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Abstract

Nonlocal kinetic energy functionals with density dependent kernel are the most accurate func-

tionals available for carrying out orbital-free density functional theory simulations. Among them,

the HC functional [Huang and Carter, Phys. Rev. B, 81, 045206 (2010)] is the most accurate

for bulk semiconductors. A major hurdle in applying HC to non-bulk systems (such as clusters

and surfaces which have at least one nonperiodic dimension where the density decays to zero) lies

in its numerical instability for large values of the reduced density gradient, s(r) ∝ |∇n(r)|
n4/3(r)

where

n is the electron density. We propose a revision to the HC functional, revHC, that allows it to

achieve dramatically improved numerical stability, efficiency (in terms of timing to solution) and

applicability. Not only does revHC reproduce all previously presented results for HC, but extends

them to a crucially important class of materials: surfaces. We show that surface energy trends

of clean cut and reconstructed surfaces of group IV and III-V semiconductors are recovered and

where available semiquantitatively reproduce the experimental results.
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I. INTRODUCTION

Kohn-Sham density functional theory (KS-DFT)[1, 2] is the most widely used electronic

structure method for systems that contain up to a few hundreds of atoms because it provides

a good balance between accuracy and computational expense. However, KS-DFT requires

the evaluation of the (noninteracting) kinetic energy, Ts, directly from the “one-electron”

KS orbitals. Such a requirement leads to poor computational scaling [O(N3
e ) where Ne

is the number of electrons in the system] because of the computational cost involved in

diagonalizing Hamiltonian and overlap matrices. Therefore, systems with thousands or tens

of thousands of atoms are either inaccessible or require specialized treatment [3, 4]. Orbital-

free DFT (OF-DFT)[5–7] and some formulations of DFT embedding [8–11] rely on pure

density functionals of the noninteracting kinetic energy and are attractive alternatives for

large-scale first-principles simulations because of their inherent linear-scaling computational

cost. With these methods, simulations of simple metal bulks involving millions of atoms are

possible [12, 13], even with single CPU [14]!

The underlying reason for such a computational advantage in OF-DFT is the use of kinetic

energy density functionals (KEDFs), which are pure functionals of the electron density. This

is in contrast to KS-DFT where even though the orbitals are formally functionals of the

density, the kinetic energy is only indirectly a functional of the density through the KS

orbitals. Thus, the accuracy of orbital-free approaches are dominated by the accuracy of

the employed KEDF [5, 6].

Over many decades, several KEDFs have been proposed. These can be roughly catego-

rized into two classes: (1) local/semilocal KEDFs [15–18] and (2) nonlocal KEDFs [19–30].

In local and semilocal KEDFs, the energy density and potential at point r depend exclu-

sively on the density and its gradients at that same point (sometimes including high order

derivatives [31–34]). Semilocal KEDFs have the advantage of being evaluated with a low

computational cost. Some semilocal KEDFs can approach similarly good results as nonlocal

functionals for both metals and semiconductors [34, 35]. However, semilocal KEDFs have

inherent limitations such as the inability to describe the natural nonlocality of Ts and can-

not reproduce the correct linear response behavior for uniform systems (Lindhard response

function) [36].

Nonlocal KEDFs overcome the issues above by encoding the correct physics in their
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kernel function, ω[n](r, r′), which describes the nonlocal kinetic energy as a six-dimensional

integral from the dependence of the kernel on two distinct points in space, r and r′. In

principle, the kernel is related to the second functional derivative of the KEDF with respect

to the electron density and thus it should be dependent on the electron density and not be

a simple function of r and r′. The very first nonlocal KEDF with density dependent kernel

was proposed and successfully adopted in real materials simulations in 1985 [25]. However,

its quadratic-scaling computational cost hindered this functional from being adopted for

large-scale simulations. More recently, nonlocal KEDFs with density dependent kernels

have been proposed. To encode the required density dependence in the kernel, these employ

either a Taylor expansion [24, 27] around a reference constant density or spline techniques

[28–30] to achieve a linear-scaling computational cost and applicability to metals [24, 27],

semiconductors [28], and systems having inhomogeneous electron density such as quantum

dots [29, 30].

