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A central problem in multicomponent lattice systems is to systematically quantify multipoint
ordering. Ordering in such systems is often described in terms of pairs, even though this is not
sufficient when three-point and higher-order interactions are included in the Hamiltonian. Current
models and parameters for multipoint ordering are often only applicable for very specific cases or
require approximating a subset of correlated occupational variables on a lattice as being uncorrelated.
In this work, cluster order parameters (ClstOPs) are introduced to systematically quantify arbitrary
multipoint ordering motifs in substitutional systems through direct calculations of normalized cluster
probabilities. These parameters can describe multipoint chemical ordering in crystal systems with
multiple sublattices, multiple components, and systems with reduced symmetry. These are defined
within and applied to quantify four-point chemical ordering motifs in platinum/palladium alloy
nanoparticles that are of practical interest to the synthesis of catalytic nanocages. Impacts of
chemical ordering on nanocage stability are discussed. It is demonstrated that approximating four-
point probabilities from superpositions of lower-order pair probabilities is not sufficient in cases where
three- and four-body terms are included in the energy expression. Conclusions about the formation
mechanisms of nanocages may change significantly when using common pair approximations.

∗ jmg670@psu.edu



2

I. INTRODUCTION

Chemical ordering in alloys and multicomponent crystal systems strongly influences the properties
of materials such as mechanical strength, durability, and thermodynamic stability. This includes
both the long-range periodic arrangement of elements in ordered alloys such as Cu3Au and the
short-range order (SRO) that occurs in solid solution crystal systems.[1] In alloys, SRO can influence
thermodynamic stability as well as mechanical properties; increased SRO in CrCoNi alloys leads
to increased hardness.[2, 3] In semiconductors, the optical and electronic properties are affected by
chemical ordering.[4] At the solid-solution interfaces of alloy catalysts, the adsorption of solution
species is correlated with alloy ordering and this influences the electrochemical response.[5] In
the case of platinum-based alloy nanoshells applied in hydrogen fuel cells as oxygen reduction
catalysts, the chemical SRO and structure of the surface alloy have a strong influence on catalyst
durability.[6] In these catalytic surface alloys and many cases, such as in high-entropy oxides,
semiconductor crystals with multiple sublattices, and other catalyst systems, the chemical ordering
motifs of interest are comprised of multiple points and may span multiple sublattices.[5, 7, 8] Due
to the strong interdependence between SRO and the properties of materials, it is desirable to
systematically quantify chemical ordering in substitutional systems.

The Warren-Cowley SRO parameters are among the most commonly used descriptors for pair
ordering in alloys, both experimentally and theoretically.[9–14] These parameters can be written
for binary systems as

γpqm = 1− P (q|p)m
cq

. (1)

The parameter is given in terms of the conditional probability that atom p is at a site with atom q in
some neighbor shell around it, labeled by m (Fig. 1A). These probabilities, which can be obtained
by inversion of pair correlations, are then divided by the concentration cq. In a random alloy the
pair parameter is 0, when γpq > 0 there is a tendency of p-q ordering, and when γpq < 0 there is
a tendency of p-p and q-q pair ordering. While the description of chemical SRO in terms of pair
ordering is useful in many cases; pairs alone do not completely describe a substitutional system. For
example in Fig. 1B, the Warren-Cowley parameters do not describe the ordering motif where a blue
atom occupies a site adjacent to a grey-blue pair (a three-point ordering). It also cannot describe
a three-point ordering between sublattices in an alloy oxide. While the high-order (three-body and
beyond) correlations of this sort are often less significant than pair correlations, all of the n-body
correlations are needed to completely describe a system.[15] Many alloys and substitutional crystal
systems can be represented with an Ising-like Hamiltonian that depends on chemical occupation
variables of sites in the lattice. In such models, it has been proven that correlations up to the order
of the interactions in the Hamiltonian (e.g. three-point correlations if three-body interactions are
included) are required to completely describe all other correlations in the system.[16] Neglecting
many-body correlations, three atomic sites or more, can lead to poor predictions of materials
properties, as in the inverse Monte Carlo method.[17–19] Incorporation of high-order correlations
and associated SRO into models and analysis of substitutional systems would be beneficial, but it
is often dismissed due to challenges in obtaining of the multipoint probabilities both experimentally
and theoretically.

