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Odd-parity magnetic and magnetic toroidal multipoles in the absence of both spatial-inversion and time-
reversal symmetries are sources of multiferroic and nonreciprocal optical phenomena. We investigate electronic
states caused by an emergent odd-parity magnetic quadrupole (MQ) as a representative example of magnetic
odd-parity multipoles. It is shown that spontaneous ordering of the MQ leads to an antisymmetric spin-orbital
polarization in momentum space, which corresponds to a spin-orbital momentum locking at each wave vector.
By symmetry argument, we show that the orbital or sublattice degree of freedom is indispensable to give rise
to the spin-orbital momentum locking. We demonstrate how the electronic band structures are modulated by
the MQ ordering in the three-orbital system, in which the MQ is activated by the spin-dependent hybridization
between the orbitals with different spatial parities. The spin-orbital momentum locking is related with the mi-
croscopic origin of cross-correlated phenomena, e.g., the magnetic-field-induced symmetric and antisymmetric
spin polarization in the band structure, the current-induced distortion, and the magnetoelectric effect. We also
discuss similar spin-orbital momentum locking in antiferromagnet where the MQ degree of freedom is activated
through the antiferromagnetic spin structure in a sublattice system.

I. INTRODUCTION

The interplay among internal degrees of freedom in elec-
trons, such as charge, spin, and orbital, gives rise to uncon-
ventional physical phenomena in the strongly-correlated elec-
tron system. The concept of atomic-scale multipole can de-
scribe not only electronic order parameters but also resultant
physical phenomena in a unified way [1–6]. There are four
types of multipoles according to space and time inversion
properties: electric, magnetic, electric toroidal, and magnetic
toroidal multipoles [7–9]. Moreover, such an atomic-scale
multipoles have been generalized so as to describe anisotropic
charge and spin distributions over multiple sites, which are
denoted as a cluster multipole [10–15] and a bond multi-
pole [16, 17]. The generalization of the concept of multi-
pole is referred to as an augmented multipole, which opens a
new direction of cross-correlated (multiferroic) physical phe-
nomena in antiferromagnets, such as the anomalous Hall and
Nernst effects in Mn3Sn [11, 18–22], current-induced magne-
tization in UNi4B [23–26] and Ce3TiBi5 [27, 28], and nonre-
ciprocal magnon excitations in α-Cu2V2O7 [29–33].

The active multipole moments in real space are related with
the electronic band structures in momentum space [4, 17, 34–
36]. In other words, the band deformations and spin splittings
at each wave vector are ascribed to the active multipole mo-
ments. For example, a lowering of the symmetry in the band
structure caused by spontaneous electronic orderings, such as
the Pomeranchuk instability [37–39] and electronic nematic
state [40–42] corresponds to the appearance of a particular
type of active electric quadrupole. Another example is an an-
tisymmetric band-bottom shift without both spatial-inversion
and time-reversal symmetries, which is accounted for by the
emergent magnetic toroidal dipole moment [24, 43–47].

The correspondence between the multipole and the band
deformation is classified according to the space and time in-
version symmetries [4]; the even(odd)-rank electric (magnetic
toroidal) multipole leads to the symmetric (antisymmetric)
band deformation and the odd-rank magnetic (electric) multi-
pole and even-rank magnetic toroidal (electric toroidal) mul-

tipole induce the symmetric (antisymmetric) spin splittings
with respect to the wave vector. A systematic classification
of the band structure based on multipoles can lead to a further
intriguing situation, such as the symmetric/antisymmetric spin
splittings even without the spin-orbit coupling [17, 35, 36, 48–
54].

In the present study, we focus on the role of the magnetic
quadrupole (MQ) on the electronic structures in momentum
space. The MQ is characterized as a rank-2 axial tensor with
time-reversal odd among the magnetic multipoles. As this is
a higher-rank multipole of the magnetic dipole, it is defined
as the spatial distributions of the magnetic moments, such as
the spin and orbital angular momenta. A typical example to
exhibit the MQ is the antiferromagnetic ordering without the
spatial inversion symmetry, which has been discussed in the
context of multiferroic materials in magnetic insulators [55–
59], such as Cr2O3 [60–64], Ba(TiO)Cu4(PO4)4 [65–67],
Co4Nb2O9 [68–72], and KOsO4 [73–75]. Meanwhile, such
ordering has recently been discussed in magnetic metals [76–
79], such as BaMn2As2 [80, 81], as it could exhibit intriguing
current-induced magnetization and distortion.

In generalization of the studies on the MQ from insula-
tors to metals, there is a natural question how the MQ af-
fects microscopically the electronic band structure and in-
duces related physical phenomena. There is a missing link
between the electronic band modulations and the odd-parity
magnetic multipoles because the latter cannot be constructed
by a simple product between the wave vectors and spin de-
grees of freedom [4]. To answer this naive question, we inves-
tigate the characteristic feature of the electronic band struc-
ture by the formation of the MQ ordering based on the sim-
plest multi-orbital model. We show that there is a nontriv-
ial spin-orbital entanglement once the MQ ordering occurs;
the electric quadrupole polarization defined by the product of
spin and orbital angular momenta appears with a dependence
on the wave vector in an antisymmetric way. By analogy
with the spin momentum locking in noncentrosymmetric met-
als [82], we refer to the effective spin-orbital entanglement as
“spin-orbital momentum locking”. The spin-orbital momen-
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tum locking becomes the origin of the antisymmetric spin po-
larization under the magnetic field. Moreover, we find that the
spin-orbital momentum locking provides a deep understand-
ing of conductive phenomena in magnetic metals, such as the
current-induced distortion. We also show that a similar spin-
orbital momentum locking is realized in the antiferromagnetic
ordering by taking into account the sublattice degree of free-
dom instead of the orbital one.

The rest of this paper is organized as follows. In Sec. II,
after introducing the expressions of the MQ in real space, we
present them in momentum space, which indicates an origin
of the spin-orbital momentum locking. We discuss the realiza-
tion of such spin-orbital momentum locking by considering
the multi-orbital and sublattice systems with the active MQ
degree of freedom in Sec. III. We relate the spin-orbital mo-
mentum locking to physical phenomena, such as the current-
induced distortion and magnetoelectric effect, under the MQ
ordering from the analysis of the linear response theory. Sec-
tion IV is devoted to the summary.

II. MAGNETIC QUADRUPOLE

In this section, we show the expressions of the MQ in real
and momentum spaces on the basis of multipole expansion
and group theory. After briefly reviewing the expressions in
real-space in Sec. II A, we describe the band modulations un-
der the MQ in Sec. II B. It is shown that the active MQ gives
rise to the spin-orbital momentum locking at each wave vec-
tor.

A. Expressions in real space

We start by reviewing the MQ in real space, whose ex-
pression is obtained in the second order of the multipole
expansion for the vector potential [8, 83, 84]. The MQ is
characterized by the rank-2 axial tensor with five compo-
nents {Mu,Mv,Myz,Mzx,Mxy} with u = 3z2 − r2 and
v = x2 − y2, which has the odd parities for both space and
time inversion operations. The expressions are given by

Mu = 2zmz − xmx − ymy, (1)

Mv =
√

3(xmx − ymy), (2)

Myz =
√

3(zmy + ymz), (3)

Mzx =
√

3(xmz + zmx), (4)

Mxy =
√

3(ymx + xmy), (5)

where r = (x, y, z) is the position vector and m =
(mx,my,mz) is the magnetic moment consisting of the di-
mensionless orbital and spin angular-momentum operators l
and σ/2, asm = 2l/3 +σ [8]. One can confirm that the sign
of the MQs in Eqs. (1)-(5) is reversed by the spatial-inversion
or time-reversal operations, P and T , as P (T ) reverses the
sign of r (m). Meanwhile, the expressions in Eqs. (1)-(5)
are invariant under the PT operation. Although such space-
time inversion properties are common to the magnetic toroidal

y
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z

FIG. 1. Schematic pictures of the spin configuration of the MQs,
{Mu,Mv,Myz,Mzx,Mxy}, in Eqs. (1)-(5) onto the sphere. The
arrows represent the direction of the magnetic moments.

dipole proportional to r×m, they are distinguished from the
rotational property: the MQ is the rank-2 axial tensor and the
magnetic toroidal dipole is the rank-1 polar tensor. The real-
space spin configurations of each MQ component projected
onto the sphere are schematically shown in Fig. 1.

