on powers of 2-4-6 of the polarization (𝑃!), 𝐺"#$%#&; a polarization gradient energy, 

𝐺'(#%; an electrostatic energy, 𝐺)*; an elastic, electrostriction contribution 𝐺)+, a flexoelectric 

contribution, 𝐺,*)-.; and a surface energy, 𝐺/. It has the form [51]: 

𝐺 = 𝐺"#$%#& + 𝐺'(#% + 𝐺)* + 𝐺,*)-. + 𝐺,*)-. + 𝐺/,                             (1a) 

𝐺"#$%#& = ∫ 𝑑0𝑟12 .𝑎!𝑃!3 + 𝑎!4𝑃!3𝑃43 + 𝑎!45𝑃!3𝑃43𝑃530,                           (1b) 

𝐺'(#% = ∫ 𝑑0𝑟12
'!"#$
3

67!
6-"

67#
6-$

,                                           (1c) 

𝐺)* = −∫ 𝑑0𝑟12 2𝑃!𝐸! +
8%8&
3
𝐸!𝐸!4,                                          (1d) 

𝐺)+ = −∫ 𝑑0𝑟12 2+!"#$
3
𝜎!4𝜎5* + 𝑄!45*𝜎!4𝑃5𝑃*4,                          (1e) 

𝐺,*)-. = −∫ 𝑑0𝑟12
9!"#$
3
2𝜎!4

67#
6-$

− 𝑃5
6:!"
6-$
4,                              (1f) 

𝐺/ =
;
3∫ 𝑑

3𝑟/ 𝑎!4
(/)	𝑃!𝑃4 .                                                           (1g) 

Here 𝑉>  is the core volume. The coefficient 𝑎! linearly depends on temperature T, 𝑎!(𝑇) =

𝛼?[𝑇 − 𝑇>], where 𝛼? is the inverse Curie-Weiss constant and 𝑇>  is the ferroelectric Curie 

temperature renormalized by surface tension/intrinsic surface stresses [52, 53, 54] and surface 
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bond contraction [55, 56]. Tensor components 𝑎!4 are regarded as temperature-independent. The 

tensor 𝑎!4 is positively defined if the ferroelectric material undergoes a second order transition 

to the paraelectric phase and negative otherwise. The higher nonlinear tensor 𝑎!45 and the 

gradient coefficients tensor 𝑔!45* are positively defined and regarded as temperature-

independent. In Eq.(1e), 𝜎!4 is the stress tensor, 𝑠!45* is the elastic compliances tensor, and 𝑄!45* 

is the electrostriction tensor. In the Lifshitz invariant, Eq.(1f), 𝐹!45* is the flexoelectric tensor.  

Landau-Khalatnikov equations [57, 58] obtained from a variation of the free energy (1), 

mathematical formulation of the electrostatic and elastic sub-problem (see e.g. [59]), initial and 

boundary conditions (see e.g. [60, 61, 62]), sensitivity to the shape of the cylinder ends, 

polarization gradient coefficients, shell dielectric permittivity and semiconducting properties, 

and other details of FEM are given in Appendix A of Suppl. Mat. [63]. The ferroelectric, 

dielectric, and elastic properties of the BaTiO3 core are collected from Refs. [64, 65, 66, 67, 68 

and 69] and given in Table SI.  

 

III. RESULTS OF FINITE ELEMENT MODELING 

A. FEM Results at Room Temperature 

Images in Figs. 2a and 3a are calculated without electrostriction (𝑄!4 = 0) and 

flexoelectric (𝐹!4 = 0) couplings between the electric polarization and elastic stresses. For the 

case a very prolate dipolar kernel oriented along z-axis appears inside the cylindrical core. The 

kernel has relatively thin 180-degree domain walls, which are mostly uncharged because they 

are parallel to the kernel axis and cylinder lateral surface. The bound charges appear at the walls 

only in a small spatial region near the kernel that is contact with the cylinder ends, where the 

180-degree walls become counter head-to-head walls. The axial polarization 𝑃0 inside the kernel 

is high, 𝑃0~ − (20 − 25)	µC/cm2 (this is very close to the bulk polarization of BaTiO3 

~26	µC/cm2), and the surrounding core has relatively small axial polarization of the opposite 

sign, 𝑃0~(0 − 5)	µC/cm2. The lateral components of polarization, 𝑃; and 𝑃3, form a two-

dimensional (2D) vortex without a central empty core, because a dipolar kernel evolves instead 

(Fig. S4 [63]). The two symmetrical Bloch points with 𝑷 = 0 are located at the junction of the 

dipolar kernel with the cylinder ends. The “up” or “down” orientation of polarization component 

𝑃0 inside the kernel is determined by random noise in the initial conditions.  