A number of other developments have been made to extend the Warren-Cowley parameters
beyond their typical application to pair-ordering in AB alloys, including the extension of the Warren-
Cowley parameters to systems with more than two components.[20, 21] Work by Clapp showed
that some multipoint correlations can be obtained from lower-order ones through the Kirkwood
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B)

Figure 1: A) Chemical ordering is often described in terms of pairs (dark red motifs), and how
much the chemistry of a given neighbor shell deviates from its nominal stoichiometry on average
in the crystal. B) Chemical ordering across multiple shells and/or sublattices can be difficult to
quantify, and often requires approximation.

superposition (multiplication of pair probabilities).[22–25] In special cases such as linear binary
chains or in equimolar A-B alloys, some of the high-order correlations may be exactly expressed in
terms of lower-order pair and single-site correlations. In general this is approximate and not suitable
for systems with highly correlated lattice occupations or with strong multipoint interactions.[16,
23] Similar approximations have been made by Shirley and Wilkins, reconstructing multipoint
correlations from pair combinations contained in the motif.[26, 27] This method still approximates
the occupations of correlated lattice sites contained in the motif as combinations of pairs that occur
independently from one another. Its main utility is at the order/disorder transition temperature.
Definitions of multipoint order parameters were included in Shirley and Wilkins, but these suffer
from the deficiencies associated with the approximated multipoint correlations used to define them.
It was proven by Nicholson et al., and demonstrated by other authors, that such methods only
work in cases where interactions beyond pairs are negligible.[28] When only pair interactions are
significant, obtaining multipoint orderings from pair correlations can be highly successful.[29, 30]
Some three- and four-point ordering parameters have been defined and used for stochastic generation
of two-dimensional substitutional lattices possessing high-order correlations.[31, 32] Methods such as
the geometrical locus method that quantify the ordering of derivative structures are currently limited
to specific crystal systems and motifs.[33–35] Exact quantification of general multipoint orderings
is still needed for substitutional with multiple components and between sublattices. Approximating
these from low-order correlations is desirable for connection to experimental SRO intensities, but
as we show within, does not apply well for all systems with many-body interactions above pairs.

The extraction of three-point and higher-order correlations from crystals in X-ray experiments is
still an active area of study.[36–39] Impressive strides have been made in energy-resolved scanning
tunneling electron microscopy to directly measure SRO domains in alloys, but atomic-level chemical
ordering across multiple points in alloy systems is still challenging to quantify.[3, 40] Simulation
and theory could be used to directly evaluate multipoint chemical ordering to support experimental
findings, but it can be challenging to obtain meaningful statistics in substitutional/alloy systems
with many degrees of freedom. The notions of statistical efficiency and accuracy need to be ad-
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dressed as descriptors of chemical ordering, such as the Warren-Cowley parameter, are extended to
multipoint motifs. This was partly addressed by the work of de Fontaine when the order parame-
ters were recast as normalized pair probabilities, and the number of independent pair parameters
were defined for systems with arbitrary numbers of components.[20] We aim to extend the de-
scription of normalized probabilities to multipoint ordering in alloys. In this work, ClstOPs are
introduced for systematically quantifying multipoint ordering in multicomponent crystals through
direct measurements of normalized cluster probabilities.

II. DEFINING THE CLUSTER ORDER PARAMETERS

A. Order parameters on a single sublattice

We define a set of order parameters to quantify arbitrary multipoint chemical ordering. Like
the Warren-Cowley parameters and the current three- and four-point parameters in the literature,
the new set of parameters should be 0 for the disordered phase. To begin, an occupation variable
representation of a single substitutional lattice is adopted, much like that for Ising or cluster ex-
pansion models. The occupations of sites on a lattice are designated by a collection of variables as
a occupation/spin vector,

~σ = {σ1, σ2, σ3 ... σN} (2)

A spin variable σi is assigned to each lattice site of an N -site crystal. The spin variables are integers
that take on the values:

σi =

{
−m,−m+ 1, · · · ,−1, 1, · · · ,m− 1,m : m = d/2

−m,−m+ 1, · · · ,−1, 0, 1, · · · ,m− 1,m : m = (d− 1)/2
(3)

where the first case occurs when the compositional degrees of freedom for a lattice site, d, are even
and the second case when the degrees of freedom are odd. In a binary alloy containing two species
A and B, the spin variables can take the values σi = {−1, 1} corresponding to A and B, respectively.

We are interested in developing an order parameter for arbitrary collections of lattice points in
a crystal. The complete, orthonormal set of basis functions defined for the discrete variable space
in Eq. (2) are a convenient starting point.[15] The cluster basis, spin products, are defined over
the entire configurational domain of an alloy crystal, Fig. 2. A scalar extensive property such
as the energy may be represented as a linear expansion in this basis, E =

∑
α jαΦα where the

sum runs over clusters, α, jα are the expansion coefficients associated with the respective cluster
basis function, Φα. The chemical occupations for any combination of lattice sites (e.g. two lattice
sites, three lattice sites, or more) are related to the measured value a corresponding cluster basis
function(s) that are defined for the same lattice points. Therefore the chemical ordering of any
combination of lattice sites may be described within the cluster expansion formalism, because the
cluster basis is complete. This formalism is defined below and the exact relationship is shown.