B. Spin-orbital-momentum locking

TABLE I. The correspondence between the multipoles and the mo-
mentum in terms of the space-time inversion symmetries. Even
(Odd) in parentheses represents the even(odd)-rank multipoles. The
upper panel shows the correspondence in the single-orbital system,
while the lower panel shows that in the multi-orbital system where
µ, ν = x, y, z.

momentum P T multipoles
k2n +1 +1 electric (even)

k2n+1 −1 −1 magnetic toroidal (odd)
k2nm +1 −1 magnetic (odd) or magnetic toroidal (even)

k2n+1m −1 +1 electric (odd) or electric toroidal (even)
k2nlµσν +1 +1 electric (even) or electric toroidal (odd)

k2n+1lµσν −1 −1 magnetic (even) or magnetic toroidal (odd)

In contrast to the real-space expressions of the MQ in
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Sec. II A, it is nontrivial to deduce their momentum-space ex-
pressions owing to the opposite time-reversal parity between r
and the wave vector k. Indeed, it is impossible to construct the
counterparts of Eqs. (1)-(5) by replacing r with k. In fact, any
contractions of the time-reversal odd polar vector k and the
time-reversal odd axial vectorm lead to the odd-rank electric
multipoles or the even-rank electric toroidal multipoles with
time-reversal even rather than the time-reversal odd rank-2 ax-
ial tensor, MQ. We summarize the correspondence between
the multipoles and their k dependence in terms of the space-
time inversion symmetries in the upper panel of Table I. Thus,
it is concluded that the appearance of the real-space MQ does
not affect the electronic band structure within the product be-
tween k andm.

Such a situation is resolved by taking into account the prod-
uct of two angular momenta, l and σ. Since both l and σ are
the same rank-1 axial tensors but they are independent with
each other, their contraction expresses the rank-0 and rank-2
polar tensor Qµν = (lµσν + lνσµ)/

√
2 for µ, ν = x, y, z and

rank-1 axial tensor G = l × σ with time-reversal even. By
taking a further contraction between k and G orQµν , one can
construct the rank-2 axial tensor corresponding to the MQ in
momentum space. In the case of the contraction between k
and G, the MQ in momentum space is expressed as

M (I)
u (k) = 2Gzkz − Gxkx − Gyky, (6)

M (I)
v (k) =

√
3(Gxkx − Gyky), (7)

M (I)
yz (k) =

√
3(Gykz + Gzky), (8)

M (I)
zx (k) =

√
3(Gzkx + Gxkz), (9)

M (I)
xy (k) =

√
3(Gxky + Gykx). (10)

In the case of the contraction between k and Qµν , the MQ is
expressed as

M (II)
u (k) = −3Qyzkx + 3Qzxky, (11)

M (II)
v (k) =

√
3(−Qyzkx −Qzxky + 2Qxykz), (12)

M (II)
yz (k) =

√
3
[√

2(Qzz −Qyy)kx +Qxyky −Qzxkz
]
,

(13)

M (II)
zx (k) =

√
3
[√

2(Qxx −Qzz)ky +Qyzkz −Qxykx
]
,

(14)

M (II)
xy (k) =

√
3
[√

2(Qyy −Qxx)kz +Qzxkx −Qyzky
]
.

(15)

As {M (I)
u (k),M

(I)
v (k),M

(I)
yz (k),M

(I)
zx (k),M

(I)
xy (k)} and

{M (II)
u (k),M

(II)
v (k),M

(II)
yz (k),M

(II)
zx (k),M

(II)
xy (k)} are

the same spatial property, their linear combination, e.g.,
c1M

(I)
u (k) + c2M

(II)
u (k) where c1 and c2 are linear coeffi-

cients, are expected to appear once the MQ order occurs.
The expressions in Eqs. (6)-(15) indicate an emergent anti-

symmetric spin-orbital polarization with respect to k in the
band structure. The product of l and σ in G and Qµν is
higher-rank coupling to the atomic spin-orbit coupling l · σ.
The k dependence is qualitatively different with each other:

The present coupling shows an antisymmetric k dependence,
whereas the ordinary spin-orbit coupling does not. Besides,
the coupling between the different components of l and σ can
emerge in the MQ ordered state, e.g., Gx = lyσz − lzσy and
Qxy = (lxσy + lyσx)/

√
2. Since Qµν has the same symme-

try property as the quadrupole, this spin-orbital polarization
is regarded as the antisymmetric quadrupole splitting. Thus,
the appearance of the MQ ordering connects between the mo-
mentum and the spin-orbital degree of freedom, which is the
microscopic origin of the current-induced distortion, as will
be discussed in Sec. III A 4.

The above antisymmetric spin-orbital polarization is sim-
ilar to the antisymmetric spin polarization in a nonmagnetic
noncentrosymmetric lattice system with the Rashba or Dres-
selhaus spin-orbit interaction. In the case of the nonmag-
netic systems, the antisymmetric spin splittings appear in the
form of k × σ for the polar crystal and kµσν for the chi-
ral/gyrotropic crystal. Owing to the momentum dependence
in the spin splitting, the spin orientation is locked at the par-
ticular direction at each wave vector k, which is called the
spin momentum locking [82]. In a similar way, the present
antisymmetric spin-orbital polarization leads to the locking of
the component of lµσν at the particular component at each
k. Thus, we term the antisymmetric spin-orbital polarization
in the MQ ordered state as the spin-orbital momentum lock-
ing. It is noted that this spin-orbital momentum locking does
not accompany the individual spin and orbital polarizations
owing to the PT symmetry. This situation can be regarded
as the hidden spin polarization in the band structure, which
is similar to that discussed in the staggered Rashba systems
without local inversion symmetry at each lattice site [85–90],
such as the zigzag [45, 46, 91, 92], honeycomb [10, 93–96],
diamond [75, 97, 98], and layered systems [24, 99–101]. In
contrast to the staggered Rashba systems, the present spin-
orbital polarization with hidden spin and orbital polarizations
is activated by the spontaneous MQ ordering irrespective of
the specific lattice structure. It is noted that the hidden po-
larizations can be lifted easily by applying external magnetic
field.

Let us remark on the relevance with other multipole order-
ings. The antisymmetric spin-orbital momentum locking can
also appear in the odd-parity magnetic and magnetic toroidal
multipoles, such as the magnetic toroidal dipole. For instance,
the contraction of k and G includes the rank-1 polar tensor
corresponding to the magnetic toroidal dipole, k × G. There,
however, is a clear difference in the band structure between the
MQ and the magnetic toroidal dipole after tracing out the spin-
orbital degree of freedom: The former shows the symmetric
band structure, while the latter exhibits the antisymmetric one
with respect to k.

