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Motivated by recent transport experiments, we theoretically study the quantum Hall effect in
topological semimetal films. Owing to the confinement effect, the bulk subbands originating from
the chiral Landau levels establish energy gaps that have quantized Hall conductance and can be
observed in relatively thick films. We find that the quantum Hall state is strongly anisotropic for
different confinement directions not only due to the presence of the surface states but also because
of the bulk chiral Landau levels. As a result, we re-examine the quantum Hall effect from the surface
Fermi arcs and chiral modes in Weyl semimetals and give a more general view into this problem.
Besides, we also find that when a topological Dirac semimetal is confined in its rotational symmetry
axis, it hosts both quantum Hall and quantum spin Hall states, in which the helical edge states are
protected by the conservation of the spin-z component.

I. INTRODUCTION

Weyl orbits [1, 2] in topological semimetals are unique
magnetic orbits that involve two Fermi arcs on oppo-
site surfaces connected via the chiral Landau levels run-
ning through the bulk. Experiments studying the quan-
tum oscillation and quantum Hall effect (QHE) related
to such orbits have been carried out in recent years [3–13]
and have sparked heated debates among research groups.
For instance, as most of the experiments were conducted
with the topological Dirac semimetal (DSM) candidate
Cd3As2 [14–18], some works attribute the QHE in those
Cd3As2 films to the surface Dirac cones instead of the
Weyl orbits [11, 19]. This is because the surface states
of Cd3As2 are shown to be two-dimensional (2D) Dirac
cones by the angle-resolved photoemission measurements
[20–22] instead of the open Fermi arcs as theoretically
predicted [14]. In order to distinguish the two mecha-
nisms of QHE in Cd3As2, it is proposed as a key that the
QHE based on Weyl orbits depends on the film thickness
[2, 3, 7, 8], which was observed in a wedge-shaped film
of Cd3As2 [3]. However, a recent study suggests that the
QHE in such wedge-shaped films may come from a com-
pletely different mechanism [23], and thus the existence
of Weyl orbits remains elusive. As another example for
the debates, some experiments [3, 4] find that the energy
levels of Weyl orbits are related to the quantum con-
finement subbands, which contradicts with some other
works [6, 24, 25] distinguishing Weyl orbits with the con-
finement effect. Hence, further studies are still needed in
order to understand the nature of both Weyl orbits and
the surface states of Cd3As2.

Motivated by the connection between Weyl orbits and
the quantum confinement effect, and by the progress
in fabricating high-quality nanostructures of Cd3As2

[26, 27], we investigate the QHE induced by confine-
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ment subbands of the chiral Landau levels in topological
semimetal films. We study the QHE in Weyl semimetals
(WSMs) in two cases of the confinement direction: with
and without the surface states. While in the former, the
energy levels agree with the results obtained from the
semiclassical analysis as expected, we show that the chi-
ral Landau subbands behave differently in the latter. By
examining the difference between those two cases, we find
a more general expression for the energy levels of Weyl
orbits in a WSM. Furthermore, we find that in DSM films
confined in their rotational symmetry axis, the quantum
Hall and quantum spin Hall states coexist due to the spin
conservation.

This paper is organized as follows. In Sec. II, we intro-
duce the models describing our WSM and DSM. In Sec.
III, we revisit the QHE based on Weyl orbits by con-
sidering a WSM film with chiral surface states on their
boundaries. We then carry out the same calculation but
in a film confined in a direction so that it has no surface
states. In Sec. IV, we explain the results obtained in
the preceding section and examine the QHE in a WSM
confined in an arbitrary direction. We also study the
QHE in a DSM confined in its rotational symmetry axis
and consider a specific case of (001) Cd3As2 film to show
that the effect is experimentally observable. Finally, our
results will be summarized in Sec. V.

II. MODELS

In this work, we describe a WSM by the minimal model
[28, 29]

HW(k) =t(sin kxσx + sin kyσy)

+ [M + t′(cos kx + cos ky + cos kz)]σz (1)

with σi being the Pauli matrices. Notice that the di-
mensionless ki denote the product qiai, where qi are the
usual crystal momenta and ai lattice constants. This
cubic lattice model is centrosymmetric and breaks the
time-reversal symmetry. Hereafter, we use t = t′ = 1 and
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FIG. 1. (a) WSM/DSM with two Weyl/Dirac nodes (orange
points) aligned along the z axis. (b)/(c) A slab confined in
the x/z direction in a perpendicular magnetic field B.

M = −2.5 so that the Hamiltonian gives a pair of Weyl
nodes at kW = (0, 0,±π/3), as depicted in Fig. 1(a). If
we confine this WSM in the x direction, the topologi-
cal surface states called Fermi arcs will appear. In our
minimal model, the arcs are straight lines connecting the
projections of the two bulk Weyl cones.

When the Weyl points are located close to the Γ-point,
we can expand the Hamiltonian to obtain a continuum
model

HW(k) = t(kxσx+kyσy)+[m−t′(k2
x+k2

y+k2
z)/2]σz, (2)

where m = M + 3t′. We will use the lattice Hamiltonian
for numerical calculations and its continuum counterpart
for obtaining the analytical expressions.