For a given cluster in the set of cluster basis functions, {Φα(~σα)}, the measured value of the
basis function for an alloy configuration specified by the spin vector, Eq. (2), depends on the spin
variables of the sites contained in the cluster, ~σα. Each cluster basis function is given by

Φα =
∏

(j,m)∈α

ym(σj), (4)
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E(σ1, σ2, . . . σN) = ∑
α
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E = j( )Φ( ) + j( )Φ( )

⋯

⋯
+ j( )Φ( ) + j( )Φ( ) + ⋯

Figure 2: A spectral expansion of the energy is enabled by defining a complete basis over the
entire domain of alloy configurations. The alloy configuration is given by a collection of spin
variables that specify the occupation of the lattice sites. The basis functions are defined as all
possible products the spin variables (or appropriate site basis function to maintain orthogonality
conditions). For a cluster expansion in this basis, there are terms corresponding to single sites and
pairs (of different ranges) similar to an Ising model, but also all high-order terms such as triplets
and beyond.

where the product of particular site basis functions, indexed by m, is taken over all sites j in the
cluster [15]. The combination of site indices, j ∈ α, as well as the site basis function indices, m ∈ α,
are implied by the cluster index, α. The cluster basis functions obey the orthogonality condition

〈Φa(~σ)|Φb(~σ)〉 = δab (5)

and the completeness relationship ∑
α

Φα( ~σ1)Φα( ~σ2) = δ12. (6)

The choice of the site basis in Eq. (4) is somewhat arbitrary as long as the corresponding cluster
functions obey the completeness and orthogonality conditions, Eqs. (5) and (6). In this work, an
appropriate trigonometric basis is used, and the specification of site basis indices, m in Eq. (4), are
set by the cluster index, α.[41] The set of cluster basis functions includes an empty identity cluster
for completeness, single-site, pairs, triplets, quadruplets, and so on as schemed in Fig. 2.

In practice for periodic crystals, the symmetry of the crystal imposes constraints on the expansion
coefficients. For practical cases, it is more convenient to average the cluster basis functions over
the crystal. The average cluster basis functions, often referred to as cluster correlation functions,
are given as

Φ̄α(~σ) =
1

mαN

∑
β≡α

Np∑
p

Φβ(~σβ(p)), (7)
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where the inner sum runs over all distinct locations of the a cluster, p, and the outer sum runs over
all symmetrically equivalent clusters, β ≡ α. Per-site correlations are obtained by dividing by the
number of lattice sites, N , and the number of symmetrically equivalent clusters, mα. It is noted
that the number of distinct cluster locations, Np, may differ from the total number of sites, N , in
crystals with reduced symmetry, such as a two-dimensional surface with a set thickness. This is the
case in the example given later. A scalar extensive property such as the energy of a substitutional
lattices system, E(~σ), may be represented per-site as a linear expansion in the cluster correlations:

E(~σ) =
∑
α

mαJαΦ̄(~σα). (8)

Here, the sum is performed over all symmetrically distinct clusters, and the coefficients, Jα, referred
to as the effective cluster interactions (ECIs), describe the strength of a interaction averaged over
the lattice.

The correlations in Eq. (7) can be written in terms of occupational pair, triplet, quadruplet etc.
probabilities as a weighted average:

Φ̄α(~σ) =
Np
N

∑
~σα

Φα(~σα)P̄ (~σα). (9)

Here, the sum now runs over all distinct occupations of the cluster multiplied by the respective
probability of finding any symmetrically equivalent cluster with that specific occupation in the
crystal, P̄ (~σα). These probabilities, referred to as cluster probabilities, can be defined as

P̄ (~σα) =
1

mαNp

∑
β≡α

n(~σβ). (10)

The total number of clusters with the desired occupation is counted at each distinct location, p, in
the crystal to give n(~σα). The counts are summed over all symmetrically equivalent clusters, and
divided by the symmetry multiplicity and total number of occurrences of the cluster in the crystal,
Np. These probabilities sum to 1:

∑
~σα

P̄ (~σα) = 1. (11)

The sum is taken over all possible distinct occupations of the cluster. Using the multipoint proba-
bilities defined in Eq. (10), the ClstOP is defined as

γα(~σkα) = 1 − P̄ (~σkα)

Prandom
(12)

where the order parameter, γα is given in terms of the average probability of finding a cluster with
a desired occupation, (~σkα) in the crystal that is normalized by the probability of the cluster forming
with the desired occupation in a random alloy, Prandom. In the random alloy the probability of a
site being occupied by a specific species, P (σi), is given by the atomic concentration of that species
Ci; the probability in the denominator is the product of the site probabilities for a given cluster
occupation. For example, Prandom in an AB alloy for a three-point occupation of (~σkα) = [−1,−1,−1]
corresponding to (AAA) is given by CACACA. It can be directly shown that by selecting a pair
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cluster, α ∈ {pairs} the ClstOP reduces to the binary Warren-Cowley SRO parameters.
The analysis of the ClstOPs is similar to that for the Warren-Cowley pair parameters.[10] When

the ClstOP is zero, the cluster shape with the specified occupation occurs as frequently as it would
in a random alloy. When γα > 0, the cluster with the specified occupation is found less often
than in a random alloy of the same composition. Finally, when γα < 0, the cluster with desired
occupation occurs more frequently than in a random alloy. The cluster expansion of the energy in
Eq. (8) may be written in terms of the ClstOPs. Using Eqs. (9) and (8), the cluster expansion of
the energy may be written as