III. ACTIVE MAGNETIC-QUADRUPOLE SYSTEM

In this section, we demonstrate that the MQ ordering gives
rise to the spin-orbital momentum locking by analyzing the
specific lattice models. We consider two intuitive systems in-
cluding the MQ degree of freedom: One is the multi-orbital
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system where the MQ is activated by the spin-dependent hy-
bridization between orbitals with different spatial parity in
Sec. III A. The other is the sublattice system where the MQ is
activated by the antiferromagnetic ordering in Sec. III B.

A. Multi-orbital system

In this section, we consider the MQ ordering in the multi-
orbital system. By constructing the multi-orbital model con-
sisting of the s, px, and py orbitals where the MQ degree
of freedom is described by the spin-dependent s-p hybridiza-
tion in Sec. III A 1, we discuss the electronic band structure
under the MQ ordering in Sec. III A 2. We show that the
MQ ordering gives rise to a variety of the spin-orbital mo-
mentum locking depending on the type of MQ as introduced
in Sec. II B. The spontaneous MQ ordering induces the ef-
fective spin-orbit interaction similar to the atomic relativis-
tic spin-orbit coupling. In Sec. III A 3, we show the effect
of the magnetic field on the band structure in the MQ order-
ing. The symmetric and antisymmetric spin splittings in addi-
tion to the Zeeman splitting are induced by the magnetic field
owing to the PT symmetry breaking. We discuss the rela-
tion between the spin-orbital momentum locking and physical
responses by exemplifying two cross-correlated phenomena:
current-induced distortion in Sec. III A 4 and the magnetoelec-
tric effect in Sec. III A 5

1. Model

We construct a minimal multi-orbital model to describe the
MQ degree of freedom. We consider a three-orbital model
consisting of the s, px, and py orbitals on a two-dimensional
square lattice under the point group D4h. We take the lattice
constant as unity. The following results are straightforwardly
generalized to a three-dimensional system. The wave function
of the s, px, and py orbitals are represented by φs, φx, and φy ,
respectively. Then, the tight-binding Hamiltonian for the basis
{φsσ, φxσ, φyσ} is given by

H =
∑

k,α,β,σ

c†kασH
αβ
σ ckβσ, (16)

where c†kασ (ckασ) is the creation (annihilation) operator of
electrons at wave vector k, orbital α = s, x, y, and spin
σ. The 3 × 3 Hamiltonian matrix spanned by the basis
{φsσ, φxσ, φyσ} is given by

Hσ =

 2ts(cx + cy) −2itspsx −2itspsy
2itspsx 2(tσcx + tπcy) 2txysxsy − iσλ
2itspsy 2txysxsy + iσλ 2(tσcy + tπcx)

 ,

(17)

where cη = cos kη and sη = sin kη for η = x, y. There
are five hopping parameters in the Hamiltonian in Eq. (17),
{ts, tσ, tπ, tsp, txy} from the symmetry of the system; the
nearest-neighbor hoppings between the s orbitals ts, p orbitals

(a) (b)

yyx

z

(h)

(h)

(h)

(h)

(h)

(h)

(h)

(h)

(h)

(h)

FIG. 2. (a) Multi-orbital model consisting of s, px, and py or-
bitals whose wave functions are denoted as φs, φx, and φy . The
electric dipoles degree of freedom, Q(h)

x and Q
(h)
y , are defined

by the off-diagonal elements between φs and φx (open squares)
and φs and φy (closed squares). (b) The wave functions of
the MQ {M (h)

u ,M
(h)
v ,M

(h)
yz ,M

(h)
zx ,M

(h)
xy } and magnetic toroidal

dipole T (h)
z orderings in Eqs. (20)-(25). For visibility, we use the

arrow for the angle distribution of the xy-spin moments for M (h)
u ,

M
(h)
v , M (h)

xy , and T (h)
z , while the colormap is used for the z-spin

moments for M (h)
yz and M (h)

zx . The shape represents the angle distri-
butions of the electric charge density.

tσ and tπ , and s-p orbitals tsp and the next-nearest-neighbor
hopping between the p orbitals txy . λ is the constant for the
atomic spin-orbit coupling where the factor 1/2 from the spin
operator σ/2 is rescaled. We do not consider the atomic en-
ergy difference between s and p orbitals as well as the other
hoppings for simplicity.

The spinful 6 × 6 Hamiltonian matrix spanned by
{φs↑, φx↑, φy↑, φs↓, φx↓, φy↓} has 36 independent electronic
degrees of freedom. In spinless space, there are 9 elec-
tronic degrees of freedom, whose irreducible representations
are 2A+

1g ⊕ A−2g ⊕ B+
1g ⊕ B+

2g ⊕ E±u where the superscript
± denotes the time-reversal parity. Among them, the irre-
ducible representations E+

u and E−u correspond to the odd-
parity dipoles; the electric dipoles, Q(h)

x and Q(h)
y , and mag-

netic toroidal dipoles, T (h)
x and T (h)

y , respectively. Physically,
they are expressed as the real and imaginary hybridizations
between s and p orbitals, whose matrices are represented by

Q(h)
x =

 0 1 0
1 0 0
0 0 0

 , Q(h)
y =

 0 0 1
0 0 0
1 0 0

 , (18)

T (h)
x =

 0 i 0
−i 0 0
0 0 0

 , T (h)
y =

 0 0 i
0 0 0
−i 0 0

 , (19)
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where the superscript (h) represents the hybrid multipole that
are active in the hybridized orbitals [8]. See also Fig. 2(a).
It is noted that there is no MQ degree of freedom in spinless
space.

The MQ degree of freedom with (P, T ) = (−1,−1) ap-
pears by considering the electronic degrees of freedom in
spinful space, which is constructed from the product of the
electric dipole with (P, T ) = (−1, 1) and spin operator with
(P, T ) = (1,−1) [8, 9]. Indeed, the product of the ir-
reducible representation of the electric dipole E+

u and spin
A−2g ⊕ E−g gives six odd-parity multipoles with time-reversal
odd; E+

u ⊗ (A−2g ⊕ E−g ) = A−1u ⊕ A
−
2u ⊕ B

−
1u ⊕ B

−
2u ⊕ E−u .

Among them, the five out of six multipole degrees of freedom
are expressed as the MQs, whose expressions are given by

A−1u : M (h)
u = −Q(h)

x σx −Q(h)
y σy, (20)

B−1u : M (h)
v = Q(h)

x σx −Q(h)
y σy, (21)

E−u : M (h)
yz = Q(h)

y σz, (22)

M (h)
zx = Q(h)

x σz, (23)

B−2u : M (h)
xy = Q(h)

x σy +Q(h)
y σx. (24)

One can find that the expressions in Eqs. (20)-(24) correspond
to those in Eqs. (1)-(5) in Sec. II A by replacing (x, y, z) and
(mx,my,mz) with (Q

(h)
x , Q

(h)
y , 0) and (σx, σy, σz), respec-

tively. It is noted that M (h)
yz and M

(h)
zx belong to the same

irreducible representation as the inplane magnetic toroidal
dipoles, Tx and Ty , respectively, which will be discussed in
details in Sec. III A 2.