Images in Figs. 2b-d and 3b-e are calculated for a nonzero electrostriction coupling (𝑄!4 ≠

0) and either negative, zero, or positive values of the flexoelectric coefficients 𝐹!4. In the presence 

of electrostriction coupling the dipolar kernel disappears completely (Figs. 2c and 3c). The 
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flexoelectric effect induces an axial component of polarization consisting of two oppositely 

oriented diffuse 𝑃0-domains located near the cylinder ends and separated by a region with 𝑃0 ≈

0 (Figs. 2b, 2d and 3b, 3d).  

 

FIGURE 2. Distribution of the polarization component 𝑃! (the top row) inside a cylindrical nanoparticle 

and a magnified view on the flexon structure (the bottom row). The arrows show the orientation of 

polarization vector 𝑷. The images are calculated without electrostriction (𝑄%& = 0) and flexoelectric 

(𝐹%& = 0) couplings (a); with electrostriction coupling (𝑄%& ≠ 0) and negative (b), or zero (c), or positive 

(d) values of flexoelectric coefficients 𝐹%&. The values of 𝐹%& and all other parameters are given in Table 

SI, 𝑇 = 300 K. Note the different scales for 𝑃!-distributions in plots (a)-(d) in order to maintain a contrast 

between the different regions. 

 

The diffuseness of the 𝑃0-domain walls is dictated by the need to decrease the 

depolarization field produced by the bound charges of the head-to-head domain walls. The 𝑃0-

domains are located near the cylinder ends, and their length (about 10 nm) and lateral size (about 

5 nm) are almost independent on the cylinder length if ℎ ≫ 5 nm. The component 𝑃0 is very 

small (|𝑃0| ≤ 0.4	µC/cm2), but it increases up to 1.2 µC/cm2 with the flexoelectric coupling 

increase (Figs. 3e) and then saturates (Figs. 3f). The axial 𝑃0-domains, which have opposite 
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direction of polarization, change their direction under the transformation 𝐹!4 → −𝐹!4 (compare 

the position of red and blue diffuse spots of the 𝑃0 distributions in Fig. 3b and 3d), while the 

distribution of the lateral components 𝑃;,3 and the polarization magnitude 𝑃 are virtually 

independent of the 𝐹!4 sign and magnitude (Figs. S4-5 [63]).  

The maximal (𝑃A#-) and minimal (𝑃A!$) values of 𝑃0 are shown by the red and blue 

curves in Fig. 3f. The values 𝑃A#- and 𝑃A!$ are even functions of the flexoelectric coupling 

strength 𝑓, where 𝐹!4 = 𝑓𝐹!4B  and the reference values of 𝐹!4B  are given in Table SI. The extremal 

(maximal or minimal) value 𝑃) in the center of the diffuse axial P3-domain is an odd function of 

𝑓, which is zero at 𝐹!4 = 0 (the green curve in Fig. 3f). Note that the 𝑃) value frequently differs 

from 𝑃A#- and 𝑃A!$ values due to the presence of the small sixteen 𝑃0-domains localized near 

the top and bottom junction of the sidewall with the cylinder ends (bottom row in Fig. S5 [63]).  

For the remainder of the paper, we refer to the localized polarization structure near the 

wire ends as a “flexon” for the sake of brevity and to underline the flexoelectric nature of its 

axial polarization. The main effect of a change of sign in the flexoelectric coefficients is the 

reorientation of the flexon axial polarization. The polarization structures at the wire ends shown 

in Fig. 2b-2d and Fig. 3b-2d display localized chiral structures with different chirality on 

opposite ends of the wire, and their chirality changes upon reversal of the sign of the flexoelectric 

coupling constant.  

