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Electron spins in edge or surface modes of topological insulators (TIs) with strong spin-orbit
coupling cannot be directly manipulated with microwaves due to the locking of electron spin to its
momentum. We show by contrast that a resistively detected nuclear magnetic resonance (RDNMR)
based technique can be used to probe the helical nature of surface conducting states. In such
experiments, one applies a radio frequency (RF) field to reorient nuclear spins that then couple
to electronic spins by the hyperfine interaction. The spin of the boundary electrons can thereby
be modulated, resulting in changes in conductance at nuclear resonance frequencies. Here, we
demonstrate that the conductivity is sensitive to the direction of the applied magnetic field with
respect to the helicity of the electrons. This dependence of the RDNMR signal on angle probes the
nature of the conductive edge or surface states. In the case of 3D TI in the quantum Hall regime,
we establish that the dominant mechanism responsible for the conductance change in a RDNMR
experiment is based on the Overhauser field effect. Our findings indicate that the same physics
underlying the use of RDNMR to probe TI states also enables us to use RF control of nuclear spins
to coherently manipulate topologically protected states which could be useful for a new generation

of devices.

I. INTRODUCTION

The discovery of time-reversal-invariant topological in-
sulators (TIs), which possess finite band gaps in the bulk
and have gapless helical states on boundaries, has at-
tracted much attention in recent years!™. The novel
features of TIs are intimately related to the under-
lying topology of the single-particle spectrum in mo-
mentum space, and are robust as long as the time-
reversal symmetry is unbroken®?®.  The first two-
dimensional TI was realized in HgTe/CdTe quantum
well®!0.  The existence of topological edge state was
confirmed by observing quantized longitudinal conduc-
tance. Later three dimensional TIs were also discov-
ered in various materials, such as in Bi;_,Sb, and
Bis_,Sb,Tes_,Se, compounds™1 18 Angle-resolved
photoemission spectroscopy (ARPES) and scanning tun-
neling microscopy/spectroscopy (STM/STS), provide di-
rect evidence of the two-dimensional (2D) Dirac fermions
on the surface!!,13716:18,

NMR techniques are a powerful probe of the electronic
degrees of freedom due to the existence of hyperfine cou-
pling. Spin polarized electrons create an effective lo-
cal magnetic field that changes the nuclei resonance fre-
quency, an effect that is easily detected. The technique
has been applied to study the physics of quantum Hall
effect, and electronic polarization in quantum wells of 2D
electron gases and in quantum wires'® 3%, NMR has also
been used to investigate bulk properties of topological
materials with non-local order3”#3. The use of tradi-
tional NMR techniques to study properties of reduced
dimensionality systems, such as GaAs heterostructures
and surface states, is precluded as relatively few nuclear
spins participate making the signal of RF response weak.
Various methods have been proposed to remedy the low

sensitivity!® 24, Resistively Detected NMR (RDNMR)
has been the most powerful tool developed thus far to
probe the fundamental physics of the reduced dimen-
sionality systems. In confined geometries the overlap of
the electronic degrees of freedom with the nuclei can be
relatively large resulting in strong hyperfine interaction
between electronic and nuclear spins. Strong hyperfine
coupling in quantum wells was exploited in RDNMR to
probe the quantum Hall-regime!?:23:2232 In quantum
Hall systems, the nuclei are first polarized statically by
application of a strong magnetic field, or dynamically,
for instance through the spin flip-flop processes at quan-
tum point contacts**. The nuclei are then depolarized
by irradiation with a resonant RF field, which can then
be seen in a variation of the resistance that may be at-
tributed to either nucleus-electron scattering or a change
of the Overhauser field*>. Sensitive RDNMR measure-
ments can thus uncover rich structures of electronic states
and the interplay between electrons and nuclei.

In this paper, we propose RDNMR experiments that
can be performed in TI systems as a new tool to iden-
tify and characterize the Dirac fermions on the edges or
surfaces. An advantage of RDNMR, compared to the
ARPES and STM/STS experiments, is that it also pro-
vides a way to directly control the Dirac fermions. The
local nature of hyperfine interaction permits the direct
manipulation of the electronic spin, even when the elec-
tronic spin is coupled to its orbital motion, as is the case
in the TIs. This is particularly useful because electronic
spin is not a good quantum number when there is strong
spin-orbit coupling, and microwaves cannot control the
electron spin polarization. Here we identify two different
mechanisms giving rise to RDNMR in TIs. These are
spin flip-flop processes and the Overhauser field effect.
For the former type, because of the helical nature of the



edge states, nuclei on the edge are dynamically polar-
ized along the quantization axis determined by a weak
external magnetic field when bias is applied*6~*®. When
subjected to a RF field, the depolarized nuclei backscat-
ter the Dirac fermions on the edge/surface and change
the current. The second mechanism can be applied to a
3-D TT under a strong magnetic field, that is, in the quan-
tum Hall regime, which is analogous to the mechanism
found in Ref. 23: the effective magnetic field produced
by nuclei, the Overhauser field, varies when nuclei are
in resonance and this modifies the gap between adjacent
Landau levels, which leads to a change of surface carrier
densities and hence the transport properties.