On the other hand, the DSM is described by an effec-
tive Hamiltonian of Cd3As2 and Na3Bi [14, 30]

HD(q) = Ẽ0(q) +


M̃(q) Aq+ 0 0

Aq− −M̃(q) 0 0

0 0 M̃(q) −Aq−
0 0 −Ak+ −M̃(q)


(3)

with q± = qx± iqy, Ẽ(q) = C0 +C1q
2
z +C2(q2

x + q2
y), and

M̃(q) = M0 + M1q
2
z + M2(q2

x + q2
y). We transform this

into a tetragonal lattice model using the substitution

qi →
1

ai
sin ki, q2

i →
2

a2
i

(1− cos ki). (4)

Here, ax = ay = a and az = c are the tetragonal lattice
constants. The Hamiltonian then becomes

HD(k) =c0 + c1 cos kz + c2(cos kx + cos ky)

+ t(sin kxσzτx − sin kyτy)

+ [m0 +m1 cos kz +m2(cos kx + cos ky)]τz,
(5)

where the Pauli matrices σi and τi represent the spin
and orbital degrees of freedom, respectively. These mod-
els of DSMs preserve both time-reversal and inversion
symmetries, and have a rotational symmetry axis par-
allel to the z axis. If we confine the DSM in any di-
rection not parallel to z, each of its surfaces has two
disconnected Fermi arcs with opposite spin and chiral-
ity. From now on, unless stated otherwise, we choose

the parameters c0 = c1 = c2 = 0, t = m1 = m2 = 1
and m0 = −2.5 so that the material has a pair of Dirac
points at kD = (0, 0,±π/3) [Fig. 1(a)].

We will examine the WSM and DSM in a slab geome-
try confined in the i (i = x or z) direction, as shown in
Figs. 1(b) and 1(c), with periodic boundary conditions
(PBCs) in the other two directions. The slabs are sub-

jected to a uniform magnetic field B‖̂i, whose magnitude
can be written in terms of the magnetic flux Φ thread-
ing a unit cell as B = Φ/(ajak) = Φ0φ/(ajak). Here,
i 6= j 6= k, Φ0 = h/e is the magnetic flux quantum, and
φ = Φ/Φ0.

III. QUANTUM HALL EFFECT IN WEYL
SEMIMETAL FILMS

A. Films confined in the x direction

First, we consider the WSM confined in the x direc-
tion [Fig. 1(b)] with a magnetic field B‖x̂ represented
by vector potential A = (0, 0, Bay), where y is dimen-
sionless. The Hamiltonian of our WSM is then modified
in accordance with the Peierls substitution as (Appendix
A)

HW =
∑
x,y,k

1

2

{
d†xyk[M + t′ cos(k + 2πφy)]σzdxyk

+ d†xyk(t′σz − itσx)d(x+1)yk

+ d†xyk(t′σz − itσy)dx(y+1)k

}
+ h.c. (6)

with d†xyk (dxyk) being creation (annihilation) operator,
k momentum in the z direction. This Hamiltonian gives
an energy spectrum [Fig. 2(a)] that was shown in Ref.
[31] with a similar model to have the energy levels in
agreement with those of Weyl orbits [1, 2]

εn =
πt

ka/(2πφ) +Nx + 1
(n+ γ), n = 0, 1, . . . (7)

Here, ka is the length of the surface Fermi arcs, Nx the
number of lattice sites in the x direction, and γ the phase
offset that depends on the distance between the Weyl
points [32]. Additionally, to confirm the quantum Hall
state of this system, we compute the Chern numbers of
some energy gaps formed by the discrete levels of Weyl
orbits using the Streda formula [33] (Appendix B). The
nonzero Chern numbers indicate the existence of a quan-
tized Hall conductance and are equal to the number of
chiral modes at the edges of our system. Moreover, such
a quantum Hall state depends on the film thickness as
the energy levels do [Eq. (7)], which is regarded as a sig-
nature of the quantum Hall effect based on Weyl orbits
[3, 7, 8].

As mentioned in some experiments [3, 4], the Weyl
orbit levels are related to the quantum confinement effect
in topological semimetal films. In order to illustrate this
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FIG. 2. Energy spectra against the magnetic flux φ for (a) a WSM slab confined in the x direction [Eq. (6)], and (b) a WSM
bulk [Eq. (9)] with kx = πζ/(Nx + 1). The green lines represent semiclassical result determined by Eq. (7) for (a) ka = 2π/3
and γ = 0.7, (b) ka = 0 and γ = 1. (c) The bulk Landau bands of a WSM confined in the x direction and subjected to a
magnetic flux φ = 0.01. The green dots indicate confinement subbands formed from the chiral Landau bands. The Chern
numbers of some energy gaps are shown in (a) and (b). All the results are computed with Nx = 20.

idea, we consider those levels [Eq. (7)] in the absence
of the Fermi arcs (ka = 0) but keep the Weyl nodes
unchanged (γ unchanged). In other words, we consider
only the tunneling process of the quasi-particles via the
bulk chiral Landau levels. In this case, we see that the
energy levels take the form ε′n = πt(n+1)/(Nx+1) and do
not change with the magnetic field. On the other hand,
we know that in the bulk WSM the linear dispersion of
the chiral Landau levels at the Weyl points is given by

Ec = ±tkx. (8)

A comparison between ε′n and Ec indicates that the mo-
mentum kx is quantized in a similar way to an infinite
quantum well problem, i.e., kx = (n+1)π/(Nx+1). This
indicates that the energy levels of Weyl orbits in the limit
ka = 0 are confinement subbands stemming from the chi-
ral Landau levels. To further substantiate this argument,
we carry out some numerical calculations as follows. We
impose an additional PBC on the Hamiltonian (6) in the
x direction to eliminate the surface states and preserve
only the bulk spectrum. The Hamiltonian is then given
by

HW =
∑

kx,y,kz

1

2

(
d†kxykz

{
t sin kxσx + [M + t′ cos kx

+ t′ cos(kz + 2πφy)]σz
}
dkxykz

+ d†kxykz (t′σz − itσy)dkx(y+1)kz

)
+ h.c.. (9)

In order to obtain only the bulk spectrum of our WSM
slab, i.e., to add the effect of quantum confinement, we
apply the particle-in-a-box method (PiBM) (Appendix
C) by diagonalizing this Hamiltonian only at the mo-
menta

kx =
πζ

Nx + 1
, ζ = 1, 2 . . . , Nx. (10)