Unfortunately, as of today, there are no computationally efficient KEDFs which can work

well for bulk systems as well as for nonperiodic systems, such as surfaces and clusters. Even

one of the most sophisticated nonlocal functionals, the Huang-Carter (HC) KEDF [28], lacks

the needed numerical stability to be able to approach non-bulk systems in a reliable and

consistent way [37, 38]. However, HC is perhaps the best functional because it satisfies

many exact conditions for KEDFs. These include: (1) recover the linear response for uni-

form electron gas. (2) approximately recovers the asymptotic behavior of a semiconductors

susceptibility function as the reciprocal space variable approaches zero [39]. (3) uniform den-

sity scaling [40]. (4) the kernel is density dependent. Thus, efforts to improve its numerical

stability and to enhance its applicability are well placed.

The source of the numerical instabilities in HC stems from the kernel function dependence

on the term kF (r)s(r)2|r − r′|, with s(r) = |∇n(r)|
2(3π2)1/3n(r)4/3

and kF (r) = (3π2n(r))1/3. When

systems have highly inhomogeneous electron densities, such as finite systems, the reduced

gradient, s, can be very large, especially in the low electron density region. Because the

gradient of the density is seldom accurate in the asymptotic region, the overall kernel be-

comes numerically unstable. Such instability increases the computational cost because the

functional derivatives become numerically noisy.

In this work, we propose a revised HC functional (which we call revHC) such that it

(1) satisfies all the exact conditions in HC functional; (2) reproduces the HC functional
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results for bulk semiconductors; (3) is numerically stable for all kinds of systems; and (4) is

computationally inexpensive, or as inexpensive as nonlocal KEDFs with density independent

kernel, such as WT [19]. We achieve this by replacing the s2 dependence with a PBE-

exchange-like enhancement factor (which is bound from above because it satisfies the Lieb-

Oxford bound [41, 42]) and by implementing revHC with the OE-SCF density solver [43]

dramatically reducing the computational cost.

With revHC, OF-DFT can now be employed in predictive simulations of semiconductor

bulks and surfaces (clean and reconstructed) with an algorithm that scales favorably and

(quasi)linearly with system size. In the following, we first discuss the formalism involved, and

then move to benchmark revHC on various semiconductor phases comparing to the original

HC functional as well as KS-DFT. We clearly show that revHC approaches semiconductor

surfaces delivering semiquantitative results and reproducing the experimental trends.

II. THEORETICAL BACKGROUND

A. Huang-Carter (HC) KEDF

In this section, we summarize the main steps needed to derive and implement the HC

KEDF. The HC total kinetic energy can be written as

Ts[n] = TTF[n] + TvW[n] + TNL[n], (1)

where TTF[n] and TvW[n] are the local Thomas-Fermi (TF) KEDF [15, 16], and von

Weizsäcker (vW) KEDF [44], respectively. And the nonlocal term can be written as

TNL[n] = CHC

∫ ∫
ρ(r)8/3−βω[ξ(r, r′)|r− r′|]ρ(r′)βdrdr′. (2)

β is a constant positive parameter. The kernel ω depends on the effective Fermi wave vector

ξ(r, r′) and the distance |r − r′|. To recover the correct long-range asymptotic behavior

of the susceptibility function (i.e. χ(|r − r′| → ∞) → |r − r′| or χ̂(q → 0) → −bq2) for

semiconductors, ω should tend to 1/|r − r′| when |r − r′| → ∞. To approximately satisfy

this requirement, the effective Fermi wavevector, ξ(r, r′) can be chosen to have the following

form,

ξ(r, r′) = kF (r)

{
1 + λ

[
ρ(r)− ρ(r′)

|r− r′|

]2
1

ρ(r)8/3

}
. (3)
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Above, kF (r) = (3π2ρ(r))1/3 is the Fermi wave vector and λ is used for tuning the contribu-

tions between |r′ − r| term and 1/|r′ − r| term in the kernel. When λ = 0, the kernel will

just satisfy the asymptotic behavior for metals.