The paper is organized as follows. In Sec. II, we in-
troduce the dynamic nuclear polarization on the edges of
a 2-D TI, discuss how RDNMR works through spin flip-
flop processes and compare the experimental signals that
could distinguish helical edge states and non-helical edge
states. We then generalize this idea to a clean 3-D TI
wire in Sec. IIT and demonstrate similar results. In Sec.
IIT, we also discuss how RDNMR based on Overhauser
shift effect can be realized in 3-D TIs in the quantum
Hall regime. Discussions and conclusions are presented
in Sec. IV.

II. TWO DIMENSIONAL TOPOLOGICAL
INSULATORS

In this section, our calculations regarding the presence
of the RDNMR response in 2D TIs is described. We find
that RDNMR response exists and exhibits a dependence
on the orientation of the applied magnetic field only if
the edge states are helical.

In 2-D TIs, there are fermions with opposite spins
counterpropagating on the edges of the system, which
are called helical edge states. Although the details of the
edges and microscopic parameters vary from systems to
systems, the helical edge state can be well described by
a minimal Hamiltonian at low energies:

Hedge = hvpko., (1)

where ¢, is the Pauli spin matrix and vgr is the Fermi
velocity. We assume that Eq. (1) and Eq. (5) can still
serve as minimal Hamiltonians that capture the essential
physics even when a weak external magnetic field or the
Overhauser field due to polarized nuclei is present.

We now discuss the meaning of the ‘weak’ and ‘strong’
magnetic fields terminology that is used in the paper. A
magnetic field is weak if it does not drastically change
the low energy physics on the edges or surfaces of a TI.
The field only determines the quantization axis of nuclei
and is used to perform NMR experiments. For 2-D TIs,
we assume that the edge physics is still well described
by helical edge states upon the application of such weak
field. We do not consider, for example, edge excitations
that become gapped or helical edge states that transition
to chiral edge states at the Fermi level*®®!. For 3-D TIs
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FIG. 1. Schematic of RDNMR for a 2-D TI. When a RF field
is applied to depolarize/flip the nuclei, the nuclei continuously
back-scatter the helical Dirac fermions through the hyperfine
interaction. The static weak magnetic field is applied along
the 2’ direction.

considered later, the magnetic field may be considered to
be weak if the temperature is much larger than the Lan-
dau gap or Zeeman gap so the surface states may still be
approximately described by gapless 2-D Dirac fermions.
In contrast, a strong magnetic field not only polarizes nu-
clei but also drastically changes the low energy physics of
a TI. In our work this is the case for 3-D TIs in the quan-
tum Hall regime, where the conducting surfaces that is
perpendicular to the magnetic field become gapped due
to the formation of Landau levels.

The interaction between helical fermions and nuclei on
the edge is modelled by the Fermi-contact-type hyperfine
interaction,

I°Sy + 135 -
%) sV (7 — Ry),

(2)
where ﬁz is the coordinate of nuclei, s labels the isotope
species, A‘:( 1) is the anisotropic out(in)-plane hyperfine
coupling constant for isotope s , I7 | _ are the dimension-
less nuclear spin operators and S, 4 _ are the dimension-
less electronic spin operators. For a 2-D TI, the nuclei
interact with electrons only on the 1-D edge so D = 1,
while for a 3-D TI D equals 2 since the Dirac fermions
live on the 2-D surface. Note that although in this work
we assume the electronic density to be constant on the
edge/surface for convenience, any variation of it can be
absorbed into the Az(zy) and hence does not affect the
final results.

When the edge is short and a voltage bias is imposed
there will be unequally populated right (spin-up) and left
(spin-down) movers. The imbalance would tend to equi-
librate through spin flip processes by the hyperfine in-
teraction, as illustrated in Fig. 1 by the blue interaction
lines. Due to the helicity of the edge state and the con-
servation of total angular momentum, such process would
gradually polarize the nuclear spins at the edges, which
is referred as Dynamic Nuclear Polarization (DNP), until

Hy =) (Ai[jSz + A3,

7,8
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FIG. 2. (a) The change of conductance at the NMR resonance frequency vs. V/kgT at different angles 6 in a two-terminal
experiment, for isotropic hyperfine coupling |A.| = |Azy|. (b) The change of conductance at the NMR resonance frequency
versus angle 6 for different anisotropic hyperfine coupling |A./Azy|. The solid line represents |A./Aqy| = 1, the dashed line
represents |A;/Azy| = 4 and the dot line is for |A;/Azy| = 0.25. The blue lines show the 2-D TI while the red lines represent

the case when there is one spin-degenerate conducting channel on the edge, as depicted in the insets of (b).