The spectrum is shown in Fig. 2(b), where we see that
distinct energy gaps still exist even in the absence of sur-
face states. The energy levels also agree well with the
semiclassical result given by Eq. (7) for ka = 0, as de-
noted by the green lines. To find their origin, we show
the Landau bands obtained from Hamiltonian (9) for a
fixed magnetic flux [Fig. 2(c)]. Then, by adding the con-
finement effect [Eq. (10)], each continuous Landau band
becomes a set of discrete confinement subbands. We see
that the energy levels in Fig. 2(b) are actually the con-
finement subbands formed from the chiral Landau levels,
as we have predicted. In the presence of boundaries, these
chiral Landau subbands hybridize with the surface Fermi
arcs and bend towards zero energy in the low field regime,
giving rise to the Weyl orbit levels shown in Fig. 2(a). As
a result, we can conclude that the quantization of Weyl
orbits gives energy levels that are chiral Landau subbands
hybridizing with the surface Fermi arcs.

From this interpretation of the Weyl orbit levels, we
gain two new perspectives about the QHE in topologi-
cal semimetal films. First, the QHE induced by Weyl
orbits is intrinsically two-dimensional instead of three-
dimensional as being claimed before [6, 24, 25, 34, 35]
since the energy levels originate from the quantum con-
finement effect. Further evidence for this 2D nature is
that the Hall resistance of our WSM film is a factor of
the Klitzing constant RK = h/e2, in agreement with the
experiments, whereas in a so-claimed 3D QHE induced
by the charge-density wave [36], the Hall resistance is
much smaller than RK . Second, if our material some-
how has the bulk chiral Landau levels but with no open
Fermi arcs on its surfaces, e.g. the arcs are combined into
a closed Fermi loop [1], the gaps between the chiral Lan-
dau subbands still remain. Hence, a thickness-dependent
QHE or quantum oscillation in relatively thick topologi-
cal semimetal films is not conclusive evidence for observ-



4

(a) (b)

0

6

4

7

5

FIG. 3. (a) Energy spectrum against the magnetic flux φ
for a WSM slab confined in the z direction. The green lines
represent energy levels determined by Eq. (19). The Chern
numbers of some energy gaps are shown. (b) The bulk Landau
bands of a WSM confined in the z axis and subjected to a
magnetic flux φ = 0.01. The green dots indicate confinement
subbands formed from the chiral Landau band. All the results
are computed with Nz = 20.

ing either Weyl orbits or surface Fermi arcs, in contrast to
the usual expectation [3, 7, 8, 13]. Moreover, since such a
QHE can take place even without the surface Fermi arcs,
a question then naturally arises; is the QHE observable
in our WSM when it is confined in the z direction, which
has no nontrivial states on its boundaries?

B. Films confined in the z direction

We now consider a WSM confined in the z direction
[Fig. 1(c)] with a magnetic field B‖ẑ given by vector po-
tential A = (0, Bax, 0). Similar to the previous case, the
bulk spectrum of our WSM decomposes into 1D Lan-
dau bands dispersing along the z direction, as shown in
Fig. 3(b), and the chiral level still evolves differently from
other bands. If we introduce confinement in z, we expect
that the chiral Landau subbands also form energy gaps
distinct from others, and the QHE in relatively thick films
will thus be observable. The Hamiltonian of our system
now reads

HW =
∑
x,k,z

1

2

(
d†xkz

{
[M + t′ cos(k + 2πφx)]σz

+ t sin(k + 2πφx)σy
}
dxkz + d†xkzt

′σzdxk(z+1)

+ d†xkz(t
′σz − itσx)d(x+1)kz

)
+ h.c. (11)

with k being momentum in the y direction. The energy
spectrum of this Hamiltonian is shown in Fig. 3(a). Since
this slab does not have topological surface states, we can
also obtain its spectrum analytically by using the PiBM.
We start with adding the effect of magnetic field B on
the continuum model [Eq. (2)], which is done by replacing

the momenta kx and ky with ladder operators l, l† as

kx →
√
πφ(l† + l), ky → −i

√
πφ(l† − l). (12)

The Hamiltonian then becomes

HW(kz) =

(
M(kz) 2

√
πφtl

2
√
πφtl† −M(kz)

)
, (13)

with M(kz) = m− t′k2
z/2− 2πφt′

(
l†l +

1

2

)
. Then, us-

ing the trial wavefunctions (α1 |ν − 1〉 , α2 |ν〉)T for ν =
1, 2, . . . and (0, |0〉)T for ν = 0, where ν is the band index,
we can obtain the spectrum of HW(kz) from the secular
equations as

det

∣∣∣∣Kνkz + πt′φ− E 2
√
πφt
√
ν

2
√
πφt
√
ν −Kνkz + πt′φ− E

∣∣∣∣ = 0, (14)

for ν = 1, 2, . . ., and

−K(ν=0)kz + πt′φ− E = 0, for ν = 0. (15)

Here, Kνkz = m− t′

2 k
2
z − 2πt′φν. The 1D Landau bands

of the WSM are then given by

E0(kz) = −m+
t′

2
k2
z + πt′φ, (16)

Eν(kz) = ±
√
K2
νkz

+ 4πt2φν + πt′φ. (17)

Now, we can transform the dispersion of the zeroth level
into a lattice version by substituting k2

z → 2(1− cos kz),
which yields

E0(kz) = −M − 2t′ − t′ cos kz + πt′φ. (18)

Finally, we take into account the effect of quantum con-
finement by employing the PiBM, i.e., replacing kz =
πζ/(Nz + 1) with ζ = 1, 2, . . . , Nz. The subbands of chi-
ral Landau level read

ε0(ζ) = −M − 2t′ − t′ cos
πζ

Nz + 1
+ πt′φ, (19)

and they evolve linearly with respect to the magnetic flux
φ, as shown by the green lines in Fig. 3(a). On the other
hand, the Landau bands with ν > 0 move away from 0
and make the gaps between the chiral Landau subbands
observable. These gaps also have nonzero Chern num-
bers, indicating the existence of the QHE.