E(~σ) =
Np
N

∑
α

mαJα
∑
~σα

Φα(~σα)Prandom[1− γα(~σα)], (13)

where the outer sum runs over all symmetrically distinct clusters, and the inner sum runs over the
chemical labelings of that cluster. In this equation, the cluster correlations, Φ̄α, have been rewritten
in terms of ClstOPs rather than the cluster probabilities as in Eq. (9). It is noted that the inner sum
runs over the same cluster labelings and sites for multicomponent cluster functions belonging to
the same orbit; the different site basis functions just give a different value of Φα(~σα).[15] What can
be inferred from Eq. (13) is that sums of the chemical ordering parameters scaled by the evaluated
basis function for a given cluster labeling, Φα(~σα), determines the energy contribution from a given
cluster. If the expansion coefficient associated with a cluster correlation, Φ̄α, is large, the influence
of the associated chemical orderings will have more of an impact on the system energetics. The
relationship between the chemical ordering and the energy is not linear in general; the value of
the ClstOP, γα(~σkα), and all other ClstOPs associated with the possible occupations of the cluster,
γα(~σκ6=kα ), are constrained dependently by the composition of the system.

One benefit of the completeness of the cluster basis is that the energy contribution from any
correlation may be calculated, and through Eq. (13), the energy contributions from any set of asso-
ciated chemical orderings. These may correspond to long- or short-range correlations. Conversely,
given a set of chemical orderings for a system can be used to extract expansion coefficients that may
yield said chemically ordered structures (inverse Monte Carlo).[42] Inverse Monte Carlo performed
with ClstOPs could be distinguished from traditional inverse Monte Carlo methods that provide
interaction energies from pair ordering alone. Limiting values of the ClstOPs may be related to
long-range or superstructure orderings depending on the cluster and crystal. The limits of the
ClstOPs at large separations could be used to generalize long-range order parameters.[43] Special
cases of derivative structure orderings and multipoint motifs can be inferred by the geometrical
locus method. Recall that the generalized geometrical locus method provided constraints on the
pair parameters spanning derivative polyhedra in certain AB crystals (rocksalt, CsCl structure, and
SnS structure).[33, 34] The ordering of octahedra in the rocksalt lattice can be inferred based on
composition, whether or not the octahedra are arranged periodically, the composition of the octa-
hedron, and noting that the octahedra span the crystal. With ClstOPs the ordering of octahedra
(or other derivative polyhedra) can be directly measured with polyhedral ’cluster’. Defining similar
parameters with the cluster probabilities could allow for a generalization of the geometrical locus
method to derivative structures beyond polyhedra, and alloys with more than two components.[44]

B. Order parameters on multiple sublattices

The ClstOPs can be generalized to crystals with multiple sublattices. This is demonstrated
here in a two sublattice system, as an example. The occupations of the sites in each respective
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are designated with a spin vector, ~σ and ~δ as in Eq. (2) of the main text. A set of cluster basis
functions can be assigned to each sublattice, {Φ1

α(~σ)} and {Φ2
α(~σ)}. A complete set of composite

basis functions can be defined for the multi-lattice crystal by taking the tensor product of the single
sublattice clusters spaces.[45] Using a similar notation as in Tepesch al., these composite basis
functions, indexed by θ, are be denoted as

{Θθ(~τθ)}, (14)

where we have defined a single vector containing the spin variables for the entire crystal:

~τ = (σ1, σ2, ...σN1
, δ1, δ2, ...δN2

). (15)

The inter- and single-sublattice correlations are given as the expectation value of the composite
basis functions over the crystal. These are calculated as

Θ̄θ(~τ) =
1

mθN

∑
φ=θ

Nc∑
c

Θφ(~τφ(c)). (16)

The inner sum runs over all distinct locations of the composite cluster, c, and the outer sum
now runs over all symmetrically equivalent composite clusters, θ = φ. The sum of the evaluated
composite cluster functions at all of these points is then divided by the total number of sites in the
crystal coming from sublattices 1 and 2, N = (N1 +N2), multiplied by the number of symmetrically
equivalent composite clusters, mθ.

The correlations in Eq. (16), can also be written as weighted averages of cluster basis functions
evaluated for specific cluster occupations following a similar form as that for a single sublattice.

