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Abstract 

The three-dimensional Dirac semimetal is a parent phase for a variety of topological phases that 

can be generated by tuning parameters in material growth or device operation.  Notably, it has 

recently been found that cadmium arsenide, which is ordinarily a three-dimensional Dirac 

semimetal, can nevertheless realize a three-dimensional topological insulator in (001)-oriented 

films about 50 nm thick.  In this work, we study the quantum Hall effect in thin (001)-oriented 

cadmium arsenide films, their thickness ranging from 12 nm to 24 nm.  When the carrier density 

is kept approximately constant across the different films, quantum transport reveals an identical 

underlying picture.  The result is shown to be consistent with the transport’s origin in the surface 

states of a three-dimensional topological insulator, but problematic for a perspective in which the 

quantum Hall effect originates from the confined subbands of the bulk band structure.  These thin-

film results complement previous studies of the quantum Hall effect in 50-nm-thick films. 
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1. Introduction 

Three-dimensional (3D) Dirac semimetals like cadmium arsenide (Cd3As2) are considered 

3D analogues of graphene because their low energy dispersion realizes the Dirac equation in three 

dimensions in the same way that graphene's low energy dispersion realizes it in two [1-4].  A 

practically important difference between a 3D Dirac semimetal and a 2D one such as graphene is 

that the third dimension provides a practical way of manipulating the bulk band structure. 

According to the bulk-boundary correspondence principle [5], such manipulation amounts to 

control over the topological surface states when the bulk band structure is characterized by a 

topological invariant different from that of the material surrounding it [6].   

In Cd3As2, the subject of this work, the 3D Dirac nodes are due in part to a crystal symmetry 

(a fourfold rotation of the kz axis) [2].  The nodes, which lie along [001] (i.e. parallel to kz), result 

in surface states that vary according to the nodes' projection onto the relevant surface Brillouin 

zone [2].  It is thought, for example, that the surface states of (112)-oriented films consist of pairs 

of arcs that join the projected Dirac nodes in the surface Brillouin zone [2,7], similar to the Fermi 

arcs in the closely related Weyl semimetals [8].  

In this work, however, we focus on (001)-oriented thin films, in which the nodes project 

onto the same point in the corresponding surface Brillouin zone.  The surface state in this case is 

not Fermi arc-like.  Instead, thin (001)-oriented films realize a 3D topological insulator (TI).  The 

origin of the 3D TI state is the band inversion at the center of the Brillouin zone [2].  At each 

interface of the film, which lies between a compound semiconductor layer and a gate dielectric, 

the resolution of the band inversion results in a 2D Dirac surface state [9-11].  A key feature of 

these thin film heterostructures is the energy offset between the two surface states that arises from 

the different band offsets on either surface or interface.  In a previous study, we showed that this 
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picture of the 3D TI surface state explains the sequences of filling factors in the quantum Hall 

effect measured in high magnetic fields [12].  Another test of the 3D TI picture is that, within a 

relevant range of film thickness, the Landau level spectrum and transport in magnetic fields should 

be insensitive to the thickness.  This is the focus of the present work. 

 The remainder of this Article is organized as follows: In Section 2, we discuss a 

phenomenological model for the TI surface state and its relevant predictions.  Then we turn to our 

experiments. The methods are described in Section 3, and the results—quantum Hall data from 

four samples of thicknesses between 12 and 28 nm—in Section 4. Section 5 contains a discussion 

of the experimental data with reference to the surface state and subband models.  We conclude 

(Section 6) with a summary and some suggestions for future experiments. 

 

2. Model 

We apply a simple continuum model for the surface states of a 3D TI to parametrize the 

relevant underlying physics [13].  Near the center of the Brillouin zone, we expect that the surface 

states can be described by the following Hamiltonian: 

𝐻0 = [ℏ𝑣𝐹(𝑘𝑥σ𝑦 − 𝑘𝑦σ𝑥) +
Δ𝑖

2
𝟙] ⊗ τ𝑧 +

Δℎ

2
𝟙 ⊗ τ𝑥,    (1) 

where the σ𝑖 and τ𝑖 are Pauli matrices, referring to a spin degree of freedom and a surface 

pseudospin degree of freedom, respectively.  The ki are the 2D crystal momenta, and vF, the Fermi 

velocity, parametrizes the steepness of the (identical) Dirac cones when Δh = 0.  The term Δi is 

formally an inversion-breaking term in the sense that τ𝑧 is an inversion symmetry operator.  In a 

more concrete sense, it describes the effect of the inter-surface energy difference that we ascribe 

to the asymmetry of the Cd3As2 heterostructure, that is, the difference in band offsets on either 

side of the film.  Finally, Δh allows a gap to open via the hybridization of the two surfaces.  This 
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is expected to be relevant only in films thin enough for there to be significant wavefunction overlap 

between the surface states on the opposite surfaces. 