IV. DISCUSSION

Based on the spectrum in Fig. 3(a), we make two in-
ferences:

First, we see that when our WSM is confined in the z
direction, the dependence of its chiral Landau subbands
on φ deviates considerably from that of the slab perpen-
dicular to the x axis. In particular, if confinement is in
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the x direction, and we neglect the surface Fermi arcs,
the subbands stay constant as the field strength increases
[Fig. 2(b)], which agrees with the semiclassical equation.
On the other hand, if the WSM is confined in z, the
subbands depend linearly on the flux and are unevenly
spaced, and thus behave differently from Eq. (7). From
Eq. (19), we know that such a difference stems from the
second-order terms in k of Hamiltonian (2) while Eq. (7)
was obtained by using a linear dispersion of the chiral
Landau levels [1]. However, another problem then comes
up: those quadratic terms in k contribute substantially
to the spectrum in Fig. 3(a) but does not affect the one
in Fig. 2(b). We investigate this problem and revisit the
semiclassical Weyl orbits in subsection IV A.

Second, since a DSM can be regarded as a combina-
tion of two WSMs with opposite spin and chirality, we
expect that a (001) film of DSM will have a spectrum
with nonzero spin Hall conductance. We demonstrate
this idea in subsection IV B, and show that such a quan-
tum spin Hall effect (QSHE) is observable in the DSM
candidate Cd3As2.

A. Dependence of the chiral Landau levels on the
k2-terms in HW(k)

We study how the k2-terms in Hamiltonian (2) af-
fect the dispersion of the zeroth Landau bands by find-
ing their analytical expressions when the magnetic field
B is applied along an arbitrary direction. We trans-
form the vectors (kx, ky, kz) of the crystal frame into the

(k1, k2, k3) of the magnetic frame (k̂3‖B) using a 3D rota-
tion matrix. For simplicity and without loss of generality,

we assume that B ⊥ k̂y and rotate the vectors about the
y axis (k2 ≡ ky) ask1

k2

k3

 =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

kxky
kz

 (20)

with θ being the angle between k3 and kz. The continuum
Hamiltonian of our WSM then reads

HW(k) = t(cos θk1 + sin θk3)σx + k2σy +M(k)σz, (21)

where M(k) = m − t′(k2
1 + k2

2 + k2
3)/2. The

eigenvalues of this Hamiltonian are given by E =
±
√
M2 + t2[(cos θk1 + sin θk3)2 + k2

2], and the Weyl
points are located at (−kW sin θ, 0, kW cos θ) and

(kW sin θ, 0,−kW cos θ), kW =
√

2m/t′.

1. Bulk chiral Landau levels

To find the chiral Landau bands analytically, we con-
sider the parameters {t, t′,m} that satisfy the constraint
t′kW /t = η = ±1, which keeps the velocity at the Weyl

points isotropic. In the vicinity of the first Weyl point
(−kW sin θ, 0, kW cos θ), the Hamiltonian reads

HW(k′) = tk′1(cos θσx + η sin θσz) + tk2σy

+ tk′3(sin θσx − η cos θσz)−
t′

2
(k′21 + k2

2 + k′23 )σz, (22)

where k′1 = k1 + kW sin θ and k′3 = k3 − kW cos θ. When
a magnetic field B is applied, the momenta k1 and k2

are quantized in terms of the ladder operators similar to
Eq. (12). We then have HW(kz) = H1(kz) + H2(kz),
where the first-order term is

H1(kz) = tk′3

(
−η cos θ sin θ

sin θ η cos θ

)
+ t
√
πφ

(
η sin θ(l† + l) cos θ(l† + l)− (l† − l)

cos θ(l† + l) + (l† − l) −η sin θ(l† + l)

)
,

(23)

and the second-order one reads

H2(kz) = − t
′

2

[
2πφ(2l†l + 1) + k′23

]
σz. (24)

We now make an approximation by solving the
chiral Landau level from H1 and treating H2 as
a perturbation. With the eigenvector |Lc+〉 =

[1/
√

2(1 + cos θ)](η sin θ, 1 + cos θ)T |0〉, the chiral Lan-

dau level at the first Weyl point is given by E
(0)
+ (k′3) =

ηtk′3. The first-order correction from the perturbation
H2 is

E
(1)
+ (k′3) = 〈Lc1|H2|Lc1〉 = t′

(
πφ+

k′23
2

)
cos θ. (25)

The dispersion of the zeroth Landau level is then ex-
pressed as

E+(k3) = ηt(k3 − kW cos θ)

+t′
[
πφ+

(k3 − kW cos θ)2

2

]
cos θ. (26)

The first-order correction from H2 allows us to repro-
duce both Eq. (8) and Eq. (18), and hence we neglect all
higher-order corrections.

A similar calculation yields the chiral Landau level
crossing the second Weyl point (− sin kW , 0, cos kW ) as

E−(k3) = −ηt(k3 + kW cos θ)

+t′
[
πφ+

(k3 + kW cos θ)2

2

]
cos θ. (27)

These expressions demonstrate that the contribution
from H2 to the chiral Landau levels vanishes when the
magnetic field is perpendicular to the line connecting the
two Weyl points, i.e., B‖x̂. Besides, the effect of H2 be-
comes more significant when the magnetic field direction
approaches the z axis. To assess the reliability of these
results, we compare Eqs. (26) and (27) with the Landau
bands obtained from the lattice model of Eq. (21), as
shown in Fig. 4.
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FIG. 4. Landau bands of our WSM bulk in a magnetic field with (a) θ = 60◦, (b) θ = 45◦, and (c) θ = 30◦. The Landau
bands (magenta lines) are obtained from the lattice model of Hamiltonian (21). The green lines represent the analytical results
given by Eqs. (26) and (27). The blue lines are also those equations but being modified to a lattice version by Eq. (4). The
green and blue lines approach each other as the Weyl points come close to the Γ-point.