The remaining one corresponds to the magnetic toroidal
dipole degree of freedom T

(h)
z , which belongs to the ir-

reducible representation A−2u. The expression of T (h)
z is

given by the antisymmetric product between {Q(h)
x , Q

(h)
y } and

{σx, σy} as [8, 102]

A−2u : T (h)
z = Q(h)

x σy −Q(h)
y σx. (25)

The above six multipoles satisfy the orthogo-
nal relation: Tr[XY ] = 0 where X,Y =

M
(h)
u ,M

(h)
v ,M

(h)
yz ,M

(h)
zx ,M

(h)
xy , T

(h)
z and X 6= Y . In

the following, we consider the situation where one of the
six multipoles are ordered by the electron correlation. The
amplitude of the mean field is given by h. We show the
schematic pictures of the wave functions with nonzero M (h)

u ,
M

(h)
v , M (h)

yz , M (h)
zx , M (h)

xy , and T (h)
z in Fig. 2(b). The shape

represents the electric charge density, while the arrows for
M

(h)
u , M (h)

v , M (h)
xy , and T

(h)
z [colors for M (h)

yz and M
(h)
zx ]

represent the angle distributions of the xy(z)-spin moments,
which well correspond to the schematic spin polarization in
Fig. 1.

2. Band structure

We investigate the change of the electronic band structure
in the presence of the MQ orderings in the multi-orbital model

in Eq. (16). As the system is two-dimensional (kz = 0) and
the Hamiltonian has only the z component of the angular mo-
mentum (lx = ly = 0), the spin-orbital momentum locking in
Eqs. (6)-(15) reduces to

Mu(k) = −lzσykx + lzσxky, (26)
Mv(k) = −lzσykx − lzσxky, (27)
Myz(k) = lzσzkx, (28)
Mzx(k) = −lzσzky, (29)
Mxy(k) = lzσxkx − lzσyky, (30)

except for the numerical coefficient. Thus, the spin-orbital
momentum locking with respect to the components of lzσx,
lzσy , and lzσz are expected once the MQ order occurs.

Figures 3(a)-3(c) show the isoenergy surfaces in the band
structure at the chemical potential µ = 1 for the M (h)

u , M (h)
v ,

and M (h)
xy ordered states, respectively. The model parameters

are taken as tσ = 0.8, tπ = 0.5, txy = 0.3, ts = 1, tsp = 0.6,
and h = 0.3. We neglect the effect of the atomic relativistic
spin-orbit coupling λ = 0 unless otherwise stated. The spin-
orbital polarizations lzσx, lzσy , and lzσz , are calculated at
each k, which are shown in the left, middle, and right columns
in Fig. 3, respectively. Each band is doubly degenerate owing
to the PT symmetry.

The results clearly indicate the emergence of the spin-
orbital momentum locking expected from the symmetry ar-
gument in Eqs (26)-(30) in each ordered state. The antisym-
metric spin-orbital polarizations of lzσx and lzσy occur along
the ky and kx directions, respectively, in the case of the M (h)

u

ordered state in Fig. 3(a). Similarly, the antisymmetric spin-
orbital polarizations in Eqs. (27) and (30) are found in the
M

(h)
v and M

(h)
xy ordered states, as shown in Figs. 3(b) and

3(c), respectively.
The important hopping parameters for the spin-orbital mo-

mentum locking are easily extracted by evaluating the follow-
ing quantity at each wave vector k, Oµ(k) = Tr[e−βHk lzσµ]
for µ = x, y, z and H =

∑
kHk, where β is the inverse tem-

perature. In the high-temperature expansion of Oµ(k), the
necessary hopping parameters for the spin-orbital momentum
locking are systematically obtained [17, 36]. For the M (h)

u

ordered state, the lowest-order contributions of Ox(k) and
Oy(k) are given by−htsp sin ky and htsp sin kx, respectively,
which indicates that the antisymmetric spin-orbital polariza-
tion is induced by the effective coupling between the order
parameter h and the s-p hopping tsp.

Notably, there is a symmetric spin-orbital polarization in
terms of the lzσz component even without the atomic spin-
orbit coupling, as shown in Figs. 3(a)-3(c). This is because
the order parameters in Eqs. (20), (21), and (24) are described
by two spin components, σx and σy . In this case, the term
proportional to lzσz appears as the even-order product of
the mean-field term in the expansion of Oz(k). Indeed, the
lowest-order contribution of Oz(k) is proportional to h2. The
opposite sign of lzσz between the M (h)

u and the other two
ordered states is due to the opposite vorticity of the vector
Q(k) = (〈lzσx(k)〉, 〈lzσy(k)〉, 〈lzσz(k)〉) in k space: The
direction of (Qx,Qy) shows a (counter)clockwise rotation for
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FIG. 3. The isoenergy surfaces at µ = 1, tσ = 0.8, tπ = 0.5, txy = 0.3, ts = 1, tsp = 0.6, and λ = 0 in the (a) M (h)
u , (b) M (h)

v , (c) M (h)
xy ,

and (d) T (h)
z states with the molecular field h = 0.3. The colormap shows the spin-orbital polarization of the lzσx (left), lzσy (middle), and

lzσz (right) components at each wave vector.

the M (h)
v and M

(h)
xy (M (h)

u ) ordered states for the counter- clockwise path on the circular Fermi surfaces, as schemati-
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FIG. 4. The schematic spin-orbital momentum locking on the circu-
lar Fermi surfaces for theM (h)

u ,M (h)
v , andM (h)

xy ordered states. The
arrow represents the direction of (Qx,Qy).

(a)
0.6

-0.6

0.6

-0.6

(c)

(b)

(d)

(h) (h)

(h) (h)

FIG. 5. The same plot with Fig. 3 in the (a,c) M (h)
yz and (b,d) M (h)

zx

states. The same parameters are used in (a) and (b), and the effect
of the spin-orbit coupling λ is added as λ = 0.5 in (c) and (d). The
solid curves in (c) and (d) represent the isoenergy surfaces in (a) and
(b), respectively.

cally shown in Fig. 4 As the almost uniform distribution of
lzσz in k space resembles the atomic spin-orbit coupling, this
is regarded as the emergent spin-orbit coupling arising from
the MQ ordering. Thus, the magnitude of the atomic spin-
orbit coupling can be controlled by the magnitude of the MQ
order parameter.

Similar to the MQ ordering, the magnetic toroidal dipole
ordering T (h)

z in Eq. (25) also shows the antisymmetric spin-
orbital polarization, as shown in Fig. 3(d). The functional
form of the antisymmetric spin-orbital polarization is repre-
sented by lzσxkx+ lzσyky , which is obtained by replacing σx
with −σx in the expression of Mxy(k) in Eq (30). Although
the asymmetric bottom shift along the kz direction is expected
with the onset of T (h)

z , it does not appear in the present two-
dimensional system.

The remaining MQs, M (h)
yz and M (h)

zx , also show the spin-

orbital momentum locking. The antisymmetric spin-orbital
polarization of lzσz appears with respect to the kx (ky) direc-
tion in the M (h)

yz (M (h)
zx ) ordered state, as shown in Fig. 5(a)

[Fig. 5(b)]. In contrast to the result in Fig. 3, there is no sym-
metric polarization of lzσz owing to the one spin component
in Eqs. (22) and (23).

It is noteworthy that M (h)
yz and M (h)

zx belong to the same
irreducible representations of T (h)

x and T (h)
y under the point

group D4h. Nevertheless, there is no antisymmetric band bot-
tom shift along the kx and ky directions in Figs. 5(a) and 5(b).
The antisymmetric band deformation appears only when in-
troducing the atomic spin-orbit coupling λ in Eq. (17), as
shown in Figs. 5(c) and 5(d). Indeed, the effective coupling
between λ and htsp appears in the expansion of Tr[e−βHk ];
−htspλ sin kx for the M

(h)
yz state and htspλ sin ky for the

M
(h)
zx state. This result indicates the magnetic toroidal dipole,

T
(h)
x and T (h)

y , are secondary induced in the presence of the
spin-orbit coupling in the MQ state.