Θ̄θ(~τ) =
Nc
N

∑
~τθ

Θθ(~τθ)P̄ (~τθ) (17)

where the sum now runs over all occupations possible in the composite cluster. The multipoint
probabilities for the inter-sublattice correlations are defined as

P̄ (~τθ) =
1

mθNc

∑
φ=θ

n(~τφ). (18)

The counts of composite clusters with a specific inter-sublattice occupation, τθ, are summed for
all symmetrically equivalent composite clusters and divided by the total number of occurrences of
the composite cluster in the crystal, Nc, multiplied by the symmetry multiplicity. With this, the
inter-sublattice ClstOP can be defined as

γθ = 1 − P̄ (~τdθ )

Prandom
. (19)

The correlations in Eq. (17) could also be inverted to obtain specific probabilities. In the case
of the composite cluster formed by the product of the two single-site basis functions, Θ(σi, δj) =
Φ1

single(σi)Φ
2
single(δj), the inter-sublattice pair probabilities could be extracted. Because correlations

beyond pairs can be considered, the ordering of cations about an anion vacancy could be considered
in the rocksalt crystal structure for example.[8] Pair ordering alone would likely show a large
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tendency of unlike pair ordering between the cation and anion species.[46]

III. APPLICATION TO PT-BASED ALLOY NANOSHELL CATALYST

Pd channel

Pt
PdPd 

nanoparticle

Pt + dilute 
Pd shell

durable

less 
durable

A) B) C)

Figure 3: The palladium (111) face-centered cubic nanoparticles coated with a few atomic layers
of a Pt/Pd alloy (panel A), prepared in Ref. [6], rely on specific multipoint chemical ordering
motifs, palladium channels that span the surface alloy region (panel B), to generate high-surface
area catalyst cages for the oxygen reduction reaction (panel C). A sufficient amount of Pd is
needed to observe the ’channel’ order motif (shown in panel B) to allow for the etching of the
palladium core but not so much that it diminishes the catalyst durability.

The need for an exact description of chemical SRO is highlighted in the case of platinum-based
nanoshells in Fig. 3.[6] To make the platinum-based nanoshells, thin layers of dilute Pt/Pd alloy
are deposited on palladium nanoparticles. The Pd cores are subsequently leached out leaving a
highly active, predominantly Pt shell (9.1% mass Pd). Though the thicknesses of these catalyst
shells are as low as four atomic layers, this resembles the surface of many other core-shell and alloy
interfaces.[47–49] As evidenced by Zhang et al., the formation of Pd channels that span, or nearly
span the deposited surface alloy, allow for subsequent etching of the Pd cores. They also found that
excess Pd content decreased mechanical stability of the shells. Nanoshell catalysts with increased
durability could potentially be produced by decreasing the Pd content while still allowing for Pd
channel formation, Fig. 3B.

Pair ordering analysis would provide some insights into the Pd channel content in alloy surfaces,
but the pair approximations used to quantify the Pd channel occurrence is somewhat arbitrary. The
ClstOPs were used instead to directly quantify Pd channel content in models of this alloy surface,
and was compared to an approximated channel parameter constructed from pair probabilities.
The surface of these alloy-coated nanoparticles were modeled using cluster expansions fit with
and without a continuum solvent interface above the alloy surface to simulate some effects of
the experimental environment.[41, 50] In these models, the (111) face-centered cubic surface was
represented with four layers of Pt/Pd alloy on top of four pure palladium layers to describe the
palladium core. The occurrence of four-point Pd channels spanning the alloy region determines
whether the catalyst can be synthesized and its durability.
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A. Model for the alloy surface

1. Density-functional theory calculations

A selection of 398 symmetrically unique alloy configurations were used as training data for the
cluster expansion. Some examples are provided in Fig. 4. The mixing energies of these alloy
configurations were calculated using density-functional theory (DFT). The surface alloy slabs were
comprised of 8 layers in total with a vacuum height of 6 Å on either side. Four of the layers on the
bottom were pure Pd to represent the Pd core of the nanoparticles where the top four layers were
comprised of both Pt and Pd with varied concentration. The DFT calculations were performed
using the Quantum ESPRESSO suite with plane wave basis sets.[51] The kinetic energy cutoff for
the basis sets was 100 Ry. Norm-conserving pseudopotentials from the pseudodojo library were
used to represent ion cores.[52] An approximately uniform distribution of reciprocal Bloch vectors
(k-points) was used to sample the Brillouin zone across the cells by using the k-point density of
(11/m × 11/n × 1) for an m × n surface cell. Electronic occupations were smoothed with 0.001
Ry of Marzari-Vanderbilt smearing.[53] The k-points, smearing, slab thickness, energy cutoffs, and
vacuum height were converged with respect to the Fermi energy of the system, to within 0.05 eV,
ensuring that the interfacial dipole was converged. During geometry optimizations of surface alloy
slabs the bottom two layers of Pd were fixed at calculated bulk lattice parameters, and total forces
were below 25 meV/Å.

+67 
others

+13 
others

Additional cells

1x surface cell 2x surface cell

+84 
others

4x surface cell

+218 
others

3x surface cell

Pt

Pd

Figure 4: Examples of surface cells used to fit the cluster expansion coefficients (grouped as
multiples of the primitive surface cell). All symmetrically distinct configurations in the 1× and
2× cells are used for fitting along with larger randomized surface cells.