2. QHE in a WSM slab confined in an arbitrary direction

After getting a more general expression for the chi-
ral Landau bands to explain the difference between
Figs. 2(b) and 3(a), it is interesting to seek an expres-
sion for the Weyl orbit levels taking into account the
effect of the k2-terms. The Onsager - Bohr - Sommerfeld
quantization for a classical orbit reads

∮
p · dr = 2π~(n+ γ). (28)

After some calculations, we get

εn =
B

t′ cos θ

[
A+B −

√
2AB +B2 + t2 − 2πφt′2 cos2 θ

]
(29)

with

A = t′
[
π(n+ γ)

L′z
cos θ + kW sin2 θ

]
and B = 2πφt

L′z
ka
.

(30)
Here, L′z = (Nz + 1)/ cos(Θ − θ) is dimensionless, ka =
2kW sin Θ, θ and Θ determine the directions of magnetic
field and confinement, respectively. In the limits Θ =
θ → 90◦ and Θ = θ → 0◦, this equation reproduces
Eq. (7) and Eq. (19).

We now compare Eq. (29) with the results obtained
from the lattice model of Hamiltonian (21). A WSM
confined in the k3 direction and subjected to a perpen-

dicular magnetic field is described by

HW =
∑

x1,k,x3

1

2

(
a†x1kx3

{
t sin(k + 2πφx1)σy

+
[
M + t′ cos(k + 2πφx1)

]
σz

}
ax1kx3

+ a†x1kx3
(t′σz − it cos θσx) a(x1+1)kx3

+ a†x1kx3
(t′σz − it sin θσx) ax1k(x3+1)

)
+ h.c..

(31)

The energy spectra of this WSM are shown in Fig. 5
for different tilting angles, which shows a transition from
Fig. 2(a) to Fig. 3(a), and agree well with Eq. (29). When
the confinement direction deviates from the x axis, both
the spacing and the dependence on magnetic flux φ of the
chiral Landau subbands change. Interestingly, we can
see how the subbands evolve by computing the Chern
numbers of the gaps between them.

In DSMs, we assume that the physics is somewhat sim-
ilar. As the experiments about Weyl orbits are often
conducted in (112) films of Cd3As2, this result may give
better explanations to those magneto-transport studies,
e.g. the high values of the Landau indices in the quantum
Hall measurements.

B. Quantum spin Hall effect in topological Dirac
semimetal thin films

Finally, we show how the QHE and QSHE induced
by chiral Landau subbands take place in the DSM films.
For our DSM [Eq. (5)], a magnetic field B‖ẑ preserves the
spin-z component (Sz) and lifts the spin degeneracy even
in the absence of Zeeman coupling. A DSM film grown
along its rotational symmetry axis (z) and subjected to



7

(a) (b) (c)

0

2
3

1

-1 0

2
3

1

4

0

3
4
5

6

Θ = 𝜃 = 60° Θ = 𝜃 = 45° Θ = 𝜃 = 30°

FIG. 5. Energy spectra against the magnetic flux φ for a WSM slab confined in the k3 direction determined by (a) Θ = 60◦,
(b) Θ = 45◦, and (c) Θ = 30◦. The green lines represent semiclassical result determined by Eq. (29) with γ = 0.7. The Chern
numbers of some energy gaps are shown. All the results are computed with a thickness corresponding to N3 = 20.

B is described by

HD =
∑
x,k,z

1

2

{
d†xkz

[
m0τz +m2 cos(k + 2πφx)τz

− t sin(k + 2πφx)τy + λzφσzτg
]
dxkz

+ d†xkz(m2τz − itσzτx)d(x+1)kz

+ d†xkzm1τzdxk(z+1)

}
+ h.c., (32)

where λz =
h2

8πmea2
and

τg =

(
gs 0
0 gp

)
, (33)

gs and gp are the effective g-factors for s and p orbitals,
respectively. For simplicity, we choose λzgs = 2 and
λzgp = 1. Solving the eigenvalues of HD numerically
gives an energy spectrum as shown in Fig. 6(a), which
is composed of two sets of chiral Landau subbands with
opposite chirality and spin polarization. They evolve in
different directions with respect to the magnetic field and
thus cross each other to form the energy gaps that can be
seen as an overlap of two separate gaps. This spectrum
is also explained by the quantum confinement picture as
shown in Fig. 6(b). According to this figure, we should
notice that the two sets of subbands cross if π/(Nz+1) <
|kD|, i.e.,

Lz >
π

|qD|
. (34)

To find how the chiral Landau subbands depend on the
magnetic field, we also follow the same calculation as
presented in Sec. III B and get an analytical expression
of those subbands

ε0↑(qz) = C0 +M0 + (C1 +M1)q2
z

+ (C2 +M2)
eB

~
+
µBgsB

2
, (35a)

ε0↓(qz) = C0 −M0 + (C1 −M1)q2
z

+ (C2 −M2)
eB

~
− µBgpB

2
. (35b)

To make a comparison with the lattice model spectrum
[Fig. 6(a)], we let Ci = 0 and transform the equations
using Eq. (4), which gives

ε0↑(ζ) = m0 + 2m2 +m1 cos
πζ

Nz + 1
− πm2φ+ λzgsφ,

(36a)

ε0↓(ζ) = −m0 − 2m2 −m1 cos
πζ

Nz + 1
+ πm2φ− λzgpφ.