Adopting directly the two-point density dependent formalism of Eq. (3) will lead to a

quadratic scaling computational cost. To reduce the computational complexity, ξ(r, r′) is

further approximated by the single-point density dependent form:

ξHC(r) = kF (r)(1 + λcs(r)2). (4)

where s is the reduced gradient, and the constant c = [2(3π2)1/3]2.

To make sure uniform systems are still within the regime of applicability of the proposed

functional, and because of the simple explicit form provided by the Lindhard function, the

kernel then is determined by enforcing the exact linear response of the uniform electron gas

(Lindhard response) in the limit of uniform densities. Namely,

F̂

(
δ2Ts[n]

δn(r)δn(r′)

∣∣∣∣∣
n(r)=n0

)
= − 1

χ̃Lind(q)
. (5)

Where F̂ represents the Fourier transform operator, n0 is the uniform electron gas density,

and χ̃Lind is the Lindhard response function,

χ̃Lind(η) = −kF
π2

(
1

2
+

1− η2

4η
ln

∣∣∣∣1 + η

1− η

∣∣∣∣) = −kF
π2

1

G(η)
. (6)

Where η = q/2kF is a dimensionless momentum vector, and kF = (3π2n0)
1/3. We stress

that the above equation in no way restricts the susceptibility of the system to be the Lind-

hard function because through Eq. (3), the effective response function for non-homogeneous

systems is different from Lindhard. Imposing of Eqs. (1-2) and using Eq. (4) in Eq. (5), a

first-order ordinary differential equation for the kernel can be obtained

− βηω̃(η)′ + (5− 3β)βω̃(η) = 5/3[G(η)− 3η2 − 1]. (7)

The kernel can be numerically solved with a given constant parameter β.

B. Revised HC KEDF

The success of HC in modeling semiconductors hinges on the correct asymptotic behavior

of its kernel. Unfortunately, ξHC in Eq. (4) can lead to numerical instabilities and, as a result,
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convergence issues. When systems display strong inhomogeneous electron densities (such as

isolated systems and surfaces), especially in the low electron density region, the numerical

values of s2 can be very large because of its inverse dependence on the electron density. When

low density values are coupled with inaccurate density gradient values (as it often happen

in the asymptotic region), the ensuing numerical noise negatively affects convergence.

In addition, HC suffers from a deeper problem related to the estimation of the resulting

integrals for the evaluation of energy density and potential. Similarly to almost [36] all non-

local functionals with density dependent kernel (KEDF [29] as well as exchange-correlation

[45, 46]) integrals are apparently of quadratic cost (i.e., they feature a double integration

over the FFT grid). However, they can be approximated by a spline technique [47] whereby

the kernel is evaluated as a function of constant×|r−r′| sampling over the constant and then

using splines and/or numerical Reimann integrals to recover the final result. If the kernel

only depends on the density and not on its gradient [29] this technique delivers numerically

stable energy densities and potentials. However, because in HC the kernel also depends on

s2 (which, as mentioned, can reach large values in nonperiodic systems) the splines often

require wide sampling windows increasing the computational costs significantly [38].

To overcome these limitations, we propose a revised HC (revHC) functional which ap-

proximates ξHC as

ξrevHC(r) = kF (r)FrevHC(s(r)), (8)

where FrevHC(s) is an enhancement factor, similar to the one used in GGA functionals. To

compare to the original HC functional, the enhancement factor for HC would be FHC(s) =

1 + λcs2, where c = [2(3π2)1/3]2. We require FrevHC(s) to have the following properties: (1)

should tend to 1 + λcs2 for small s; (2) should approach a finite asymptote for large s to

avoid numerical noise and increase of computational cost; (3) should be a smooth function.