3. Spin splittings under magnetic field

Although the MQ ordered state exhibits the antisymmetric
spin-orbital polarization, it does not show any spin splittings
owing to the presence of the PT symmetry. The degeneracy
is lifted by the PT -breaking field, which results in additional
momentum-dependent spin splittings in the band structure.
Hereafter, we demonstrate that various symmetric and anti-
symmetric spin splittings are induced by an external magnetic
field by focusing on the M (h)

xy ordered state. We introduce the
Zeeman coupling to spin,−H ·

∑
iασσ′ c

†
iασσσσ′ciασ′ , where

we neglect the Zeeman coupling to orbital angular momentum
without loss of generality.

Figures 6(a)-6(c) show the isoenergy surfaces in the pres-
ence of the magnetic field along the (a) x, (b), y, and (c) z
directions with the magnitude of |H| ≡ H = 0.1. The three
panels in each figure correspond to the spin polarization of σx,
σy , and σz . The other parameters are the same as those in the
previous section.

When the magnetic field is turned on along the x direc-
tion, the spin polarization emerges owing to the PT symme-
try breaking, as shown in Fig. 6(a), although the k dependence
of the spin polarization is different for the different spin com-
ponents. The x-spin component parallel to the magnetic field
shows the ordinary Zeeman splitting, whereas the y and z spin
components perpendicular to the magnetic field give rise to
the symmetric and antisymmetric spin splittings, whose func-
tional forms are given by kxkyσy and kxσz in the limit of
k→ 0, respectively.

Reflecting the different form of spin splittings, the neces-
sary model parameters are different. We extract the essen-
tial model parameters for the spin splittings by calculating
Sµ(k) = Tr[e−βHkσµ] [17, 36]. In the y-spin component, the
lowest-order contribution in Sy(k) for βHk � 1 is given by
h2Htxy sin kx sin ky or h2Ht2sp sin kx sin ky , whereas that in
the z-spin component Sz(k) is given by h3Htsp sin kx. From
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(a)

-0.1

0.1

(b)

-0.1

0.1

(c)

-0.6

 0.6

-0.6

 0.6

FIG. 6. The isoenergy surfaces in the M (h)
xy state in the external magnetic field along the (a) x, (b) y, and (c) z directions with |H| = 0.1 The

colormap shows the spin polarization of the x (left), y (middle), and z (right) components at each wave vector. The other parameters are the
same as Fig. 3.

these expressions, one can find that the s-p hopping tsp is nec-
essary for the antisymmetric spin splitting, while it is not for
the symmetric spin splitting. Moreover, the domain formation
is irrelevant (relevant) to the (anti)symmetric spin splitting as
Sy(k) [Sz(k)] is proportional to h2 (h3). These additional k-
dependent spin splittings are related to the active multipoles:
The symmetric spin splitting like kxkyσy corresponds to the
magnetic toroidal quadrupole with the zx component and the
antisymmetric spin splitting like kxσz corresponds to the elec-
tric dipole along the y direction [4]. In particular, the latter
electric dipole induced by the magnetic field implies the mag-

netoelectric effect in metals, which is relevant to the discus-
sion in Sec. III A 5.

The similar band modulations also occur under the mag-
netic field along the y and z directions, as shown in Figs. 6(b)
and 6(c), respectively. For H ‖ ŷ, the symmetric (antisym-
metric) spin splitting in the form of kxky (ky) is found in the
x(z)-spin component in addition to the Zeeman splitting in
the y-spin component. This indicates that the yz component
of the magnetic toroidal quadrupole and the x component of
the electric dipole are activated by the magnetic field along
the y direction.
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For H ‖ ẑ, the antisymmetric spin splitting occurs in both
σx and σy components in Fig. 6(c), whose functional form
is represented by kxσx − kyσy . Indeed, by calculating Sx
and Sy , we obtain the coupling form as h3Htsp(sin kxσx −
sin kyσy). It is noteworthy that this type of antisymmetric spin
splitting indicates the active axial electric toroidal quadrupole
rather than the polar electric dipole. The appearance of the
electric toroidal quadrupole is related with the optical rotation.

4. Current-induced distortion

Next, we discuss physical phenomena related by the spin-
orbital momentum locking under the MQ ordering. We here
consider the piezo-electric effect where the symmetric dis-
tortion εζ is induced by the electric field Eν , i.e., εζ =∑
ν ΛζνEν for ζ = u, v, yz, zx, xy. The current-induced dis-

tortion tensor Λζν is calculated by the linear response theory
as [10, 80, 103]

Λζν =
∑
k

∑
pq

Πpq(k)Qpqζkv
qp
νk, (31)

where

Πpq(k) =
e~
iV

f [εp(k)]− f [εq(k)]

[εp(k)− εq(k)][εp(k)− εq(k) + i~δ]
, (32)

with the eigenenergy εp(k) and the Fermi distribution func-
tion f [εp(k)]. e is the electron charge, ~ = h/2π is the
Plank constant divided by 2π, V is the system volume, and
δ is the broadening factor. Qpqζk = 〈pk|Q̃ζ |qk〉 and vpqνk =

〈pk|vνk|qk〉 are the matrix elements of electric quadrupole
and velocity v̂µk = ∂Ĥ/(~∂kµ), respectively. We regard
lµσν as the electric quadrupole degree of freedom Q̃ζ from
the symmetry viewpoint. We take e = ~ = 1, δ = 0.01, and
the temperature T = 1/β = 0.01 in the following calcula-
tions.

The current-induced distortion tensor Λζν becomes
nonzero in the absence of the spatial inversion symmetry in
the system. Λζν consists of two parts: One is the intraband
Fermi surface contribution p = q and the other is the inter-
band Fermi sea contribution p 6= q, where their time-reversal
parity is opposite with each other. Reflecting the different
time-reversal properties, the relevant multipoles are differ-
ent in each contribution. The odd-parity magnetic and mag-
netic toroidal multipoles contribute to the intraband process,
while the odd-parity electric and electric toroidal multipoles
contribute to the interband process. In the present model in
Eq. (17), the intraorbital contribution plays an important role
in Λζν , as the odd-parity electric and electric toroidal multi-
poles are not activated in the MQ ordered state owing to the
PT symmetry.

The 15 independent matrix elements of Λζν are character-
ized by the active rank 1-3 odd-parity multipoles with time-
reversal odd: the magnetic toroidal dipole {Tx, Ty, Tz}, MQ
{Mu,Mv,Myz,Mzx,Mxy}, and magnetic toroidal octupole
{Txyz, Tαx , Tαy , Tαz , T βx , T βy , T βz }. By using the multipole no-
tation, the matrix form of Λζν is represented by [4]

Λ =


Tx +Myz − Tαx − T βx Ty −Mzx − Tαy + T βy −2Tz + 2Tαz
−3Tx +Myz + 3Tαx − T βx 3Ty +Mzx − 3Tαy − T βy −2Mxy + 2T βz
−3Mu −Mv + Txyz −3Tz −Mxy − 2Tαz − 2T βz −3Ty +Mzx − 2Tαy + 2T βy

−3Tz +Mxy − 2Tαz + 2T βz 3Mu −Mv + Txyz −3Tx −Myz − 2Tαx − 2T βx
−3Ty −Mzx − 2Tαy − 2T βy −3Tx +Myz − 2Tαx + 2T βx 2Mv + Txyz

 , (33)

where the row (column) of the matrix represents the compo-
nent of {Ex, Ey, Ez} ({εu, εv, εyz, εzx, εxy}).