To understand the chirality change, we derived in Appendix E [63] an approximate 

analytical expression for the polarization distribution inside the flexon: 

𝑃;(𝜌, 𝜑, 𝑧) ≈ 𝑝(𝜌, 𝑧)sin𝜑,      𝑃3(𝜌, 𝜑, 𝑧) ≈ −𝑝(𝜌, 𝑧)cos𝜑,                          (2a) 

𝑃0(𝜌, 𝜑, 𝑧) ≈
'((
)((

C(D,E)[&*+(D,G,E)HIJGK&,+(D,G,E)LMHG]K
-**.-((.-*,

)**.)*,
/
/0&++(D,G,E)

3O#*K
'**1,'*,
)**1,)*,

C,(D,E)K'**.'*,)**.)*,
&++PO'**P(9**K9((K9*,)

-**.-*,
)**.)*,

Q"2
3P'(("2

4Q
,        (2b) 

where {𝜌, 𝜑, 𝑧} are cylindrical coordinates, the function 𝑝(𝜌, 𝑧)~tanh ` D
"2
4a, 𝐿>-  and 𝐿>E  are lateral 

and axial correlation lengths. The functions 𝑢!4(𝜌, 𝜑, 𝑧) are elastic strains, 𝑠!4 are elastic 

compliances; 𝑄!4 are electrostriction tensor components, 𝑔!4 are polarization gradient 

coefficients written in Voigt notations. The first term in Eq.(2b) is induced by the electrostriction 

coupling, and the second term, proportional to 9**K9((K9*,
+**K+*,

6
6R
𝑢00(𝜌, 𝜑, 𝑧), is the flexon. 

In order to quantify the chirality of the polarization structure and its variation along the 

cylinder axis, in Appendix F [63] we calculate the topological index 𝑛 = ;
ST ∫ �⃗� f

6C⃗
6-
× 6C⃗

6V
h 𝑑𝑥𝑑𝑦/  
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[70] of the unit polarization orientation �⃗� = 7W⃗

7
 for the integration over the cylinder cross-section 

{𝑥, 𝑦}. For the case of 𝑃0(𝜌 = 𝑅, 𝑧) → 0, z-dependence of the topological index is  

𝑛(𝑧) = − 7+(DXB,E)
37(DXB,E)

≅ − HIYJ[,]E
3Z;P(E, [⁄ )

.                                      (3) 

Here sign[𝑓] is the sign of the flexoelectric coefficients 𝐹!4, 𝐵 is a positive constant, which 

depends on the absolute value of n𝐹!4n. 𝑛(𝑧) is a normalized profile of 𝑃0(𝜌 = 0, 𝑧), and so 

𝑛(𝑧) = 0 for 𝐹!4 = 0, and its sign is defined by the sign of 𝐹!4. The dependence 𝑛(𝑧) is shown 

in Fig. 3g and Fig. S10a for zero, positive, and negative 𝐹!4. Since the value 𝑃(0, 𝑧) is very close 

to the 𝑃0(0, 𝑧) near the cylinder ends (Fig. S10a and S10b), and 𝑃0(0, 𝑧) vanishes in the central 

part of a nanoparticle, the topological index continuously changes from -½ to +½ with a z-

coordinate change from one cylinder end to the other. The result clearly shows the localization 

of the chiral structures – the flexons – at the ends of the wires. The topological index, which can 

be interpreted as the degree to which a structure is chiral, changes sign from one end to the other, 

and changes sign upon reversal of the sign of 𝐹!4. It also increases in magnitude with increasing 

absolute value of n𝐹!4n. These properties are evidence of an obvious correlation between the 

flexoelectric effect and the formation of chiral polarization structures. 