To account for average solvent effects on the surface alloy, the DFT energies for the surface alloy
configurations were also calculated in the presence of a continuum solvent via the self-consistent
continuum solvation (SCCS) method.[50] The shape and onset of the dielectric cavity are defined
using minimum and maximum charge density cutoffs (ρmin = 0.0013 a.u. and ρmax = 0.01025 a.u.)
the original switching function provided in Andreussi et al. was used. The dielectric constant inside
the cavity is 1 and switches smoothly to a dielectric constant of 78.3 outside the cavity. Surface
tension, pressure, and volume terms were omitted as in Huang and coworkers.[54] Though the fitting
cells in Fig. 4 are not symmetric, the contributions from solvent on the palladium core side should
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cancel out when calculating the mixing energies. Models including explicit solvation, adsorption of
solution ions, and the etchant will likely show a stronger influence on the surface alloy structure
and would help determine solvent conditions suitable for making more durable cages.[5, 55]

2. Cluster expansions

The cluster expansion model represents a scalar extensive quantity as a linear expansion in the
cluster basis functions of Eq. (7), and was obtained using the icet software package.[41] The mixing
enthalpy (per site) for the representative surface alloy was expanded as:

∆Hmix(~σ) =
∑
α

mαJαΦ̄(~σα), (20)

with the sum being taken over all symmetrically distinct clusters up to some maximum size and
order. Aside from identity and single-site clusters, all pair and triplet clusters with within three
neighbor shells were included. Additionally, some larger quadruplet clusters are included that span
the 4th and 5th neighbor shells. This is done to include the cluster corresponding to the channel
shape in Fig. 3B in the energy expression. This resulted in 25 pair, 138 triplet, and 34 quadruplet
clusters for a total of 201. The expansion coefficients were trained against DFT fitting data in
Fig. 4 using the automatic relevance determination regression (ARDR) method implemented in
scikit-learn to obtain an optimally sparse set of ECIs and reduce over-fitting yielding 68 non-
zero ECIs after training.[56] A weighting function was added based on convex hull distances, by

W = (1 + e−
D
kT )/(1 − e−

D
kT ) where D is the distance between the convex hull and the mixing

energy of the configuration, k, Boltzmann’s constant, and T the temperature. After optimization
of regularization parameters with respect to k = 10-fold cross validation, the test error was 5
meV/site. The ECIs as a function of cluster radius and numbers of vertices are given in Fig. 5, with
the exception of the identity and single site clusters with ECIs of –15.3 and –2.1 meV, respectively.
The relative sizes of the ECIs reflect the relative contribution to the mixing energy for some surface
alloy configuration. Relatively large ECIs associated with clusters containing four vertices highlight
the importance of interactions beyond pairs in this system.

3. Monte Carlo sampling

Using stochastic algorithms, a representative 10 × 10 (2.7 nm × 2.7 nm) surface cell was sam-
pled in the canonical ensemble at 473 K. Only shells with low concentrations of Pd (1-20% surface
content) were considered because of the mechanical destabilization of shells with high palladium
content. For each composition, an order parameter was obtained for the chemical ordering motif
associated with the the channel shape, a four-point vertically oriented cluster in Fig. 3B along with
relevant pair orderings. The relatively accurate predictions of the multipoint orderings were facili-
tated by sampling converged simulations. The convergence of the parallel Monte Carlo simulations
was quantified with the potential scale reduction factor from Brooks and Gelman [57], which uses the
the effective number of independent measurements, Meff(k) = 1/[1 + 2λ(k)], and ratios of pooled
and within-simulation variances to quantify the convergence of the parallel chains.[57, 58] Each
parallel simulation was ran for 1000 passes after a 100 pass burn-in. The resulting potential scale
reduction factors are on the order of 1.00018 and the simulations are considered well converged.[57]
The statistical analysis and error measurements are detailed further in the Supplemental Material
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Figure 5: Effective cluster interactions/expansion coefficients for the surface alloy system in
contact with the implicit solvent. The blue bars mark the magnitude and sign of the coefficient
for pairs, triplet, and quadruplet clusters, order 2, 3, and 4, respectively.

available at.[59]
The MCHammer Monte Carlo software was used through ICET to carry out Markov-chain

Monte Carlo samplings of the surface alloy system.[41, 60] The ClstOPs were evaluated from the
Monte Carlo trajectories using the Clst Order software package developed for this work. The
Clst Order python software calculates the normalized, symmetry-averaged probabilities in Eq.
(9) for arbitrary cluster shape and order. The parameters can be calculated in general two or
three-dimensional crystal systems provided that the atoms can be projected onto pristine parent
lattice(s). This software is compatible with the trajectories produced from MCHammer, but
can also used with other software packages that generate trajectories or structure files compatible
with Atomistic Simulation Environment ase such as the Large-scale Atomic/Molecular Massively
Parallel Simulator lammps package.[61, 62]