To satisfy these properties, we choose an enhancement factor similar to the one used in the

exchange part of the PBE functional. Namely,

FrevHC(s) = 1 +
as2

1 + bs2
. (9)

When b = 0, revHC is the same as the original HC. λ = 0.01 was chosen for the original

HC functional to model CD silicon – a value corresponding to a = λc ≈ 0.38 and b = 0.

When given a nonzero b, FrevHC(s) smoothly approaches a constant value for large s. Figure

1 compares the enhancement factors of HC with λ = 0.01 and revHC with a = 0.45 and
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b = 0.10. The value for the a and b parameters were obtained by fitting, imposing to

reproduce the equilibrium volume and energy of CD Si. It is clear that FrevHC satisfies the

requirements enumerated before. In the figure, we also superimpose in green a histogram

of the distribution of points in space where the electron density for the Si (111) surface is

below 10−3. These are points where the gradient starts being inaccurate and s2 reaches

unphysically large values. Because of the asymptote, FrevHC dampens the detrimental effect

of these inaccurate s2 values. In this work, we choose a = 0.45 and b = 0.10 for all

calculations. In revHC, the constant parameter β is fixed to 2/3, which is close to the

value 0.65 chosen for the original HC functional for CD Si. We found that this value of β

produces the best results and generates a kernel that is similar to the one of other successful

functionals [19, 27].
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FIG. 1. Enhancement factors of original HC KEDF with λ = 0.01 (dashed black) compared to

the one for the revHC KEDF with a = 0.45 and b = 0.10 (solid red). The green histogram is the

distribution of grid points with low electron density (< 10−3) plotted against the s value at those

points for the Si(111) surface. Such points hardly exist in a bulk crystal.
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Imposing the redefined ξrevHC from Eqs. (8) and (9) into the functional formalism of Eq.

(2), revHC’s kinetic energy and its functional derivative (needed for solving for the electronic

structure) are obtained. By enforcing the Lindhard response, the kernel equation is obtained

in exactly the same way as the kernel of the original HC functional given in Eq. (7).

III. COMPUTATIONAL DETAILS

We use same linear-scaling techniques as the original implementation of HC to evaluate

the nonlocal energy density and potential. The details of such techniques can be found in

the appendix of Ref. 28. Only a few minor changes have been implemented. When building

the spline quadrature, we use a smaller ratio (κ = ξi+1/ξi = 1.15 and ξ1 = 0.01) to better

converge the total energy (typically within 1 meV/atom). In the case that ξ < ξ1 we opt

for a linear interpolation.

HC and revHC are implemented in DFTpy [14], which is an open-source python code

for large-scale OF-DFT simulations (dftpy.rutgers.edu). The KS-DFT calculations are per-

formed with CASTEP [48]. All calculations use the bulk-derived local pseudopotentials

(BLPS) [49], except for Germanium (Ge) for which we use the OEPP pseudopotential

[50]. The local density approximation for electron exchange-correlation functional is adopted

throughout [51]. The kinetic energy cutoff for the density is chosen to be 1600 eV, except

for the surface energy calculations, where it was increased to 3200 eV. For the benchmark

KS-DFT calculations, a 1200 eV cutoff for the kinetic energy of the wavefunctions is chosen,

and a 20×20×20 k-point mesh is used for bulk system calculations to obtain well-converged

total energies (1 meV/atom). Cubic diamond (CD), hexagonal diamond (HD), and complex

body-centered cubic (CBCC) are selected as three silicon semiconductor phases. Nine III-V

cubic zincblende (ZB) semiconductors also are selected as benchmark systems. The bulk

modulus, equilibrium volumes, and equilibrium energies were calculated by expanding and

compressing the KS-DFT equilibrium unit cell structure up to 5% with eleven points, and

fit the energy curves vs volume against Murnaghan’s equation of state [52]. In OF-DFT,

the newly developed OE-SCF solver [43] was adopted for all density optimizations.