The revealed type of isolated chiral polarization structures, i.e., flexons, display 

topological features of a three-dimensional meron. In this sense, the polarization vortex in the 

XY-plane can be interpreted as the Bloch-like transition region of a meron connecting 

polarization directions of opposite P3 sign in the core region and in the outer cylindrical shell 

(Fig. 2). The flexon polarization 𝑃o⃗  develops a characteristic drop-shape with a chiral structure 

localized near the surfaces of the cylinder that is reminiscent of the chiral-bobber state found in 

non-centrosymmetric magnetic films [71] and nanoparticles [72]. It is worth noting that similar, 

skyrmion-like configurations at the ends of cylindrical nanowires have also been predicted 

analytically [73] and numerically [74] in the case of non-chiral ferromagnetic materials, but only 

in the form of transient configurations appearing during the dynamic magnetization reversal 

process. Here, the skyrmion-like polarization structures appear as stable states in the 

ferroelectrics, owing to a chiral-symmetry breaking effect of the flexoelectric coupling. In 

contrast to previous findings [75, 76, 77], the flexon structure is chiral [78] and almost uncharged 

because 𝑑𝑖𝑣𝑃o⃗ ≅ 0 (Fig. S9b [63]).  
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FIGURE 3. Distribution of the polarization component 𝑃! (the top row) in the XZ cross-section of the 

nanoparticle. Images are calculated without electrostriction (𝑄%& = 0) and flexoelectric (𝐹%& = 0) coupling 

(a); with electrostriction coupling (𝑄%& ≠ 0) and negative (b), zero (c), positive (d), or high positive (e) 

values of flexoelectric coefficients 𝐹%&. The bottom part (f) is the dependence of the maximal (red curve, 

𝑃'()) and minimal (blue curve, 𝑃'%*) values of 𝑃! on the relative amplitude of the flexoelectric coupling 

strength 𝑓. The green curve is the extremal (maximal or minimal) value 𝑃+ in the center of the top axial 

𝑃!-domain. Here 𝐹%& = 𝑓𝐹%&, , the values of 𝐹%&,  and all other parameters are given in Table SI, 𝑇 = 300 

K. The Z-profile of the polarization topological index 𝑛(𝑧) is shown in the inset (g) for zero (black line), 

positive (red curve), and negative (blue curve) 𝐹%&. Note the different scales for 𝑃! in the plots (a) and (b)-

(e) in order to maintain a contrast between the different regions. 
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 As a rule, the flexoelectric tensor component 𝐹SS is either poorly known from experiments 

or ill-defined from ab initio calculations; therefore, we can vary it over a wide range to determine 

the degree by which the flexoelectric coupling anisotropy influences the morphology of the 

polarization state. Corresponding FEM results are shown in Fig. 4. The top and middle rows 

illustrate that the 𝑃0 distribution changes very strongly when 𝐹SS varies from high negative to 

high positive values, while the other components of the flexoelectric tensor are fixed and equal 

to the tabulated values 𝐹;; = 2.4 ∙10-11m3/C and 𝐹;3 = 0.5 ∙	10-11m3/C.  

The flexon contains two pronounced axial domains located near the cylinder ends, which 

have thick diffuse domain walls and opposite polarization directions, and exist at high negative 

(Fig. 4a) and high positive (Fig. 4b and 4e) 𝐹SS values. The 𝑃0-domains become smaller and 

more diffuse with a decrease of |𝐹SS|; but they are still visible and practically do not change their 

shape, size, or polarization distribution for small |𝐹SS| values over the range |𝐹SS| ≤ 0.06 

(Fig. 4b). The flexon becomes faint and almost disappears when 𝐹SS approaches the value 𝐹SS =

𝐹;; − 𝐹;3 = 1.9 ∙	10-11 m3/C corresponding to the isotropic symmetry of 𝐹!4 (Fig. 4c). The value 

will be referred to as “isotropic” below.  

The dependence of the maximal (red curve, 𝑃A#-) and minimal (blue curve, 𝑃A!$) values 

of the polarization component 𝑃0 on the relative amplitude f of the flexoelectric coefficient 𝐹SS 

is shown in Fig. 4f, where 𝐹SS = 𝑓𝐹SSB  and 𝐹SSB = 0.06 ∙	10-11 m3/C. The values 𝑃A#- and 𝑃A!$ 

reach a very diffuse plateau-like minimum and maximum, respectively, at the isotropic value 