In the insets,

the black lines represent the edges of the sample while blue and red lines show the counter-propagating conducting channels.
an = TNy |Agy |2 /P20%, ann = 72Ny J?|Agy|?/16. Parameters: T = 9/2, A/kpT = 0.05.

the whole system reaches non-equilibrium steady state
(NESS)#6748. In the case that the nuclear spins relax
only through hyperfine interaction with Dirac fermions
at the edges, which we assume throughout this work, it is
shown that for spin-1/2 nuclei in the absence of external
magnetic field, its magnetization is M = %tanh(ﬁ),
where V' = i1, — g and pp(g) is the chemical potential of
left (right) reservoir®. On the other hand, although there
would be finite backscattering current during the tran-
sient period due to the electron-nucleus backscattering
process, in the NESS there would be no backscattering
current because the change rate of nuclear spins, which
is also the scattering rate of right or left movers, vanishes
in the absence of other nuclear relaxation mechanisms.
However, such a backscattering current can be main-
tained by performing a NMR experiment. (Throughout
this paper, the phrase “performing a NMR experiment”
implies that the polarized nuclear spin systems is subject
to the resonant RF field.) That is, suppose that the static
magnetic field B, = Bz is sufficiently weak to not affect
the effective electronic Hamiltonians of Eqs. 1 and 5,
and a weak radio-frequency (RF) magnetic field perpen-
dicular to B_; at the resonance frequency of isotope s are
applied, the nuclei of kind s will be depolarized and may
be regarded to have infinite spin temperature at NESS,
if one assumes that the driving is much stronger than the
relaxation for nuclei and nuclei have saturated. In this
case, because these nuclei are no longer polarized and are
allowed to scatter with the helical fermions, the helical
fermions at edges would be continuously backscattered

by those nuclei at resonance, as indicated in Fig. 1. The
backscattering current Iy, on a single edge in this case
could be found using Fermi’s golden rule (see Appendix
A), that is

I~ j g (F =)+ m* + DV, (3)

which leads to suppression of the conductance

5G 27 (I +1) (4)
o —a ST

h 3h ;
compared to the ideal quantized conductance Gy = %

in a two-terminal experiment, if kgT < V is assumed
and the Zeeman splitting of nuclei is neglected. We use
(...) to denote the average value with respect to specific
2 s s |2

%, and N is the
number of specific isotope s covered lgy edge state on the
single edge. I® and m® are the spin quantum number
and magnetic quantum number of nuclear species s in
the direction of magnetic field respectively.

In general, the weak static magnetic field B; = B3
can be along arbitrary directions, and in this case the
nuclear spins would not always be fully polarized by the
current®”. The population ratio of nuclei can be found
to be P /P! = cot?(6/2) using Fermi’s golden rule
(see Appendix A), where 6 is the angle between £ and
2" (see Fig. 1), if again kT < V is assumed and the
Zeeman splitting of nuclei is neglected. One could there-
fore conclude that at angle § = /2 ideally no change

population of isotope s, o =



of conductance would be expected when RF field at res-
onance frequencies is applied, since the configuration of
nuclei does not change before and after the application of
RF field. Therefore, one would infer that the change of
conductance when RF field is applied is anisotropic with
respect to 6, even when the hyperfine coupling constant is
isotropic, i.e. A3 = Af. A full calculation with param-
eters 0, |A,/Ay| and V/kgT (see Appendix A), which
also takes into account the effect of nuclear Zeeman en-
ergy A® shows that for the two-terminal setup where
the conductance is provided by both edges, the conduc-
tance change is in fact strongly anisotropic as displayed
in Fig. 2.

To compare, we also consider the case in which non-
helical fermions live at the edge of a 2-D trivial insula-
tor, where each edge has one spin-degenerate conducting
channel and bulk is insulating, as depicted in the inset
of the right panel of Fig. 2(b). As evident in Fig. 2, if
the edge state is non-helical ideally there would be no an-
gular dependence in the RDNMR signal if the hyperfine
coupling is isotropic, which is due to the spin degeneracy
of particles at the edges. Furthermore due to the ab-
sence of effective DNP the conductance change of a non-
helical fermionic system when NMR is turned on is much
smaller than that of a helical system. Even though our
result assumes that nuclei are depolarized by continuous-
wave NMR, the results should be qualitatively the same
if nuclei are flipped by pulse techniques.

IIT. THREE DIMENSIONAL TOPOLOGICAL
INSULATORS

It is an interesting question whether similar physics
could also exist in a 3-D strong TI that hosts a single
Dirac cone on the surface. This question is addressed in
the calculations below. Our main finding indicates that
RDMNR response in 3D TIs is present but may be weaker
than in the 2D case as the current-induced DNP is feeble.
Furthermore, in a 3-D TI that is in the quantum Hall
regime, we demonstrate that the effect of the Overhauser
field is to modify the Landau levels spectra and thereby
induce an RDNMR response.