For the unreconstructed surface energy calculations, the unreconstructed surfaces are

modeled by at least 10 layers with 15 Å vacuum between periodic slabs. The reconstructed

surfaces were relaxed using analytic forces and energies from the in-house code eDFTpy
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through an API to Atomic Simulation Environment (ASE) [53]. ASE contains a set of tools

and Python modules for atomistic simulations, including geometry relaxations. We refer

the reader to Ref. [43] for details regarding the implementation of the OE-SCF density opti-

mization method. The surface structures were created with experimental lattice parameters

[54]. The surface energy is evaluated by

σ =
Eslab −NEbulk

2Aslab
, (10)

where Eslab is the total energy of the slab model, Ebulk is the energy per atom of the bulk

structure, N is the total number of atoms in the slab, and Aslab is the surface area of the

slab.

IV. RESULTS AND DISCUSSION

A. Bulk properties of semiconductors

The HC functional was designed to accurately predict various group IV and III-V semi-

conductors. Therefore, we wish revHC to be as accurate as HC for these systems. To

benchmark the quality of revHC functional, we compute the total energy versus volume

equation of states (EOS) for CD silicon with KS-DFT and OF-DFT with HC, revHC, and

WGC99[27] functionals using the same pseudopotentials (BLPS). As shown in Figure 2, the

curve obtained by KS-DFT is well reproduced by HC and revHC functionals. revHC is

almost on top of KS-DFT, whereas WGC99 overestimates the energy by a few hundreds of

meVs.

We also find revHC to be as transferable as HC. In Table I, we list the bulk properties of

three silicon semiconductor phases calculated with revHC in comparison with KS-DFT as

well as the original HC results. revHC results are very close to HC’s and both are in good

agreement with KS-DFT.

Vacancy and interstitial formation energies as well as phase energy ordering are considered

tough yet important tests for the accuracy of a KEDF. The original HC, for example, could

semiquantitatively reproduce the vacancy formation energy but failed for the interstitial

formation energy. Provided that the parameter λ is optimized, HC could reproduce phase

energy orderings (except for the BCT5 phase). revHC is expected to behave similarly to

the HC functional in these cases. And in fact, we find that the vacancy formation energy
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FIG. 2. KS-DFT and OF-DFT total energy curves versus volume curves for bulk CD silicon. For

OF-DFT, HC and WGC99 results are calculated using PROFESS 3.0[55]. The WGC99 parameter

γ was set to 4.2 [56] as is the default for this phase of silicon.

is only slightly improved compared to HC. The interstitial formation energy is essentially

unchanged from HC, predicting it with the wrong sign (see Table S2 from the supporting

information [57] and we refer the reader to Ref. [28] for details about this failure of HC).

Phase energies are well reproduced by revHC provided that the a parameter is adjusted

in a way that is analogical to the λ parameter of HC (see line revHCa in supplementary

document [57] Table S3).

In a second test, we use revHC to test III-V “Zinc Blende” (ZB) semiconductors. The

energy differences between CD silicon and III-V ZB semiconductors are presented in Figure 3.

revHC and HC are on top of each other and reproduce well the KS-DFT results. These results

indicate that revHC is as predictive as the HC functional in terms of both accuracy and

transferability when modeling semiconductors (see Table S1 for a complete set of results).
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TABLE I. Bulk modulus (B0 in GPa) and equilibrium volume (V0 in Å3/atom) of silicon in CD,

HD, and CBCC phases obtained by KS-DFT, HC and revHC. The equilibrium energy (eV/atom)

for CD silicon and the energies of other two structures relative to the CD phase are presented. The

HC values are taken from Ref. 28.

Si Functional B0 V0 E0

CD KS 96 19.779 -109.631

revHC 98 19.765 -109.627

HC[28] 97 19.962 -109.624

HD KS 97 19.643 0.014

revHC 99 19.738 0.004

HC[28] 98 19.875 0.007

CBCC KS 99 17.520 0.156

revHC 99 18.198 0.122

HC[28] 105 18.419 0.141
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FIG. 3. OF-DFT and KS-DFT relative energy differences between CD silicon and ZB semi-

conductors. The HC values are taken from Ref. 28. Note that the revHC values are on top of

HC’s.
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B. Semiconductor surfaces

To our knowledge only the Si (100) surface has been computed by the HC functional [38].