4. Chemical ordering quantification

Chemical ordering analysis for alloys is commonly given in terms of pair ordering in certain
nearest neighbor shells. Discussions of multipoint ordering motifs generally involve a consideration
of all constituent pair orderings contained in the motif.[24, 34] In the case of the Pd channel, the
Pd pair ordering in the zeroth to third nearest neighbor shells contained in the channel show some
limiting factors for the occurrences of the channels as well as the structure of the alloy overall. Due
to the anisotropy of the system along the surface normal, pair orderings in a given neighbor shell
are not the same throughout the surface alloy; pairs ordering oriented along the surface normal
differs from pair ordering parallel to the surface. For this reason, we extract from the Monte Carlo
simulations both sets, the set of zeroth to third neighbor pair parameters starting from the top of
the surface alloy and also from the bottom, of vertically-oriented pair order parameters that can
be used for a Kirkwood superposition of the Pd channel. The respective anisotropic constituent
pair parameters are reported in Fig. S3 of the Supplemental Material to further demonstrate the
Kirkwood superposition, while the combined order parameters for the Pd-Pd pairs are reported in
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Fig. 6 as a function of Pd fraction.[59] The respective combined pair parameters are highlighted in
the plot. In crystals possessing three-dimensional periodicity, this same model can be applied with
averaging pair probabilities over all equivalent orientations and constant single-site correlations
that are given simply by the concentrations. The parameters in Fig. 6 describe how likely Pd-Pd

Pd surface fraction
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Low order constituent parameters

Figure 6: The pair parameters for all of the nearest neighbor shells contained in the four-point
channel are provided along with the combined single site correlations at the surface and bottom of
the alloy.

pairs in the first-third neighbor shell of the channel shape are relative to a completely random
alloy (along with the single site Pd ordering in the zeroth neighbor shell). Recalling that these
parameters are zero in a completely random alloy, the lower values for the Pd-Pd pairs in the first
neighbor shell (circle markers) indicate that Pd-Pd pairs are likely to form at the top or bottom
of the surface alloy. The likelihood for the occurrence precursors of the Pd channels is high. In
the third shell (triangle markers), the occurrence of Pd-Pd pairs is highly unlikely, and this is one
of the key factors that limits the occurrence of Pd channels overall. The Pd tends to reside in
the middle of the shell as indicated by the third neighbor shell parameter as well as the single site
correlation for the top/bottom of the alloy. This supports the experimental findings of Zhang et
al., because a significant amount of Pd remains after etching of the core. This low-order analysis
that is common in the literature is useful for determining limiting factors for channel occurrence
and alloy structure. The Pd channels were quantified during parallel Monte Carlo simulations of
the surface alloy using ClstOPs, and is reported in Fig. 7. For the compositions tested the channels
occur less frequently than in a randomized alloy lattice, because the results show that the four-point
Pd channel ClstOP is greater than 0. The channels occur only in small amounts. This supports
the need for small amounts of Pd channels without excess that mechanically destabilizes the shell
in experiment. From pair analysis alone one may expect insignificant amounts of Pd channels at
experimentally relevant compositions (with an atomic fraction of Pd of ∼15%) given the limiting
formation of third neighbor shell Pd-Pd pairs, Fig. 6, but there are significant amounts of channels
when quantified exactly with ClstOPs. Using the limiting pair parameter alone is not sufficient for
quantifying the Pd channel occurrence.

Improved quantification of Pd channels can be made by approximating the four-point probability
with combinations of pair probabilities. There are various combination/superposition expressions
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Figure 7: The exact four-point order parameter corresponding to the channel-shaped cluster, from
direct calculation during MC simulations (blue circles) are compared to that calculated from
Clapp’s implementation of the Kirkwood superposition (brown diamonds). A visualization of
low-order probabilities used to approximate the four-point channel probability are illustrated for
each case.

that could be used to approximate the four-point Pd channel probability, but two key examples
are provided for comparison. Using a slightly modified form of Eq. (7) in Ref. [23], the relative
four-point probability can be approximated using Kirkwood’s superposition,

P̄ (~σα)/Prandom ≈
(
P0 × P01 × P02 × P03 + Pr

)
/cPd

7, (21)

where Pij are the Pd probabilities between the ith and jth neighbor shells and cPd
7 is product of the

marginal probabilities for the constituent pairs and single site correlations. The Pr is the product
of the equivalent pair probabilities in reversed order (e.g. starting from the bottom of the surface
alloy rather than the top). The corresponding approximation to the ClstOP is given as the curve
with diamond markers in Fig. 7. This approximation describes some qualitative trends correctly,
but deviates from the exact ClstOP value. From a consideration of constituent pair probabilities
in this way, the amount of Pd channels at low concentrations may still be misleadingly small.
One benefit of this approximation is that it can often be obtained from experimentally determined
Warren Cowley parameters. It is additionally pointed out that the parameter estimated with cluster
probabilities constructed via the Kirkwood superposition are known with less certainty. The graph
below shows the relative standard errors in the measured cluster probabilities using the Kirkwood
superposition as well as the ClstOP.