Once the MQ ordering occurs, nonzero Λζµ is obtained ac-
cording to the types of the orderings. It is noted that the mag-
netic toroidal dipole and/or octupole belonging to the same
irreducible representation of the MQ can be additionally ac-
tivated, which also contributes to nonzero Λζµ. For example,
in the case of Mxy ordering, the magnetic toroidal octupole
T βz is simultaneously activated, which indicates two indepen-
dent matrix elements in Λζµ, Λzxx = −Λyzy and Λvz . The
relation between the MQ ordering and nonzero Λ in each ir-
reducible representation is listed in Table II. In the following,
we discuss the behavior of Λ by focusing on theM (h)

xy ordered
state in the model in Eq. (16).

Figure 7 shows the µ dependence of Λzxx(= −Λyzy) (solid

TABLE II. The irreducible representation (irrep.) of the magnetic
and magnetic toroidal multipoles from the rank 0 to 3 under the point
group D4h. The nonzero matrix elements of the current-induced dis-
tortion tensor Λ and the magnetoelectric tensor α are also shown.

irrep. multipoles Ληµ αµν
A−

1u M0, Mu Λyzx = −Λzxy αxx = αyy, αzz
A−

2u Tz , Tαz Λzxx = Λyzy , Λuz αxy = −αyx
B−

1u Mv , Txyz Λyzx = Λzxy , Λxyz αxx = −αyy
B−

2u Mxy , T βz Λzxx = −Λyzy , Λvz αxy = αyx
E−
u Myz , Tx, Tαx , T βx Λux, Λvx, Λxyy , Λzxz αyz , αzy

Mzx, Ty , Tαy , T βy Λuy , Λvy , Λxyx, Λyzz αzx, αxz

red lines) in the M (h)
xy ordered state. The results for different

h are plotted in Fig. 7(a) at h = 0.5, Fig. 7(b) at h = 2, and
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FIG. 7. (a)-(c) µ dependence of the coefficient of the current-
distortion correlation, Λzxx, in the M (h)

xy state at temperature T =
0.01 and the damping factor δ = 0.01 for (a) h = 0.5, (b) 2,
and (c) 5. Λ

(p)
zxx represents the intraband contribution from the pth

band. The other parameters are the same as Fig. 3. (d) µ depen-
dences of the order parameter 〈M (h)

xy 〉, its contribution near the Fermi
level 〈M (h)

xy 〉EF , the spin-orbital polarization near the Fermi level
〈sin kxlzσx〉EF , and the density of states (DOS). The arbitrary unit
is used for 〈M (h)

xy 〉EF and 〈sin kxlzσx〉EF .

Fig. 7(c) at h = 5. The hopping parameters are tσ = 0.8,

(a)
0.15

-0.15

0.15

-0.15

0.2

-0.2

0.25

-0.25

(c)

(b)

(d)

FIG. 8. The lzσx polarization of the isoenergy surfaces in the Mxy

state for (a) µ = −9, (b) µ = −7.1, (c) µ = −2, and (d) µ = 0.
The other parameters are tσ = 0.8, tπ = 0.5, txy = 0.3, ts = 1,
tsp = 0.6, and h = 5.

tπ = 0.5, txy = 0.3, ts = 1, tsp = 0.6, and λ = 0, which
are the same as those in Sec. III A 2. It is noted that Λvz = 0
because of the two-dimensional system.

Λzxx takes a finite value for nonzero h, as shown in
Figs. 7(a)-7(c). However, it vanishes in the insulating region
without the Fermi surfaces, e.g., 2.7 < |µ| < 3.7 for h = 5 in
Fig. 7(c), since the intraband process at the Fermi surface is
important in the presence of the MQ, as mentioned above. The
overall behavior of Λzxx against µ is similar: Λzxx shows a
positive value for the small Fermi surface (small electron/hole
filling), while it becomes negative for the large Fermi sur-
face (close to half filling). For larger h = 2 and 5, Λzxx
is characterized by two broad maxima and one broad mini-
mum, whose positions become closer to the eigenvalues of the
mean-field Hamiltonian, i.e., ±

√
2h, 0, for larger h. Mean-

while, there are four maxima and three minima for h = 0.5
in Fig. 7(a). These behaviors are understood by decomposing
Λzxx into the contribution for the pth band, Λ

(p)
zxx (p = 0-5),

i.e., Λzxx =
∑
p Λ

(p)
zxx. When the bands are well separated

by ±
√

2h for large h = 5 in Fig. 7(c), two maxima arise
from the lower (p = 0, 1) and higher (p = 4, 5) bands and
one minimum arises from the middle band (p = 2, 3). With
decrease of h, the separated bands become closer with each
other, and then, they are overlapped at the band edge, as shown
in Fig. 7(b). With further decrease of h, the sum of the differ-
ent band contributions results in the complicated behavior, as
shown in Fig. 7(a).

To examine the behavior of Λzxx in the MQ ordered state in
detail, we compare it with the order parameter 〈M (h)

xy 〉, plotted
as a function of µ at h = 5 in Fig. 7(d). |〈M (h)

xy 〉| increases
while decreasing |µ| and shows almost constant for |µ| < 3.7.



11

This result indicates that the behaviors of 〈M (h)
xy 〉 do not have

simple correlation like Λzxx ∝ 〈M (h)
xy 〉 except in the region

for the low/high-electron density. Besides, we also compare
Λzxx with the µ derivative of 〈M (h)

xy 〉, 〈M (h)
xy 〉EF

, since Λzxx
is characterized by the intraband process at the Fermi surface.
As shown in Fig. 7(d), 〈M (h)

xy 〉EF is enhanced at the inflection
points with |µ| ' 7.1, but it vanishes in region for |µ| < 3.7.
Thus, Λzxx do not have simple correlation with 〈M (h)

xy 〉EF
as

well.
On the other hand, we find that Λzxx has strong correlation

with the antisymmetric spin-orbital polarization at the Fermi
surface−〈sin kxlzσx〉EF

when the Fermi surface has the sim-
ple form, as shown in Fig. 7(d); there are two broad maxima at
|µ| ' 7.1 and the broad minimum at µ = 0. This result indi-
cates that the quantity of −〈sin kxlzσx〉EF

, which is related
with the spin-orbital momentum locking, becomes the ap-
propriate measure of the current-induced distortion. In other
words, a large response is expected when the degree of the
spin-orbital momentum locking becomes large. There are two
possibilities to reach a large value of Λzxx: One is the large
value of Oµ(k) at the Fermi surface and the other is the large
density of states (DOS) denoted as the dotted lines in Fig. 7(d).
For the former Oµ(k), a larger s-p hopping is preferable as
discussed in Sec. III A 2. Meanwhile, for the latter, the large
enhancement of the density of states, such as the van Hove
singularity or flat band, is required. Indeed, Λzxx shows an
increase by approaching µ ' 0,±

√
2h, where the small cir-

cular Fermi surface close to the band edge in Figs. 8(a) and
8(c) gradually changes to the large square-shaped one at the
van Hove singularity arising from the square-lattice geometry
in Figs. 8(b) and 8(d).

5. Magnetoelectric effect

Next, we consider another cross-correlated response in the
MQ ordered state. We investigate the magnetoelectric effect
where the magnetization Mµ is induced by the electric field
Eν , i.e., Mµ =

∑
ν αµνEν for µ, ν = x, y, z. The tensor αµν

is calculated by the linear response theory as

αµν =
∑
k

∑
pq

Πpq(k)Mpq
µkv

qp
νk, (34)

where Mpq
µk = 〈pk|σµ|qk〉 is the matrix element of the spin.