This is probably because the HC functional is slowly convergent for systems with highly

inhomogeneous density, such as surfaces and clusters. The reported surface energy values

are σ = 0.152 eV/Å2 for Si (100) unreconstructed and σ = 0.119 eV/Å2 for the reconstructed

surface. These values overestimate the KS results by 7% and 59% for unreconstructed and

reconstructed, respectively [38].

Because the revHC functional resolves problems of convergence and computational com-

plexity when associated with the novel OE-SCF OF-DFT solver [43], in this work we are

able to not only easily compute surface energies for all the semiconductors considered so far,

but we also could optimize the geometries of the slabs involved with the revHC functional re-

ducing significantly the discrepancy against the experiment and the KS-DFT surface energy

values.

TABLE II. Comparison of various surface energy values of Si and Ge calculated with revHC com-

pared against experimental values. The KS and KS(US) results were calculated by CASTEP with

the same local pseudopotentials as the OF-DFT simulations and the GBRV ultrasoft pseudopo-

tentials [58], respectively. RE is the relative error of revHC compared to KS.

System Surface
Surface Energy (eV/Å2)

RE
revHC KS KS(US)

Si

(111) 0.092 0.097 0.113 -5%

(110) 0.120 0.111 0.127 8%

(100) 0.159 0.128 0.148 24%

Ge

(111) 0.079 0.078 0.083 1%

(110) 0.110 0.091 0.096 21%

(100) 0.114 0.105 0.108 9%

In Tables II and III, we show that for group IV and III-V semiconductor surfaces derived

by cleanly cutting the bulk (unreconstructed), the revHC functional performs well with

surface energy deviations between +24% and -5% with values almost always overestimated

compared to KS. The overall assessment for revHC is, however, positive because the surface

energy ordering for Si and Ge is recovered, and it is essentially recovered also for the III-V

semiconductors. This shows that revHC not only is predictive for bulk phase ordering and

12



equations of state, but retains such a predictivity also for semiconductor surfaces.

We tested revHC for its ability to reproduce the surface energy of simple metals, such as

aluminum. We find that the surface energies of (111), (110) and (100) facets are reproduced

with deviations ranging from -11% to 4% compared against KS-DFT. This is a similar

accuracy as for semiconductor surfaces (see supplementary document [57] Table S4).

TABLE III. The surface energy of III-V semiconductors (110) surface. See Table II for additional

information.

System
Surface Energy (eV/Å2)

RE
revHC KS KS(US)

AlP 0.115 0.118 0.100 -3%

AlAs 0.103 0.105 0.087 -2%

AlSb 0.083 0.079 0.069 5%

GaP 0.122 0.114 0.096 7%

GaAs 0.107 0.100 0.081 7%

GaSb 0.089 0.077 0.065 17%

InP 0.096 0.100 0.075 -4%

InAs 0.087 0.090 0.065 -3%

InSb 0.080 0.071 0.054 12%

An important test, however, is to confirm revHC’s good behavior also for reconstructed

surfaces. These are very different from the clean bulk-cut surfaces because they feature

complex patterns whose geometries depart sharply from the atomic arrangement of the cor-

responding bulk. In Table IV we present results of surface energies for reconstructed Si

surfaces computed with revHC as well as KS (with BLPS as well as ultrasoft pseudopo-

tentials). The table also includes results of the revHC functional where the surfaces have

been relaxed to the optimal structure for this functional. As expected, the surface energies

are overestimated for the revHC unrelaxed surfaces, while for the relaxed surfaces (i.e., the

revHCa column of Table IV) revHC’s surface energies are much closer to the experimental

values.