We consider a 3-D rectangular TI wire, as shown in
Fig. 3(a), with simplified surface Hamiltonian on all the
surfaces

Hsurf - FL’UF(E X E) : ﬁv (5)

where n is the unit normal vector of the corresponding
surface and we have neglected the hybridization between
opposite surface states across the bulk. Note that Eq.
(5) is a highly simplified surface Hamiltonian which may
give a very different spectrum from the real one in a
nanowire®?. This is not only because higher order terms
are absent, but also due to the fact that in reality sur-
faces with different orientations typically have different
Hamiltonians attributed to the bulk anisotropy of com-
monly used TT materials®®>°. Furthermore, the pseudo-

4

spin & in Eq. (5) may be very different from the real spin
S on some surfaces, although we simply assume S=¢ /2
throughout this work®®. Nevertheless, the Hamiltonian
Eq. (5) is the simplest model that captures the key
physics and allows us to make explicit analytic calcu-
lations. In such ideal model the surface state may be la-
belled by longitudinal momentum k, and the transverse
momentum k; along the y-z direction, which is quantized
as ky = 20U ) ¢ 756,57 Therefore series of subband

2(Ly+Lz)’
are developed, as depicted in Fig. 3(b). Note that this
quantization condition is attributed to the accumulated
7 Berry phase when a Dirac fermion travels around the
cross-section.

We consider the coherent transport along x direction in
a clean sample. For the two-terminal setup shown in Fig.
3(a), if there is no reflection at the contacts, the conduc-
tance is G = Me?/h according to the Landauer formula,
where M is the number of transverse modes. Compara-
ble to the 2-D case, due to the unequally populated right
and left movers, the nuclei would be polarized in a similar
manner when bias is applied. In fact, take the top sur-
face shown in Fig. 3(a) as an example, the nuclei on the
top surface would not be polarized at all by the current
if the external magnetic field is along the = or z axis, but
could be partially polarized if the external field is along
the y axis. Such anisotropy is due to the helicity of the
Hamiltonian Eq. (5): the spin is always in-plane and
perpendicular to the momentum. When the magnetic
field is along y direction, the current-induced population
imbalance prefers to flip the nuclei from +g direction to
—¢ direction since the majority of right(left)-movers have
considerable spin component along the —g(+¢) direction
(see Fig. 3(c)). It should be emphasized again that here
the external magnetic field affects neither the electronic
spectrum nor the nuclear polarization directly, instead
it only determines the quantization axis of the nuclear
spin. With detailed calculation based on Fermi’s golden
rule (see Appendix B) and simplification V' >> kT > A,

A® = A = A3, it can be shown that the population ra-
tio of nuclei in this case is given by
2. \%
Ppya _ Y sen(or V) (6)
P, 1—7v ’
where m labels the eigenstate of I,

v =3 J,sin?(0,/2)/ 3 J, depends on the Fermi energy
and the size of the sample, J,, = [hvp (L, + L,) cos 6,,] 7!
is the DOS of subband n per surface area at Fermi level,
and 6,, is the angle between k and k. axis that ranges
between —m/2 and m/2 (see Fig. 3(c)). In the case when
M > 1, one could transform sum to integral and obtain
v =1/2—1/x so that P,,/P,_1 ~ 0.05. This suggests
that considerable nuclear polarization on the top surface
may be achieved if the magnetic field is in-plane and
normal to the electric field. One could deduce that in
this case opposite nuclear polarization would appear
on the bottom surface and no current-induced nuclear
polarization would exist on the side surfaces, as shown



FIG. 3. (a) Schematic of the setup in our model. The arrows denote the directions of the magnetic field B, current I and
the nuclear polarization P respectively. The double arrows on the magnetic field B indicate that it can be aligned along
either direction. In this case P is non-vanishing only on top and bottom surfaces. (b) The surface spectrum of a rectangular
wire under the quantization condition. (c) The schematic of the distribution of Dirac fermion when biased, where solid blue
lines denote the occupied states while dashed blue lines represent the unoccupied ones; the full circle is the Fermi surface at
equilibrium while the two hemi-circles denote the Fermi surface of the reservoirs when bias is present.

in Fig. 3(a).

The possibility of having considerable DNP indicates
that relatively large conductance change may be observ-
able in 3-D strong TIs when NMR is performed. We
continue assuming the external field is applied along y
direction. Similar to the 2-D case, the backscattering
current due to the nuclei can be calculated in a similar
manner and in fact we are only interested in the scat-
tering due to the nuclei on the top and bottom surfaces,
because only those nuclei could change appreciably when
NMR is performed. The suppression of conductance due
to the scattering with specific isotope s on the top and
bottom surfaces can be calculated to be

2Ns( AS\2 72 2
g6 = TR et T - )

1
H(IH)2 + (Im)2(1 - 7)2} , (7)

where Jouf =Y, Jy is the DOS of surface state per sur-
face area at Fermi level, N is the number of specific iso-
tope s on the top and bottom surfaces and for simplicity
we have assumed isotropic hyperfine coupling. We have
defined If = (I, m £ UI$|I,m) = /I Fm)(I £m+ 1)
and I7, = m —m. The first term in the above equa-
tion is due to the nuclear-spin-conserving scattering while
the last two terms correspond to the nuclear-spin-flipping
scattering. Similar to the 2-D case, the change of conduc-
tance when the nuclei is at resonance can be calculated
by computing the difference of conductance when nuclei
are polarized and depolarized using Eq. (6) and Eq. (7),
which is approximately
2 0TS s\2 72 2

7T Nn(*’éé) JsurfIs(Is + 1)%7 (8)

0G ~ —

in the limit v — 0, 7.e. the nuclear spins are fully polar-
ized by the current.