(36b)
These expressions show that the presence of Zeeman in-
teraction still keeps the chiral Landau subbands evolving
linearly with the magnetic flux but changes their slopes.
Specifically, the gs-factor modifies the slope of the spin-
up chiral Landau subbands whereas gp affects the spin-
down ones, which reflects the band inversion of DSMs.

Due to our choice of parameters, the spin-up chiral
Landau subbands are hole-like, and the spin-down ones
are electron-like. As a result, when our material has
an additional boundary, the spin-up subbands are bent
downward and give right-handed edge states while those
with spin-down disperse upward giving left-handed edge
states. The combination of these edge modes may give
rise to the coexistence of chiral and helical edge states.
For example, we consider an energy gap of Chern number
C = 1, which is a combination of C↓ = 7 and C↑ = −6
gaps. When the Fermi level lies within this gap, the spin
Hall conductance is quantized as [37, 38]

σs = −Cs
e

2π
(37)

with Cs = (C↑−C↓)/2 = −6.5. At the boundary, energy
levels are bent and form 7 left-handed spin-down and



8

(a) (b)

0
1

-1

2

-2

4

-3

FIG. 6. (a) Energy spectrum against the magnetic flux φ
for a DSM slab. The red lines denote spin-up chiral Landau
subbands given by Eq. (36a). The blue lines denote spin-
down chiral Landau subbands given by Eq. (36b). The Chern
numbers of some energy gaps are shown. (b) Bulk Landau
bands of the DSM confined in the z axis and subjected to
a magnetic flux φ = 0.01. The red and blue dots indicate
confinement subbands formed from the chiral Landau bands.
All the results are computed with Nz = 20.

6 right-handed spin-up edge states, which would result
in a total of 1 chiral edge state and 6 helical edge states.
Hence, both quantum Hall and quantum spin Hall phases
coexist in our system whose time-reversal symmetry is
broken by the magnetic field. In this case, the helical
edge states exist because Sz is approximately conserved
[39]. This scenario is well-known in graphene [40–42],
where the helical edge states are protected by an addi-
tional symmetry instead of the time-reversal symmetry
as in topological insulators.

Estimation for Cd3As2

Since a quantized Hall conductance has recently been
observed in (001) films of Cd3As2 [19] under a strong
magnetic field, we roughly estimate whether the QHE
and QSHE induced by the chiral Landau subbands can
be observed in such films. Depending on the growth con-
dition, Cd3As2 can be either centrosymmetric or non-
centrosymmetric [43]. Here, we consider a centrosym-
metric Cd3As2, which is more popular and can be de-
scribed by Hamiltonian (3) with parameters obtained by
fitting with the ab initio calculation [44]. Additionally,
as the distance between the Dirac points of Cd3As2 ob-
tained by the Landau level spectroscopy measurements
[45–48] is one order smaller than the ab initio calcula-
tions [14, 49, 50], we also consider the hyperbolic model
proposed by Ref. [46]. A detailed procedure is presented
in Appendix E. The spectra computed for these two mod-
els are shown in Fig. 7, where, in both cases, we use
gs = 18.6 [46] and choose gp = 10 for simplicity.

In general, both spectra have three types of gaps

(a) (b)

000
-1

2
3

4

0
1

-1

2

-2

FIG. 7. Energy spectra against the magnetic flux φ for a
(001) film of Cd3As2 described by two different models: (a)
Hamiltonian (3) with parameters given by Ref. [44], the film
thickness is 50 nm, and (b) the hyperbolic model proposed by
Ref. [46], the film thickness is 120 nm. Some Chern numbers
are shown in both figures by comparing with Fig. 6(a).

formed by the chiral Landau subbands: those with
nonzero spin Chern number, those with nonzero Chern
number and zero spin Chern number, and one with van-
ishing Chern and spin Chern numbers. We are interested
in the gaps with nonzero spin Chern number, which do
not exist if the film is too thin but is not observable
if the film is too thick. If we assume an energy gap
∆ε ≥ 10 K ∼ 1 meV to be observable, the majority
of gaps in Fig. 7(a) and all gaps in Fig. 7(b) satisfy the
condition. Hence, the QHE induced by the chiral Lan-
dau subbands can be observed in relatively thick films
compared to the conventional quantum wells (5-20 nm).

If we use this simple model [Fig. 7(a)] to explain the
QHE observed in Ref. [19], it may capture two features
of the experiment, i.e., the absence of ν = 1 plateau and
the high resistance at strong magnetic field. Neverthe-
less, just like the explanation given in that reference, it is
also unable to clarify the difference in activation energy
between the states at even and odd filling factors. On
the other hand, if the actual distance between the Dirac
nodes agrees with the Landau level spectroscopy mea-
surements, the QHE induced by chiral Landau subbands
may not be observable in such a quantum Hall experi-
ment since the film thickness does not satisfy Eq. (34).