An important observation is that the revHC optimized surfaces are not drastically differ-

ent from the KS-DFT optimized surfaces. In Figure 4, we show the main differences between

the optimized revHC and KS-DFT Si (111) reconstructed surfaces (Figures S1 and S2 in

the supplementary materials [57] show the other two surface cuts). The biggest differences
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(a) (b)

FIG. 4. Optimized (relaxed) Si (111) surfaces computed by (a) KS-DFT and (b) revHC. The

highlighted atoms are the ones displaying the largest geometrical rearrangement.

between the two surfaces are highlighted in the Figure and involve the shortening of two

bonds (the biggest bond contraction is by about 20% occurring in the bond at the top of the

slab in Figure 4). This is in line with the general observation that HC and other nonlocal

KEDFs with density dependent kernel tend to overestimate the atomic average coordination

number.

TABLE IV. Surface energy values of reconstructed surfaces of silicon. Structures are taken from

Ref. 59. The KS(PAW) values are taken from the same reference and are computed with PAW

pseudopotentials. See Table II for additional information.

System Surface
Surface Energy (eV/Å2)

revHCa revHC KS KS(US) KS(PAW) [59] Experiment

Si

(111) 0.082 0.111 0.081 0.092 0.081 0.077[60], 0.077[61], 0.071[62]

(110) 0.126 0.128 0.087 0.105 0.094 0.094[60], 0.089[61], 0.119[62]

(100) 0.078 0.116 0.075 0.091 0.080 0.133[60], 0.085[61]

a Surfaces relaxed by OF-DFT with the revHC functional.
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C. Computational cost

To evaluate the computational efficiency of the revHC KEDF, we compare the total wall

time and number of density optimization steps for different CD Si cubic supercells. For

comparison, data from the density-independent-kernel KEDF, WT [19], are also presented.

We adopted the OE-SCF [43] OF-DFT solver. From the timings reported in Figure 5, it is

clear that revHC retains quasilinear scaling cost with system size. revHC’s timings are even

comparable with WT’s. Given that WT is the least computationally expensive nonlocal

KEDF, we conclude that revHC functional combined with OE-SCF solver can be used for

predictive large-scale simulations, just like WT has [12–14, 63]. The OE-SCF solver only

requires the evaluation of the nonlocal part of revHC a handful of times (as many times as the

number of cycles needed to converge). The use of OE-SCF coupled with the inherent more

robust numerical behavior of revHC compared to HC are the reasons why our implementation

of revHC is much more computationally efficient than previous implementations of HC. In

our view, this is an important improvement of the current state-of-the-art.
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FIG. 5. Wall times of single-point OF-DFT calculations of CD Si supercells with revHC and WT

functionals. All calculations are carried out with the OE-SCF solver [43].

V. CONCLUSIONS

Despite the fact that HC is one of the most accurate kinetic energy functional available

(certainly the most accurate for semiconductors), numerical inaccuracies prevent its appli-

cation to a wide class of system, i.e., nonperiodic systems where the density decays to zero

along one or more dimensions. Beyond the purely numerical challenges, the high computa-

tional cost has relegated this functional to the computation only of small toy systems.

In this work, we tackle both the numerical and computational complexity challenges by

proposing a revised version of HC: revHC. We find revHC to be as accurate as HC for the

systems where HC was found to be excellent (semiconductor bulk systems). At the same

time, revHC extends HC’s applicability to nonperiodic systems, such as surfaces.

We find revHC to deliver quantitative results for the equilibrium volumes, bulk moduli

and phase energy ordering for Si and other semiconductors. In addition, and for the first time

for any orbital-free DFT method, the surface energies of Si, Ge and nine III-V semiconduc-
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tors compare semiquantitatively against KS-DFT. The surface energies of the reconstructed

surfaces of Si are found to be in excellent agreement with the experiment provided that the

computed slabs are relaxed. From the point of view of the computational complexity, when

the newly developed OE-SCF solver is used [43], revHC is found to be only slightly more

expensive than the computationally cheapest of the nonlocal functionals (the WT [19] func-

tional). Overall, our results indicate that revHC should become the kinetic energy functional

of choice for large-scale orbital-free DFT simulations involving semiconductor materials.
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