We here take into account only the spin component in Mpq
µk

for simplicity.
Similar to the current-induced distortion tensor Λζν in

previous section, the magnetoelectric tensor αµν becomes
nonzero in the absence of the spatial inversion symmetry.
Since the time-reversal property between Λζν and αµν is op-
posite, the odd-parity magnetic and magnetic toroidal multi-
poles with time-reversal odd contribute to the interband pro-
cess p 6= q. By using the active rank 0-2 odd-parity mul-
tipoles, the magnetic monopole M0, the magnetic toroidal
dipole {Tx, Ty, Tz}, and MQ {Mu,Mv,Myz,Mzx,Mxy},
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FIG. 9. µ dependence of the coefficient of the current-magnetization
correlation, αyx, in the M (h)

xy state at temperature T = 0.01 and the
damping factor δ = 0.01 for (a) h = 0.5, (b) 2, and (c) 5. α(LM)

yx ,
α
(MU)
yx , and α(LU)

yx represents the interband contribution for the spe-
cific bands. L, M, and U represents the lower two bands (p = 0, 1),
middle two bands (p = 2, 3), and upper two bands (p = 4, 5), re-
spectively. For example, α(LM)

yx stands for the interband process be-
tween the lower two bands and middle two bands. The other param-
eters are the same as Fig. 3.

the matrix form of αµν is represented by

α =

M0 −Mu +Mv Mxy + Tz Mzx − Ty
Mxy − Tz M0 −Mu −Mv Myz + Tx
Mzx + Ty Myz − Tx M0 + 2Mu

 ,

(35)

where the row (column) of the matrix represents the compo-
nent of {Ex, Ey, Ez} ({Mx,My,Mz}). The nonzero matrix
elements under the MQ ordering are shown in Table II. In
the following, we focus on the behavior of αµν in the M (h)

xy
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FIG. 10. The band structure at (a) h = 0.5 and (b) 5. The dashed
curves show the band dispersions and the colormap shows the spin-
orbital polarization of the lzσx component at each wave vector. The
horizontal dotted lines show the energy where |αyx| is maximized.

ordered state with αxy = αyx.
Figure 9 shows the µ dependence of αyx(= αxy) denoted

by the red solid lines in theM (h)
xy ordered state for (a) h = 0.5,

(b) h = 2, and (c) h = 5. The other parameters are com-
mon in Sec. III A 2. The result shows that αyx is induced by
nonzero h as Λzxx. In contrast to Λzxx, αyx takes a finite
value in the insulating region for 2.7 < |µ| < 3.7 and h = 5
in addition to the metallic region, since the interband process
dominates in αyx. As compared with the results in Figs. 9(a)-
9(c), αyx tends to be smaller for larger h, which is reasonable
in terms of the interband process: the larger energy differ-
ence in the denominator in Eq. (34) for larger h suppresses
αyx. Although nonzero αyx exists in the presence of the an-
tisymmetric spin-orbital polarization under the MQ ordering,
its behavior is mainly determined by the details of the elec-
tronic band structure, as discussed below.

As each band is doubly degenerate owing to the PT
symmetry, the total six bands are separated into three two-
degenerate bands under the MQ ordering. Then, αyx is de-
composed into three parts according to the different interband
processes, αyx = α

(LM)
yx + α

(MU)
yx + α

(LU)
yx where the super-

scripts L, M, and U represent the lower two bands p = 0, 1,
middle two bands p = 2, 3, and upper two bands p = 4, 5, re-
spectively. In other words, α(LM)

yx includes the contribution of
the interband process between the lower two bands and middle
two bands, for instance. For small h = 0.5, the contribution

of α(MU)
yx (α(LM)

yx ) is dominant for the negative (positive) peak
at µ ' −2.33 (2.32), while α(LU)

yx is less important. The large
enhancement at µ ' −2.33 and 2.32 is attributed to the small
band gap in the electronic band structure for small h, as shown
in Fig. 10(a). The band structure in Fig. 10(a) indicates that
the dominant contribution comes from near the k = (π, π)
[k = (0, 0)] point at µ ' −2.33 (2.32), which is originally
fourfold degenerate at h = 0. When the three bands are sep-
arated by increasing h, the contribution of α(LM)

yx (α(MU)
yx ) be-

comes important for low (high) electron density, as shown in
Figs. 9(b) and 9(c). For large h, all the k points below the
Fermi level contribute to α(LM)

yx irrespective of Q(k), since
the energy difference between the lower and middle bands at
each k takes similar values, as shown in Fig. 10(b). The broad
peaks at µ ' −7.16 and 7.17 for h = 5 are attributed to the
van Hove singularity, as shown in Fig. 8(b). Meanwhile, αyx
is negligibly small close to the half filling owing to the can-
cellation of the contributions of α(LM)

yx and α(MU)
yx , as shown

in Fig. 9(c).

B. Sublattice system

Next, we investigate another situation with the active MQ
degree of freedom in the sublattice system. We consider a
four-sublattice model in the tetragonal system in Sec. III B 1.
In Sec. III B 2, we show that a similar spin-orbital momentum
locking occurs in the MQ ordering even without the atomic
orbital degree of freedom.

1. Model

A

B

C

D

(a) (b)

(c)

(c) (c)

(c)(c)

(c)

ab

FIG. 11. (a) Sublattice model consisting of four sublattices
A-D in the tetragonal lattice structure with the lattice constant
a + b. (b) The spin patterns of the odd-parity cluster MQs
{M (c)

u ,M
(c)
v ,M

(c)
yz ,M

(c)
zx ,M

(c)
xy } and magnetic toroidal dipole T (c)

z

in Eqs. (40)-(45). The arrow represents the direction of magnetic
moments.

In this section, we consider another electronic degree of
freedom to activate the MQ. In particular, we focus on the sub-
lattice degree of freedom instead of the orbital one, where the
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MQ is activated with the antiferromagnetic ordering. We ex-
amine the four-sublattice system in the tetragonal lattice struc-
ture, as shown in Fig. 11(a), where the point group is D4h as
in Sec. III A. Also in this sublattice case, the extension to a
three-dimensional system is straightforward. The lattice con-
stant is taken as a = b = 1/2 for notational simplicity and the
difference between a and b is expressed as the different hop-
ping amplitudes, ta and tb. When there is no orbital degree
of freedom at each sublattice, the tight-binding Hamiltonian
is given by

H =
∑

k,γ,γ′,σ

c†kγσH
γγ′

σ ckγ′σ, (36)

where c†kγσ (ckγσ) is the creation (annihilation) operator of
electrons at wave vector k, sublattice γ =A-D, and spin σ.
The 4 × 4 Hamiltonian matrix spanned by the four-sublattice
basis {φAσ, φBσ, φCσ, φDσ} is given by

Hσ =


0 0 f∗x f∗y
0 0 fy fx
fx f∗y 0 0
fy f∗x 0 0

 , (37)

where fη = tae
ikη/2 + tbe

−ikη/2 for η = x, y.
The Hamiltonian in Eq. (36) has 64 independent electronic

degrees of freedom. Similar to the discussion in Sec. III A,
one can construct the MQ degree of freedom by the product of
the odd-parity electronic degree of freedom in spinless space
and spin σ. The spinless odd-parity electronic degree of free-
dom is expressed as the spatial distribution of the onsite po-
tential with the same magnitude but the different sign, which
corresponds to the odd-parity electric dipoles, Q(c)

x and Q(c)
y .