We propose an alternative mechanism, based on the
Overhauser field effect, to control the conductivity by
performing NMR in 3-D strong TIs in the presence of
strong magnetic field. In this case, the magnetic field not
only determines the quantization axis of nuclear spin but
also modifies the Hamiltonian Eq. (5) drastically®*8 62,
Under an external magnetic field B, along z direction,
as depicted in Fig. 4, due to both the orbital effect and
Zeeman effect of the magnetic field, the spectrum of Dirac
fermion on the top and bottom surface quantizes to well-

FIG. 4. Schematic for a 3-D TI in a strong magnetic field.
Landau levels are formed on the top and bottom surface with
filling factor (3, —4) as an example. Due to the thermal ac-
tivation, there is nonzero carrier density contributing to con-
ductivity on the top and bottom surface.



known Landau levels®8:
1
O b

p 2
Ein = { +1/(9: 5 Bet/2)? + 2w Ne| B |,
(9)

7gz,LLB|Beff‘/2a

while the spectrum on the side surface only shifts by
a finite amount in momentum space. In Eq. (9)
Beg = B, 4+ B,, incorporates both the external magnetic
field B, and the macroscopic Overhauser field B,, pro-
duced by nuclei, g, is the effective g-factor of electron
along z direction and pp is the Bohr magneton. We note
that since Overhauser field does not contribute to the
orbital effect and only contributes to the Zeeman term
in Eq. (9), the change of it does not affect the filling
factor. Due to the presence of such quantized Landau
levels, in a 3-D TT thin film subject to high magnetic
field and at low temperature, integer quantum Hall ef-
fect with quantized Hall conductance o, = (14 +1vp)e?/h
appears at half-integer top and bottom filling factor,
v; and vy, which may be tuned independently by gate
technique®? %6, In traditional quantum Hall systems, it is
well known that in the thermal activation regime the lon-
gitudinal conductivity obeys Arrhenius-type law, namely
Opp X e~ AL/(kBT)6T Tt ig therefore expected that, for a
3-D TT in the quantum Hall regime, if the cyclotron gap
on the top and bottom surfaces change by a small amount
dA7 and §A', the change of longitudinal conductivity
would be

N >
N =

80 py ~ Uz(s)(eféA;t/szTi1)+0_l())(e—6A’£b/2kBT71), (1())

the
top(bottom) surface before the change of cyclotron
gap. Such a cyclotron gap can be controlled by tuning
the Overhauser field through NMR techniques. At
thermal equilibrium, nuclei have polarization due to
the strong magnetic field. When specific isotope s is
completely depolarized by RF field, the Overhauser field
B,, changes by%®

where U?(b) is conductivity contributed by

ISIS 1 SSAS
(I° +1) n®y, g

5Bn ~ — F2)
3 |’Ye|kBT

(11)

where 7, is the gyromagnetic ratio of electrons and n® is
the density of nuclear isotope s on the surface. Given that
under the general experimental condition |B,| < |B,]|
and |r| < 1 where r = g,up|B.|/2\/2hw%e|B,|, it can
be shown that the change of gap at filling factor v due
to the change of Overhauser field §B,, is given by

0AT =~ 779zﬂ32|53n| x{

=n+
1

2
(12)
where n is a positive integer. Therefore, by performing
NMR, one expects to observe the change of longitudinal
conductivity, given by Egs. (10)(11) and (12). We point
out that in the above analysis we have assumed that the
bulk thermal excitation is negligible and ignored the pos-
sible effect of the flip-flop processes on the surfaces.

1 1
r - , v
(\/\vl-&-% \/\VI—%) vl
r+ 2u, lv| =

(SIS

IV. DISCUSSION AND CONCLUSION

In this work, we propose to use NMR techniques to
both test the topological nature of the surface edge states
and control transport in TIs. In 2-D TIs, due to spin-
momentum locking of the edge states, there could be sig-
nificant change in the backscattered current when the
nuclei are at resonance. The change is sensitive to the
angle of the polarization axis of the nuclear spins. The
phenomenon relies on the flip-flop process between elec-
trons and nuclei as well as current-induced DNP on the
edge. We show that the change in the current may be
two orders of magnitude smaller for non-helical states
than for their helical counterparts. As the response is
isotropic for the non-helical states unless the hyperfine
coupling is anisotropic, this is an alternative approach to
characterize the nature of suspicious edge states that may
accidentally exist in non-topological systems. For exam-
ple, it was recently reported that in the trivial phase of
InAs/GaSb quantum well, a 2-D TI, there exists an edge
current that is believed to be non-helical®® ™. For the
InAs/GaSb quantum well we estimate that the conduc-
tance change percentage for a 1 pum long edge is of order
0.01% when isotope '°In is depolarized (see Appendix
D) so our proposal may be detectable in experiments”72.