𝐹SS = 𝐹;; − 𝐹;3. The green curve in Fig. 4f is the extremal value 𝑃) in the center of the bottom 

axial 𝑃0-domain. The extremal value 𝑃# in the center of the diffuse 𝑃0-domain changes its sign 

in the immediate vicinity of the isotropic value 𝐹SS = 𝐹;; − 𝐹;3. The values 𝑃A#-, 𝑃A!$, and 𝑃) 

have no definite parity, because they are neither odd nor even functions of the flexoelectric 

coefficient 𝐹SS amplitude 𝑓. From Fig. 4f we can conclude that the anisotropy of the flexoelectric 

coupling critically influences the morphology of the flexon, where the axial part of the flexon 

polarization is proportional to − 9**K9((K9*,
+**K+*,

6&++
6R

 [Eq.(2b)], this proportionality along with 

Fig. S9 qualitatively describes the curves’ behavior in Fig. 4f. 
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FIGURE 4. Distribution of the polarization component 𝑃! in the XZ cross-section of cylindrical core (the 

top row). Images are calculated for the fixed values 𝐹"" = 2.4 ∙10-11 m3/C and 𝐹"$ = 0.5 ∙	10-11 m3/C, 

while the value of 𝐹--  varies from -6 to 6 (in 10-11m3/C) as indicated in the legends. The bottom part (f) 

is the dependence of the maximal (red curve, 𝑃'()) and minimal (blue curve, 𝑃'%*) values of 𝑃! on the 

relative amplitude f of the flexoelectric coefficient 𝐹-- in the core. The green curve is the extremal 

(maximal or minimal) value 𝑃+ in the center of the bottom axial 𝑃!-domain. Here 𝐹-- = 𝑓𝐹--,  and 𝐹--, =

0.06 ∙	10-11 m3/C. The electrostriction coupling coefficients 𝑄%& and all other parameters are listed in 

Table SI, 𝑇 = 300 K. Note the different scales for 𝑃! in the plots (a)-(e) in order to maintain a contrast 

between the different regions. 

 

B. Temperature Behavior of the Flexon-Type Polarization Distribution 

To define the temperature interval in which flexons exist as stable or meta-stable states, 

we performed FEM in the temperature range from 50 K to 400 K using different initial 
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distribution of polarization in a cylindrical core. Typical FEM results are shown in Fig. 5, where 

the columns (a)-(e) correspond to the temperature increase from 240 K to 370 K; the structure of 

the azimuthal components of the polarization vector, 𝑃; and 𝑃3, is vortex-like and shows weak 

variations when approaching the surface over the same temperature range (see the direction of 

arrows at the bottom image of Figs. S7 [63]).  

 

 
FIGURE 5. Distribution of polarization component 𝑃! in XZ cross-sections of the nanoparticle core. 

Different columns are calculated for the temperatures 𝑇 = 	240, 270, 300, 340, and 370 K (a, b, c, d, e). 

All other parameters are listed in Table I. Note the different scales for 𝑃! in the plots (a) and (b)-(e) in 

order to maintain a contrast between the different regions. 

 

A bidomain configuration of 𝑃0 is stable at temperatures lower than 250 K (Figs. 5a). 

The bidomain structure has a relatively thin uncharged 180-degree domain wall inside the 

cylinder, which transforms into a flux-closure domain near the electrically-open cylinder ends. 

An initial four-domain polarization distribution relaxes to a flexon-like domain structure in the 

temperature range 260	K < 𝑇 < 360	K (Figs. 5b-d). The flexon gradually disappears at 𝑇 >

370	K (the middle image in Figs. 5e). The ferroelectric polarization inside the core significantly 

decreases at 𝑇 > 370	K and completely disappears at 𝑇~400	K (the top image in Figs. 5e). The 

structure becomes faint with a temperature increase above 370 K (Figs. 5e), hence, the flexon-

type polarization distribution exists in a relatively wide temperature range 260	K < 𝑇 < 360	K. 
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The axial counter domains inherent to flexons are the most pronounced feature over the narrower 

range 290	K < 𝑇 < 340	K.  