In Fig. 8, it is shown that the relative standard error for the measured quantities for the ClstOP
ranges between 0.9% and 580% over the full Pt composition range tested (0.9–22% over the ex-
perimentally relevant composition range of cPd = 0.05–0.2). The Kirkwood superposition gives a
relative standard error range of 1.6–1800% over the full composition range tested (1.6–25% over
the experimentally relevant composition range). After propagation of error, the approximation
method quantifies the Pd channel occurrence with larger uncertainty than the exact ClstOP due
to the multiple measurements needed to construct the Kirkwood superposition. The increased rel-
ative error in the low Pd limit is due to the low Pd concentration, which is related exponentially
to the probability of observing a Pd channel, and possibly the quality of the model in the very
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Figure 8: The relative error in the measured cluster probabilities using the cluster order
parameter formalism compared to a constituent pair superposition approximation.

dilute Pd limit for the cluster expansion model. Error comparisons and further discussion on the
measured cluster probability relative to random alloy fluctuations are contained in Fig. S2 of the
Supplemental Material.[59]. Connections are provided with original theory for special quasi-random
structures.[63]

The approximation suggested by Shirley and Wilson may provide a slightly improved prediction
of the exact parameter in the surface alloy system. For this case, the four-point probability is
approximated as,

P̄ (~σα) ≈
(
P01 × P23 + P02 × P13 + P03 × P12

)
. (22)

This approximation is not given within because it relies on spatially resolved ordering probabil-
ities that are not obtained from typical experimentally derived pair parameters. In many three-
dimensional alloy crystals, the cluster probabilities are averaged over the distinct cluster locations
needed to construct the four-point probability in Eq. (22).

IV. CONCLUSION

A general cluster order parameter (ClstOP) was introduced to systematically quantify multipoint
ordering motifs in alloy crystals via direct calculation of cluster probabilities. This parameter
can be used to evaluate chemical ordering in alloys and substitutional systems that cannot be
addressed by pair ordering analysis alone. Though the pair ordering and pair interactions are often
most important, there are systems where higher-order correlations are significant and cannot be
ignored. The utility of the ClstOPs is that a specific multipoint motif of interest can be quantified
directly in simulations or in theoretical applications. In certain special cases where ‘clusters’ are
chosen such that they can represent derivative structures of a crystal, these parameters could be
used to help generalize the geometrical locus method. Despite the expected low probability of
occurrence for multipoint ordering motifs, meaningful predictions of ClstOPs can be made through
efficient sampling during parallel Markov-chain Monte Carlo simulations. The average ClstOPs
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can be predicted with reasonable certainty with relative standard errors of 22-0.9 % between the
experimentally relevant composition range of cPd = 0.05–0.20, respectively. The ClstOP associated
with the four-point Pd channel motif quantifies Pd channel occurrence with improved certainty
and accuracy over approximate methods such as the Kirkwood superposition. Similar sampling
approaches could be used to predict multipoint ClstOPs in many other practical applications such
as descriptors for data-driven materials discovery and machine-learning models of alloy systems.[64]
With the multi-lattice generalization, chemical orderings between multiple sublattices can also be
described. This generalization is particularly useful for describing ordering between ligand vacancies
on one sublattice and alloying metals in another.

The utility of the parameters was demonstrated while modeling representative surfaces of the
Pt/Pd nanoparticle alloy system in Fig. 3. Cluster expansion models were generated for a four-
layer dilute Pt/Pd alloy on top of a four-layer bulk palladium core region with the (111) surface
orientation, and these systems were sampled using Markov-chain Monte Carlo simulations. In
this system, Pd channels that span the surface alloy are needed for the synthesis of high surface
area Pt nanocage catalysts. The calculated ClstOP corresponding to a channel shape in these
simulations suggested that Pd channels occur in significant amounts, with 0.12 per nanoparticle
with experimental facet sizes (octahedra with 19.4 Å edge lengths with a 15% atomic fraction
of Pd in the surface). Using pair probabilities alone to quantify Pd channels leads to a significant
underestimation of channel ordering, and less than half as many channels occurring with a predicted
0.05 per nanoparticle. Though pair ordering provides a wealth of information about the alloy
structure overall and the factors that limit the occurrence of a Pd channel, it provides poor estimates
of the true number of channels occurring in the alloy. This is because multipoint energetics are
significant in this system. Additional results in the Supplemental Material available at suggest
that different solvent environments could aid in the design of nanostructured catalysts that are
more durable.[59] Solvation induces a surface enrichment of Pd without completely eliminating the
occurrence of Pd channels that span the surface alloy. This was shown by exact quantification of
the four-point channel motif where the limiting factors derived from pair ordering alone may lead
one to believe that the Pd channels do not occur in significant amounts.

V. DATA AVAILABILITY

The data is available upon reasonable request from the authors. Software to calculate the order
parameters is available at https://github.com/jmgoff/clst order.
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