For a 3-D TI wire, we demonstrate that similar phe-
nomena also exist due to the helicity of 2-D Dirac
fermions. Even though the models we use are idealized,
especially the 3-D TI Hamiltonian of Eq. (5), we be-
lieve that our prediction that the magnitude of nuclear
polarization is sensitive to the magnetic field direction,
and that there will significant change in conductance at
the nuclear resonant frequencies, will hold in both clean
and mesoscopic systems. Furthermore, we find that RD-
NMR can be realized in a 3-D TI that is in the quantum
Hall regime. This is accomplished by modifying the car-
rier densities of the Landau levels, through changing the
Overhauser field, which then alters the longitudinal con-
ductivity. Using parameters taken from Refs. 38 and
58, we estimate that when 29°Bi is depolarized in a field
B, ~ 10T at temperature 7' ~ 0.1K, [0B,| is of or-
der 0.1 T so the change of Landau gap at filling factor
v = +1/2 is of order 10 peV, which is comparable to
the temperature and hence should be observable. This
idea is similar to RDNMR in a 2-D electron gas in the
quantum Hall regime??, but the Landau level spectrum
of the two systems differ significantly. We also emphasize
that 2-D Dirac fermions on TI surfaces are different from
those of graphene, as in graphene the Zeeman field only
results in a relative shift of the energy levels of the differ-
ent spin species. Therefore the RDNMR experiment in a
3-D TI may reveal the unique spectrum of surface Dirac
fermions.
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where fir, and e, are the distribution function/energy
of the 1-D fermion in state |ko) respectively, and E,, =
—mA is the energy of nucleus in state |1, m), where A =
YnhB and 7, is the gyromagnetic ratio of specific nuclear
isotope. It may be more convenient to rewrite Eq. (2) in
terms of the nuclear spin operators in 2z’ direction I ; oo
which is related to I, + _ by I; = Zj cijl}, where c;; is
given by

sin 6 sin 6
it 2! s
cij=| —sinf cos?§ —sin®§ (A3)
. . 2% 20
—sinf —sin” 5 cos® 3 i |
2
h T _
Wm m+1 hgvzﬂ('[m+1)
. 2
W, =
m+1,m 2
h3vi.8
2 72
nh e
mmt+L T 16h8
2 72
nh wJ
m+1m
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where J is non-helical fermion’s density of state per
length at Fermi levels that counts the spin degeneracy,
and we assume it to be roughly a constant over the scale
of V. We have defined F(z) = x/(e* — 1) and If =
(I,m £ I |I,m) = /(I Fm)(I £m+1). It is worth

k’ /)|<k/0/7 m/|th|krcr, m>|25(€k0 +E,

2 [|Aggy2 sin? gF(ﬁ(A — V) + |Ayy|? cos? gF(ﬂ(A +V))+ IA%

(I+)? [|Amy|2 sin? gF(—B(A — V) + |Agy|? cos? gF(—B(A +V)+ ML

@mJ%ﬂMA+VD+FW@—Vﬁ+2ﬂ&MﬂAwﬁ+¢%F | Aay]?)

= U$VUW#%A+VD+PT#%A—VD+2FGﬂAH[AWF+OAA”%AWW

Appendix A: Derivation of backscattering current
and nuclear polarization in the case of 1-D
helical /non-helical fermions

In this appendix, for simplicity we suppress all the su-
perscripts labelling nuclear isotopes. The change rate

of nuclear population Pff/ "h s given by Pauli’s master

equation
apy/™" h/nh ph/nh h/nh
= S (Wl = WP (AT
m’
where W:l/ T;Z, the scattering rate of nucleus in the envi-

ronment of helical /non-helical fermions from state |1, m)
to state |I,m’), is given by Fermi’s golden rule:

— €klg! — Em/)v (A2)

(

in the basis of z, 4+, —. With the assumption that the dis-
tribution of right(left) movers on the edge, given by the
left(right) bath’s distribution frgy(e) = (ePlerem) 4
1)~1, is unaffected by the weak hyperfine interaction, the
scattering rate of nuclei embedded in helical /non-helical
Fermi sea reads

‘ 2

sin? 9F(BA)} , (A4)

2
5 sin 9F(—5A)}, (A5)

sin® 6

)L o)

sin® 0

2

|

(

mentioning here that the Pauli master equation Eq. (A1)
could also be derived by Lindblad-type quantum master
equation if we ignore the interactions between nuclei and
makes Born-Markov approximation and secular approx-
imation, which require that the nuclear relaxation time



Ty, ~ [|Azy|2/(h3v%) x max(A, V, kgT)] !