V. CONCLUSION

Our study gives a generic and simplified picture of the
QHE induced by confinement subbands stemming from
the chiral Landau levels in topological semimetal films.
Using a minimal model of WSM, we have demonstrated
that the energy levels of Weyl orbits originate from the
confinement subbands of the chiral Landau levels that
hybridize with the surface Fermi arcs. We have then
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studied how the k2-terms in a WSM Hamiltonian affect
the evolution of the chiral Landau bands with respect to
the magnetic field. We have found a general expression
for the Weyl orbit levels and shown how the QHE takes
place in a WSM film confined in an arbitrary direction.
Furthermore, when examining a DSM confined in its ro-
tational symmetry axis, we may have not only explained
the QHE recently observed but also predicted the coexis-
tence of both quantum Hall and quantum spin Hall states
in such a system.
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Appendix A: Lattice Hamiltonian in a magnetic field

We present how to obtain the Hamiltonian in Eq. (6)
and write its explicit form. First, we take the Fourier
transform of the lattice model (1) into real space as

HW = −1

2

∑
m

[
d†m(t′σz − itσx)dm+x̂ + d†m+x̂(t′σz+

itσx)dm + d†m(t′σz − itσy)dm+x̂ + d†m+1y
(t′σz + itσy)dm

− 4d†mMσzdm + d†mt
′σzdm+ẑ + d†m+ẑt

′σzdm

]
, (A1)

where m = (x, y, z) is a dimensionless position vector.
In the presence of a magnetic field B, the Hamiltonian
is modified by the Peierls substitution so that it remains
invariant under the U(1) gauge transformation. In par-
ticular, the hopping integrals are changed, such as

d†m+ŷtdm −→ d†m+ŷt exp(iϑ(y)
m )dm (A2)

with ϑ
(y)
m = − 2π

Φ0

∫m+ŷ

m
A · ŷady. Using the vector po-

tential A = (0, 0, Bay), we get ϑ
(x)
m = ϑ

(y)
m = 0 and

ϑ
(z)
m = −2πφy. Inserting these phases into Eq. (A1) and

taking Fourier transform along the z direction, we obtain
Eq. (6).

Since the vector potential breaks the translation sym-
metry along the y direction, the momentum ky is no
longer a good quantum number, and we are not able
to take the Fourier transform in this direction. We can
retain the translation symmetry by introducing the so-
called magnetic unit cells and the corresponding mag-
netic Brillouin zone. Nevertheless, keeping the Hamilto-
nian in the real space representation along the y direction
is a simpler choice for our work. The operator can then

be written explicitly as

HW =
∑
k


Ξ†1k
Ξ†2k

...

Ξ†Nxk


T 

∆ Ω 0 · · · 0
Ω† ∆ Ω · · · 0
. . .

. . .
. . .

. . .
...

0 0 · · · Ω† ∆




Ξ1k

Ξ2k

...
ΞNxk

 ,

(A3)
where Ξxk are 2Ny-spinors, and the two 2Ny × 2Ny ma-
trices ∆ and Ω are given by

∆ =


D1 O1 0 · · · O†Ny

O†1 D2 O2 · · · 0
. . .

. . .
. . .

. . .
...

ONy
0 · · · O†Ny−1 DNy

 (A4)

with Dy = [M + cos(k + 2πφy)]σz, Oy = (σz + iσy)/2,
and Ω = 1Ny×Ny

⊗ (σz− iσx)/2. Notice that we keep the
periodic boundary condition in the y direction, which
requires 2πφNy = 2nπ or Ny = n/φ with n = 1, 2, . . ..
On the other hand, as we can write the magnetic flux as
a ratio of two integers, i.e., φ = p/q, we choose n = p
and thus q = Ny for simplicity. This choice corresponds
to a magnetic Brillouin zone that has only one k-point in
the y direction.

Appendix B: Computing Chern numbers

To illustrate the quantum Hall effect induced by chiral
Landau levels, we compute Hall conductance of the gaps
between them using the Streda formula [33] for a 3D
system of sizes Lx × Ly × Lz. For instance, when the
Fermi energy lies in a gap, the Hall conductivity of films
perpendicular to the x axis can be determined by

σyz = −e∂n(EF )

∂Bx
(B1)

with n(EF ) being the particle density. We transform this
formula as

σyz = −e∆n(EF )

∆Bx
= −e

2

h

∆N(EF )

Lx∆p

qay
Ly

az
Lz
. (B2)

Here, N(EF ) is the number of states below Fermi energy,
Φyz/Φ0 = p/q, and the magnetic field is varied by chang-
ing p and keeping q constant. The Hall conductance is
then given by

Gyz = σyzLx = −e
2

h

∆N(EF )

∆p

1

Nyz
, (B3)

where Nyz is the number of k-points in the 2D magnetic
Brillouin zone. Similarly, for slabs perpendicular to z,
the Hall conductance reads

Gxy = σxyLz = −e
2

h

∆N(EF )

∆p

1

Nxy
. (B4)
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However, in order to show a connection with the edge
states forming in such QHE, instead of finding the Hall
conductance we compute the Chern numbers defined by

C(xy) =
∆N

∆p

1

Nxy
and C(yz) =

∆N

∆p

1

Nyz
. (B5)

These Chern numbers give the number of chiral edge
modes in our quantum Hall system.

Appendix C: Particle-in-a-box Method

When solving the slab geometry of a lattice Hamilto-
nian which does not have surface states, we can obtain
its spectrum simply by quantizing the momentum along
the confinement axis as in the particle-in-a-box problem.

To illustrate this idea, we consider a particular in-
stance, i.e., the WSM given by Eq. (1) confined in the z
direction with thickness Lz. To obtain its spectrum, we
often Fourier transform Eq. (1) along z into real space
and get the Hamiltonian

HW =
∑
k,z

{
d†kz
[

(2− cos kx − cos ky)σz − sin kxσx

− sin kyσy
]
dkz − d†kz

σz
2
dk(z+1) − d†k(z+1)

σz
2
dkz

}
. (C1)

This matrix has a size of 2Nz × 2Nz with Nz being
the number of lattice sites, z = 1, 2, . . . Nz. The open
boundary condition, or hard-wall boundary condition, is
imposed by setting the hopping terms between sites 1
and Nz to be zero, which implies that the wavefunc-
tions always vanish at sites 0 and (Nz + 1). Hence,
the width of our quantum well, or the film thickness,
is Lz = (Nz + 1)az. This boundary condition is an ap-
propriate approximation since we are mainly interested
in the low-energy limit of our model. Diagonalizing H
gives the energy spectrum of our WSM film.