 

IV. DISCUSSION 

Any deviation from a four quadrants domain configuration in the flexon-type polarization 

distribution is found to be metastable. This is because the antiparallel bidomain-type polarization 

distribution (starting from a random noise) has a lower free energy in a BaTiO3 cylindrical 

nanoparticle. The derived energy values at room temperature are 𝐺,* = −3.6 ∙ 10K;] J and 

𝐺^% = −4.0 ∙ 10K;] J in the flexon and the bidomain structure, respectively. The energy 

difference between these states, ∆𝐺 = 4 ∙ 10K;_ J is much higher (about 100	𝑘[𝑇) than the 

thermal energy barrier 	𝑘[𝑇 at room temperature. However, the ratio ∆a
55?

 strongly decreases with 

as the temperature increases. The linear relative dielectric permittivity in both states is about 110 

at room temperature and it strongly increases with temperature. Furthermore, our numerical 

simulations show that a spontaneous off-field transition from the flexon to the bidomain 

polarization state does not occur, whereas the in-field transition is possible (corresponding 

hysteresis loops are shown in Appendix D [63]). Thus, the bidomain and flexon states of a 

prolate core-shell ferroelectric nanoparticle can be considered as the exited and ground state of 

a two-level system suitable for information recording. The two-level system can imitate qubits 

operating in the temperature range where 1 < ∆a
55?

< 5. Furthermore, the bidomain polarization 

state corresponds to an antiferroelectric-like state of the nanoparticle polarization, which can be 

represented as two antiparallel nanoscopic dipoles. The flexon is a much more complex achiral 

vortex-like configuration containing two counter dipole nanodomains with diffuse relaxor-like 

polar properties. Thus, an ensemble of prolate core-shell ferroelectric nanoparticles, where a 

given nanoparticle is either in a flexon or a bidomain state, can be an alternative media for 

information processing. The media may exhibit unusual properties including antiferroelectric 

and/or relaxor-like polarization states, which can lead to additional functionalities. Note that the 

appearance of the antiferroelectric and relaxor-like glass states, as well as a newly discovered 

liquid glass state [79] with additional (anti)ferroelectric ordering and other cross-talk effects, are 

possible in a suspension of the prolate core-shell ferroelectric nanoparticles.  

The relatively wide temperature range (about 100 K) corresponding to the stability or 

meta-stability of the flexon-type polarization distribution gives us the hope that the domain 

morphology can be observed experimentally. Specifically, the measurements of local vertical 

displacement by piezoresponse force microscopy (PFM) visualize the distribution of 𝑃0(𝑟) at 
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distances ~ 10 nm from the ends of a nanoparticle, but the resolution procedure for the local 

piezoresponse of diffuse domains under the surface is far not straightforward [80, 81]. This is 

because PFM is a near-field method. A complementary tool to probe chiral polar textures is far-

field nonlinear optical microscopy [82], which has a comparatively much lower resolution than 

PFM, yet optimum focusing methods and the experimental geometry allow for overcoming the 

diffraction limit. For example, second-harmonic generation microscopy was successfully used 

by the community to precisely study semiconductor nanowires [83]. This method should also be 

capable of providing complementary information on the 3D ferroelectric domain structure (being 

sensitive to 𝑃;,3 and 𝑃0) by using polarimetry analysis (see, e.g., [84]). Another promising 

method is resonant elastic soft X-ray scattering, a synchrotron-based method sensitive to chiral 

polar arrangements through dichroism effects [85, 86]. This method was successfully applied to 

detect different topological structures, including vortices [36], skyrmions [41], and chiral domain 

walls [87]. 

Note that Liu et al. [39] revealed that an axial polarization component of the vortex can 

appear in ferroelectric PbTiO3 nanodots due to the flexoelectric effect. Thus, the paper [39] and 

this work predict different flexo-sensitive vortex-like states with an axial polarization in 

ferroelectrics nanoparticles of various geometry. At that this work reveals the critical influence 

of the flexoelectric coefficients sign and anisotropy on the appearance and properties of the axial 

polarization, and, most important, on the chirality of a ferroelectric vortex. Qualitatively, both 

works, [39] and this one, illustrate that flexoelectricity can change the chiral state of a 

polarization texture, and this work studies the behavior of a topological index (in fact a skyrmion 

number) that quantifies the change (see Fig. 3g). 