AT T3

intrinsic nuclear time scale 7o ~ h/ . We assume

is much larger
than the electronic relaxation time 7, ~ h/kpT and the

J

that these conditions are satisfied in this paper. At the
steady state, the population ratio of nuclei is given by
Prt1/Pm = Wit1,m/Win m+1 and therefore

Pl sin® 8F(—B(A = V)) + cos* SF(-B(A+V)) + ‘A ‘2 sin? 0F (—BA) (A8)
Ph sin® $F(B(A — V) +cos* §F(B(A+V)) + ;ﬁ =2 = sin 20F(BA)
Prty _ F(=B(A+V)) + F(=B(A - V)) + 2F(-fA) (A9)

ppho— F(B(A-V))+

The backscattering current due to specific isotope is given
by the rate of change in the number of left or right movers

27
Fk’a’,ka - ?fka(l - fk’a’)

m

where Hpy¢, which is given by Eq. (2), should be mod-
ified to Hpy — A,1.S.6(r) because for spin-conserving

F(B(A+V)) +2F(BA)

N, ZPka’a’, m|Hy ¢ |ka, m)|*6 (ko + Em

(

scattered by that isotope, which is*®

IbS:e Z

ky,k_,o,0'

(Fk,a’,lmra - ]-—‘lmrcr,k,a’) sgn(V),

(A10)
where I'y, o, the rate for electrons to scatter from state a
to b by specific kind of isotope reads

— €klo’ —Eml)’ (All)

(

process it is the fluctuation of spins scattering particles
(see Appendix C for detailed discussion). Therefore, the
backscattering current on a single edge for helical /non-
helical fermion can be easily obtained:

~esgn(V) 0 —= 0 —=
Jggfahﬁ 3 { (—B(A +V))cos? 3 x ()2 + F(B(A = V))sin? 5x(I )
—F(B(A + V) cos? gx(f—)t F(—B(A — V))sin* Zx (1)
F(—BV)sin? 0 x (IZ,)% — F(BV)sin? 0 x Ifn)ﬂ , (A12)
e sgn — sin? 2|2 sin®
132 = o B TP (PA8 + V) = FA(A = V)] (1= S50 + 2 20
in? 2 gin?
TP P - V) - P + V) [ - 20 4 L]
722 [F(— — sin? |4 cos?
+2(TE)2 [F(—BV) — F(BV))] ( O+ 9)} (A13)

where ay,, =

2 2 2
T NpJ ‘Amyl z —
— - and I7, =m —m.

Notice that we could also include the effective macro-

(

scopic magnetic field seen by nuclei due to the current-
induced electronic magnetization at the edge, which gives



rise to an additional Knight shift term. In the presence
of such term, we can always choose a new quantization
axis that makes the Hamiltonian of nuclei diagonal and
similar analysis holds.

Appendix B: Derivation of backscattering current
and nuclear polarization in 3-D TI

We consider the Hamiltonian given by Eq. (5) with
quantization condition k; = (n+1/2)7/(Ly+ L,). With-
out losing generality, we assume that the Fermi level lies
in the conduction band. In the limit V > kgT > A,
similar to the case in Appendix A, the transition rate of
nuclei can be obtained by Fermi’s golden rule

s 277 s T s
m,m+1 — A VZ m+1 ¢TL' +|97l>|2 2 2L ’
(B1)
s 2T, o St T T
mtlm = g (A7) V;(Im) |{pn] 2 |01 5 5
(B2)

where we have assumed J,, and spinors are almost fixed
in the range Erp —V/2 < E < Ep +V/2. ¢, is the angle
between k and k, axis satisfying /2 < s < 37/2 (see
Fig. 3(c)) and |¢,) is the corresponding spinor. Si(_)
denotes the raising (lowering) operator in the general 7
direction. For simplicity, from here we only consider the
case that external magnetic field is along the principal
axes and we focus on the top surface shown in Fig. 3(a).
The matrix element of various spin operators along dif-
ferent principal axes can be calculated to be

2 ¢n/

[(pns|SY |0)|* = sin? 92 cos” =2 (B3)
(9w [SL160,)]7 = cos® 2 sin® 22 (B4)
(e [5710,)17 = 3 2(8 Xy, (85)
w210} = (B6)
(B IS316)17 = 1. (B7)
(0wlS2 10 = sin?(Z 4 Tyeos?(P 4 7, (BS)
(O [ST16)17 = cos?(T+ Tysin(% 4 7). (B)

Sf( +) denotes the lowering (raising) operator in the x
direction and same holds for other operators; especially,
SY = g,,/2. Combining the above equations one can show
that

Pm+1:Wm+1m: ]-7 ) =Zorz
P, W ;m+1 (ﬁ) y =Y

Similar to Eq. (A10), given positive V, the backscat-
tering current in 3-D TT is given by

Z (Fk_n’,k+n - Fk+n,k_n’)~

ky,k_,nn’

>

(B10)

Ly =e (B11)

In the limit A <« kgT <« V the last term vanishes and
above equation becomes

s =¢eN, ZP

where

Wi = — (4°)2V S (12) |2J J"’

n,n’

*[(dn[S21600)

b

(B13)
counts the rate of scattering events conserving nuclear
spins. Combining the above equations one can obtain

Eq. (7).