The matrix forms of Q(c)
x and Q(c)

y are given by

Q(c)
x =

 −1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (38)

Q(c)
y =

 −1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , (39)

where the superscript (c) means the cluster multipole that is
defined in the sublattice cluster [10–12]. We here do not ex-
plicitly consider the other electric dipole degree of freedom,
e.g., the bond degree of freedom, and we here focus on the
antiferromagnetic ordering, which is represented by the con-
traction of {Q(c)

x , Q
(c)
y } andσ. By taking a linear combination

of them, we obtain the expressions for five MQs as

A−1u : M (c)
u = −Q(c)

x σx −Q(c)
y σy, (40)

B−1u : M (c)
v = Q(c)

x σx −Q(c)
y σy, (41)

E−u : M (c)
yz = Q(c)

y σz, (42)

M (c)
zx = Q(c)

x σz, (43)

B−2u : M (c)
xy = Q(c)

x σy +Q(c)
y σx, (44)

and the magnetic toroidal dipole as

A−2u : T (c)
z = Q(c)

x σy −Q(c)
y σx. (45)

The corresponding spin patterns are shown in Fig. 11(b),
where M (c)

u , M (c)
v , M (c)

xy , and T (c)
z exhibit the noncollinear

magnetic textures, while M
(c)
yz and M

(c)
zx are the collinear

magnetic textures. It is noted that M (c)
yz and M (c)

zx are also re-
garded as the magnetic toroidal dipole ordering T (c)

x and T (c)
y ,

respectively, which belong to the same irreducible representa-
tion under the point group D4h.

2. Band structure

-0.2

 0.2

-0.2

 0.2

FIG. 12. The isoenergy surfaces at µ = −0.5, ta = 1, tb = 0.5,
and h = 0.3 in the Mxy state. The colormap shows the spin-orbital
polarization of the l(c)z σx (left) and l(c)z σy (right) at each wave vector.

Since there is no orbital degree of freedom in the system,
orbital angular momentum l is inactive as the electronic de-
gree of freedom in the Hamiltonian. Nevertheless, a similar
pseudo-orbital angular momentum is defined as the degree of
freedom over the sublattices. Since the electron hoppings on
the closed loop in the square plaquette as A → C → B →
D give rise to the magnetic flux to the electrons in the out-
of-plane direction, the matrix of the pseudo-orbital angular
momentum is defined as

l(c)z =

 0 0 −i i
0 0 i −i
i −i 0 0
−i i 0 0

 . (46)

By using l(c)z instead of lz in Eqs. (26)-(30), one can obtain
similar physics in Sec. III A.

We show a similar spin-orbital momentum locking in the
model in Eq. (36) under the MQ ordering. We here focus on
the Mxy ordered state in Fig. 11(b) with the molecular field
h as an example. Figure 12 shows the isoenergy surfaces at
µ = −0.5, ta = 1, tb = 0.5, and h = 0.3 in the Mxy ordered
state. Similar to the result in Fig. 3(c), the band structure ex-
hibits the antisymmetric spin-orbital polarization of l(c)z σx and
l
(c)
z σy , which corresponds to the spin-orbital momentum lock-

ing. The component of l(c)z σx is asymmetric with respect to
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the kx direction, while that of l(c)z σy is asymmetric with re-
spect to the ky direction. The necessary hopping parameters
are also obtained by evaluating Oµ(k) = Tr[e−βHk l

(c)
z σµ].

The lowest-order contributions are given by

−h(ta − tb)
(

sin
kx
2
l(c)z σx + sin

ky
2
l(c)z σy

)
, (47)

which indicates that the relation ta 6= tb is necessary for
the spin-orbital momentum locking besides h 6= 0. Also
in this case, the effective spin-orbit coupling in the form of
l
(c)
z σz emerges even without the effect of the atomic relativis-

tic spin-orbit coupling in the tight-binding model (not shown).
The contribution is represented by h2(ta + tb)(cos kx/2 +
cos ky/2)

Once the spin-orbital momentum locking occurs by the
MQ ordering, similar physics discussed in Sec. III A is ex-
pected, such as the antisymmetric spin polarization by the
magnetic field and linear responses. We briefly discuss the
electronic band structure in the presence of the magnetic
field. Although similar symmetric/antisymmetric spin split-
tings shown in Fig. 6 are expected because of the same sym-
metry, the necessary model parameters are different from the
multi-orbital case. When the magnetic field is applied along
the x direction, the kxkyσy-type symmetric and kxσz-type an-
tisymmetric spin splittings are expected, but they do not show
up within the model Hamiltonian in Eq. (36). Such spin split-
tings under the magnetic field appear when the additional di-
agonal hopping between A and B (and C and D) and/or the
effective spin-dependent hopping from the atomic relativistic
spin-orbit coupling exist. Considering such terms within the
plaquette, we obtain the former Hamiltonian matrix as

Hdiag
σ =


0 f∗xy 0 0
fxy 0 0 0
0 0 0 f ′∗xy
0 0 f ′xy 0

 , (48)

where fxy = t′ae
i(kx+ky)/2 and f ′xy = t′ae

i(−kx+ky)/2 and the
latter as

HSOC
σ = λ


0 0 −ie−ikx/2 ie−iky/2

0 0 ieiky/2 −ieikx/2
ieikx/2 −ie−iky/2 0 0
−ieiky/2 ie−ikx/2 0 0

 .

(49)

By evaluating Oµ(k), we obtain the necessary effec-
tive coupling for the symmetric spin splitting kxkyσy as

h2Hxt
2
bt
′
a sin kx sin ky and the antisymmetric spin split-

ting kxσz as the superposition of hHxλtb sin kx and
h3Hxtat

′
atb sin kx. Thus, t′a is necessary for both the sym-

metric and antisymmetric spin splittings, while λ is the an-
tisymmetric spin splitting. In a similar way, the antisym-
metric spin splitting kxσx − kyσy in a magnetic field along
z-axis is caused by introducing t′a and λ, e.g., the coupling
−hHzλtb sin kxσx and h3Hztat

′
atb sin kxσx.

IV. SUMMARY

To summarize, we have investigated the electronic states
and related physical phenomena induced by the MQ order-
ings. We found that the MQ ordered state exhibits a pecu-
liar spin-orbital entanglement in momentum space; the spin-
orbital polarization is antisymmetrically locked at the partic-
ular component at each wave vector, which is dubbed the
spin-orbital momentum locking. The present spin-orbital mo-
mentum locking is driven by the onset of the MQ order-
ings in contrast to the spin momentum locking that exists
in the nonmagnetic noncentrosymmetric lattice systems. We
show typical two examples for the MQ orderings by consid-
ering the multi-orbital and sublattice systems. We demon-
strate that the spin-orbital momentum locking occurs un-
der the MQ orderings, which causes various cross-correlated
physical phenomena, such as the magnetic-field-induced sym-
metric and antisymmetric spin polarization in the band struc-
ture, the current-induced distortion, and the magnetoelectric
effect. We discuss the relevant model parameters in each
phenomenon. As the spin-orbital momentum locking is ex-
pected to be found in odd-parity magnetic materials not only
in the MQ phase but also in other magnetic and magnetic
toroidal multipole phases, our study will stimulate a further
exploration of functional spintronics materials, which have
recently been extensively studied. BaMn2As2 [104–107]
(UNi4B [23, 26, 108, 109] and Ce3TiBi5 [27, 28]) is then a
candidate material to exhibit the spin-orbital momentum lock-
ing under the MQ (magnetic toroidal dipole) ordering.
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