The main features characterizing polarization structures stabilized by DMI-type 

interactions are their breaking of chiral symmetry and their incommensurability, i.e., a long-

period modulation in space that is unrelated to the crystalline lattice parameter. The appearance 

of such chiral incommensurate phases can generally be attributed to specific energy terms in the 

Landau-Ginzburg potential, known as Lifshitz invariants [49, 88]. Only a few ferroelectrics have 

crystalline structures whose symmetry allows such Lifshitz invariants; therefore, an interaction 

directly analogous to the magnetic DMI is generally not found in ferroelectrics. However, 

although not identical in its mathematical form, the energy density due to the flexoelectric 

coupling [23] is similar to a DMI-type energy term related to a linear Lifshitz invariant. 

Accordingly, we argue that the flexoelectric coupling can lead to polarization states with 

properties similar to those generated by a DMI-type interaction. Such a connection between 

flexoelectric coupling, Lifshitz invariants, and DMI has been discussed before in the case of 
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liquid crystals [89]. It was found that flexoelectricity in liquid crystals can play a central role in 

the development of modulated phases that are analogous to those known from chiral 

ferromagnets [90]. Our study shows that –similar to liquid crystals, where elastic strains fields 

couple to electric fields– the flexoelectric effect through which strain fields couple to the electric 

polarization field can lead to comparable modulated phases with chiral properties in a 

ferroelectric nanoparticle. 

 

V. SUMMARY AND CONCLUSIONS 

Using FEM simulations based on the phenomenological LGD approach alongside electrostatic 

equations and elasticity theory, we identify a characteristic polarization structure developing 

between two oppositely oriented axial domains located near the cylinder ends. This polar 

structure, which we named “flexon”, displays chiral features that are connected to the 

flexoelectric coupling. In the azimuthal plane, the flexon polarization forms a localized chiral 

structure resembling a meron, or a vortex with a central kernel. Analytical calculations and FEM 

prove that the flexon axial polarization, and thus its chirality, switches upon a change of the sign 

of the flexoelectric coefficients. We also observe that the anisotropy of the flexoelectric coupling 

critically influences the flexon formation and the related domain morphology. This observation 

corroborates the link between chirality and flexocoupling, and it identifies the flexoelectric effect 

as the driving force stabilizing these structures.  

While in magnetic systems with strong DMI, similar localized chiral structures have been 

reported [71], the polarization state discussed here is formed without any ferroelectric 

counterpart of the DMI [46]. We recall that, like the DMI, the flexoelectric coupling is derived 

as a Lifshitz invariant [Eq. (1f)] in the context of the Landau theory of phase transitions [22], 

and that such linear Lifshitz invariants generally play a key role in the formation of helical 

structures [49, 88]. The fact that both the DMI and the flexoelectric stabilize structures with a 

specific chirality demonstrates an analogy between these two interactions which appears to have 

been overlooked in the literature of ferroelectric solids. An important difference compared to the 

classical DMI is that the flexoelectric coupling is ubiquitous in ferroelectrics, whereas the 

ferroelectric DMI is forbidden by symmetry in most material types. Therefore, a chiral 

interaction mediated by the flexoelectric effect can potentially be found in all ferroelectrics. The 

coupling of the electric polarization and elastic strain gradients could thus be a much more 

commonly accessible alternative interaction for the formation of chiral and achiral structures [75, 

76]. This coupling could also open the possibility of generating and dissolving chiral polarization 

states through strain engineering [91]. 
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We predict that the pronounced flexon-type polarization distribution with two axial 

counter domains exists in the temperature range 290	K < 𝑇 < 340	K. The relatively wide 

temperature range (about 50 K) corresponding to the stability or meta-stability of the flexon-type 

polarization distribution give us the hope that the flexons can be observed experimentally. 

However, the analysis of the hysteresis loops leads to the conclusion that flexons and other 

domain configurations cannot be resolved from macroscopic measurements of the average 

polarization in a homogeneous electric field. We anticipate that flexons can be reliably observed, 

e.g., by the local methods using a strong gradient of electric field, such as PFM, which gives us 

the information about the distribution of polarization with a nanoscale resolution.  
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