Appendix C: Justification of Fermi’s golden rule
with non-equilibrium Green’s function

It is known that in the semi-classical regime, the con-
ductivity in disordered system to the lowest order can
be calculated with Fermi’s golden rule. However, for a
system with highly dense magnetic scatters, some atten-
tion should be paid when using Fermi’s golden rule to
calculate the conductivity. For clarification, in this ap-
pendix we sketch the verification of Fermi’s golden rule
used in Appendix A with non-equilibrium Green’s func-
tion (NEGF). Specifically, we demonstrate why the hy-
perfine interaction Hy; should be replaced by H, ;Lf ~

>, A(I* — I%) - S* when calculating the matrix ele-
ments. Consider a translationally invariant system with
Hamiltonian Hj interacting with nuclei that have arbi-
trary spin temperature through the isotropic hyperfine
interaction V is V. = Y. (A7"), k,[sl . gagc,tack/g, where
1 labels the site of nuclei, 81 labels the corresponding

species, k,k’ is the momentum, «, 8 is the spin index,
oy sq ,i(k' —k)R;
( A?L) T chio
system and L is the length of each dimension.
Keldysh formalism, the Green’s function reads

, D is the dimensionality of the
In the



10

Grabrar = Ok k' (Go)kaskar + Z(Go)ka;kal(x‘lfi)k,k' (I5:)255 0y (Go) k' cvaik’ o

+ ) (G)kaskar (AT )k ks S2y s (GO kyantkras (A7 )k b St (GO ransshrar Te(T50)*(T59)P + .., (C1)
i

where Gy is the bare Green’s function, a,b labels the
component of spin, 7. is the time-ordering operator
along the Keldysh contour and (...) denotes the ther-
mal average for nuclei. For convenience we have sup-
pressed all the time arguments and their integral; we
note that, for example, in general spin operators in
terms such as T.(I%1)*(I%)b should be evaluated at dif-
ferent time on the Keldysh contour. The summation
symbol for repetitive indices is also implicitly indicated
from now on. To represent Eq. (Cl) in the form of
Dyson’s equation, one could first decompose all the ex-
pectation values to the corresponding cumulants, e.g.
Te(Isi)e(I%3)0 = Too6(I%:)26(1%)b + (I5i)e - (I%5)b, where
O(I%:)* = (I°)* — (I%+)e. Next, we ignore the correlation
between nuclear spins at different sites, therefore terms
such as T.6(I5)*6(1%/ ) vanish unless 7 = j. Lastly, since
we are less interested in the physics with specific config-
uration of nuclear isotopes, we take ensemble average of
Eq. (C1) with respect to different realization of nuclear
isotopes. After these procedures, Eq. (C1) can be writ-
ten in the form of Dyson series

Gka;ko/ = (Go)ka;ka’ + (GO)ka;kal Ekal;kagGkag;ka’a
(C2)
where the first-order and second-order self-energy are re-
spectively

(S ks = D 0" A9 2(5")ap, (C3)

(%) kasks = Z nS(AS)Qﬁgl()Is)a(S([s)b

X (Sa)av(GO)k’v;k’é(Sb)éﬁa (C4)

in which n® is the density of specific isotope. Notice
that the momentum of Green’s function is conserved
in Eq. (C2) after performing ensemble average. The
first-order self-energy gives rise to the slight modifica-
tion of spectrum due to nuclear field (Overhauser shift)
which is neglected here, while the imaginary part of
the second-order self-energy gives the decaying rate due
to the hyperfine interaction, which can be shown to
be equivalent to Fermi’s golden rule if one relates it
to the retarded self-energy in real-time domain. Note
that it is 6(I%)2§(I5)® rather than (I%)*(I%)® entering
the second-order self-energy, which justifies that in Ap-
pendix A when using Fermi’s golden rule hyperfine in-
teraction should be replaced by an effective interaction
Hy . ~3 0, Al —I%). 82,

Appendix D: Estimate of magnitude of RDNMR
signal

In this appendix, we give an estimate of the conduc-
tance change in the InAs/GaSb quantum well as an
example. We assume the hyperfine coupling A;p is
isotropic for simplicity. In reality, the localized edge state
not only spreads in the quantum well but also extends
into the bulk. Therefore the edge state has a finite cross
section Segge and interacts with all the nuclei overlapped
with the wavefunction. The effective 1-D hyperfine cou-
pling constant is given by

Asp

Aip =
Sedge

(D1)

where Aszp is the 3-D hyperfine coupling constant esti-
mated by its bulk value. The number of nuclei of isotope
15Ty that backscatter Dirac fermions is given by

L:rSodge

NS =«
n Q ‘/'C

(D2)
where V. is the unit cell volume of InAs. The coefficient
0 < a < 1 takes into account that Indium atoms do
not exist in GaSb and ''°In has a natural abundance
~ 95.7%. The conductance change in Eq. (4) can thus
be written as

E - 27T2(A3D)2Lx

=a——5——+I1(1+1).
G a3h2U%‘/cSedge ( N )

(D3)

We obtain the estimated change of conductance of 0.01%
quoted in the main text by setting I = 9/2, Sedge =~
150nm?, V, ~ 55.6A°, Asp ~ 3780 ueV - A7, vp ~
1.5 x 10 m/s™ and setting o = 1.
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