A more convenient way to get the same result is the
aforementioned PiBM, which is to set kz → πζ/(Nz +
1) with ζ = 1, 2, . . . in our lattice Hamiltonian Eq. (1).
Notice that the periodicity of our lattice restricts 0 <
ζπ/(Nz + 1) < π [51], and thus we have the integers
ζ ∈ [1, Nz]. Using this substitution, we can obtain the
exact energy spectrum of Hamiltonian Eq. (C1) just by
diagonalizing the matrices

hζ(k) = − sin kxσx − sin kyσy

+

[
M − cos kx − cos ky − cos

(
πζ

Nz + 1

)]
σz. (C2)

The eigenvalues are simply

εζ(k) = ±

[
sin2 kx + sin2 ky

+

(
M − cos kx − cos ky − cos

πζ

Nz + 1

)2
] 1

2

. (C3)

Nevertheless, if nontrivial edge states are present, e.g.,
the WSM confined along x, this method becomes a rough
approximation as it is unable to demonstrate the local-
ized edge states, but it is still sufficient to demonstrate
the formation of bulk subbands due to the quantum con-
finement.

Appendix D: Semiclassical quantization

Chiral Landau levels at the two Weyl points are given
by

Ec(k3) = ηt(k3 − kW cos θ)

+t′
[

1

2
(k3 − kW cos θ)2 + πφ

]
cos θ, (D1)

Ec(k3) = −ηt(k3 + kW cos θ)

+t′
[

1

2
(k3 + kW cos θ)2 + πφ

]
cos θ. (D2)

To obtain the semiclassical quantization of Weyl orbits,
we apply the Bohr - Sommerfeld - Onsager quantization
condition, i.e.,

∮
p · r = 2π~(n + γ). We split the line

integral into two parts

• The integration along the Fermi arcs:∫
arcs

p · dr =
~2

eBa2
Sk ≈

~2

eΦ
ka2

E

t
=

~
πφ

kaE

t
, (D3)

where Sk is dimensionless, Θ is the angle determin-
ing the confinement direction, and ka = 2kW sin Θ.

• The integration along the bulk chiral Landau levels∫
lls

p · dr = ~k32L′z = 2~L′z

(
−t′kW sin2 θ +

√
∆

t′ cos θ

)
(D4)

Here, L′z =
Nz + 1

cos(Θ− θ)
is dimensionless, θ is the

angle for the direction of magnetic field, and ∆ =
t2 − 2t′ cos θ(πt′φ cos θ − E).

Using these equations, we get the energy levels of Weyl
orbits as given in Eq. (29).

Appendix E: Laudau quantization of topological
Dirac semimetals

We consider the continuum model of DSM given by
Eq. (3). In the presence of a magnetic field B‖ẑ, the
momenta (qx, qy) are replaced by the ladder operators as

qx →
1√
2lB

(l† + l), qy →
−i√
2lB

(l† − l). (E1)
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and the Zeeman interaction is added. The Hamiltonian
then becomes

HD(kz) =

(
H↑D(kz) 0

0 H↓D(kz)

)
(E2)

with

H↑D(qz) = Eqz +

M(qz) +
µBgsB

2

√
2A

lB
l†

√
2A
lB

l −M(qz) +
µBgpB

2


and

H↓D(qz) = Eqz +

M(qz)− µBgsB

2
−
√

2A

lB
l

−
√

2A

lB
l† −M(qz)− µBgpB

2

 .

Here, we have E(qz) = C0 + C1q
2
z + C2l

−2
B

(
2l†l + 1

)
and

M(qz) = M0 + M1q
2
z + M2l

−2
B

(
2l†l + 1

)
. According to

Ref. [44], the parameters are A = 0.889 eVÅ, M0 =
−0.0205 eV, M1 = 18.77 eVÅ2, M2 = 13.5 eVÅ2, C0 =
−0.0145 eV, C1 = 10.59 eVÅ2, and C2 = 11.5 eVÅ2. A
numerical diagonalization of HD(kz) yields the spectrum
in Fig. 7(a). Besides, using the eigenvectors (|0〉 , 0, 0, 0)T

and (0, 0, 0, |0〉)T , we can analytically obtain the chiral
Landau bands

ε0↑(qz) = C0 +M0 + (C1 +M1)q2
z

+ (C2 +M2)
eB

~
+
µBgsB

2
(E3)

and

ε0↓(qz) = C0 −M0 + (C1 −M1)q2
z

+ (C2 −M2)
eB

~
− µBgpB

2
. (E4)

On the other hand, the hyperbolic model of Cd3As3

proposed by Ref. [44] can be obtained simply by replacing

the function M̃(q) with

M̃(j)(q) = M
(j)
0 +

√
(M

(j)
3 )2 + (M

(j)
1 qz)2+M

(j)
2 (q2

x+q2
y).

(E5)

Here, the parameters are A(j) = 2.75 eVÅ, M
(j)
0 =

−0.06 eV, M
(j)
1 = 96 eVÅ2, M

(j)
2 = 18 eVÅ2, M

(j)
3 =

0.05 eVÅ2, C
(j)
0 = −0.219 eV, C

(j)
1 = −30 eVÅ2,

C
(j)
2 = −16 eVÅ2. Following the same calculation as

before, we get the spectrum in Fig. 7(b) and the analyt-
ical expressions

ε0↑(qz) = C0 + M̃0 + C1q
2
z +

√
M2

3 + M̃1k2
z

+ (C2 +M2)
eB

~
+
µBgsB

2
, (E6)

ε0↓(qz) = C0 − M̃0 + C1q
2
z −

√
M2

3 + M̃1k2
z

+ (C2 −M2)
eB

~
− µBgpB

2
. (E7)
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