In the absence of a magnetic field, the spectrum of this Hamiltonian is 

𝐸α,β(𝑘) = α√(ℏ𝑣𝐹𝑘)2 + (Δ/2)2 + β ℏ𝑣𝐹|𝑘|Δ𝑖,     (2) 

where α, β =  ±1 independently and we substitute Δ = √Δ𝑖
2 + Δℎ

2 .  Obviously, in the circumstance 

where Δi = Δh = 0, the result is a doubly degenerate Dirac cone. 

In a magnetic field �⃗� = 𝐵 �̂�, the Zeeman effect acts on the real spin degree of freedom and 

is captured by the addition of the following term to the Hamiltonian, 𝐻𝑍 = 𝑔
∗𝜇𝐵B 𝜎𝑧⊗ 𝟙, where 

𝑔∗ is an effective g factor, and μ𝐵 is the Bohr magneton.  More important, though, is the 

quantization of the spectrum into Landau levels.  The calculation of this is accomplished by the 

Peierls substitution, ℏ�⃗� → Π⃗⃗ = ℏ�⃗� + 𝑒𝐴 , where we use the gauge 𝐴 = 𝑥𝐵 �̂�, and e is the 

magnitude of the electron charge.  Because �⃗�  and 𝐴  do not commute, we introduce the ladder 

operators 𝑎 = (2𝑒𝐵ℏ)−1/2(Π𝑦 + 𝑖 Π𝑥) and 𝑎† = (2𝑒𝐵ℏ)−1/2(Π𝑦 − 𝑖 Π𝑥).  The resulting 

Hamiltonian H(B) reads: 

𝐻(𝐵) =

(

 
 
 
 

Δ𝑖

2
+ 𝑔∗μ𝐵𝐵 −√𝑏(𝐵) 𝑎

Δℎ

2
0

−√𝑏(𝐵) 𝑎†
Δ𝑖

2
− 𝑔∗μ𝐵𝐵 0

Δℎ

2
Δℎ

2
0 −

Δ𝑖

2
+ 𝑔∗μ𝐵𝐵 +√𝑏(𝐵) 𝑎

0
Δℎ

2
+√𝑏(𝐵) 𝑎† −

Δ𝑖

2
− 𝑔∗μ𝐵𝐵)

 
 
 
 

,  (3) 

where we have used the shorthand 𝑏(𝐵) ≔ 2𝑒𝐵ℏ𝑣𝐹
2.  The ladder operators are associated to states 

|𝑛⟩, where n is an integer ≥ 0, for which 𝑎† |𝑛 ⟩ =  √(𝑛 + 1) | 𝑛 + 1⟩, 𝑎  |𝑛 > 0 ⟩  =  √𝑛  |𝑛 − 1⟩, 

and 𝑎 |0⟩ = 0. 

As long as n > 0, the eigenvectors Ψ𝑛(𝐵) of H(B) have the form: 
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Ψ𝑛>0 =

(

 
 

Φ1,𝑛|𝑛 − 1⟩

Φ2,𝑛|𝑛⟩

Φ3,𝑛|𝑛 − 1⟩

Φ4,𝑛 |𝑛 ⟩ )

 
 
, 

where the Φ𝑖,𝑛 are numbers. When n = 0, however, 

Ψ𝑛=0 = (

0
Φ2,0|0⟩

0
Φ4,0 |0 ⟩

). 

Combining all these, we find the spectrum in a perpendicular field to be 

𝐸α,β, 𝑛>0(𝐵) = α√(𝑔∗μ𝐵𝐵)2 + (Δ/2)2 + 𝑛 𝑏(𝐵) + β√𝑛 𝑏(𝐵)Δ𝑖
2 + (𝑔∗μ𝐵𝐵)2Δ2, 

where, as above, Δ = √Δ𝑖
2 + Δℎ

2 , and α, β =  ±1 independently.  For n = 0, 𝐸β, 𝑛=0 = −𝑔
∗μ𝐵𝐵 +

βΔ. 

The effect of tuning the model parameters Δh and Δi is illustrated in Fig. 1.  If both Δh = 0 

and Δi = 0, then the two Dirac cones are degenerate everywhere, as shown in Fig. 1(a).  A finite Δi 

has the effect of shifting each cone relative to the other in energy, as seen in Fig. 1(b), so that the 

energy difference between the Dirac points is equal to Δi.  By contrast, the effect of Δh, shown in 

Fig. 1(c), is to open a gap at the Dirac point; no degeneracy is split.  Far from k = 0, the dispersion 

looks like that of Fig. 1(a).  If both Δi and Δh are nonzero, the case of Fig. 1(d), then the dispersion 

far from Γ looks like that of Fig. 1(b), while a gap opens at k = 0. 

Since Δi essentially tunes a splitting while Δh opens a gap, small changes in Δi substantially 

affect the Landau level spectrum, in contrast to even fairly large changes in Δh.  This difference is 

illustrated in Figs. 1(e-f).  In Fig. 1(e), Δi is fixed at 75 meV, and the spectra of Eq. (3) are plotted 

for different values of Δh, ranging from 0 to 60 meV.  The effect of changing Δh is subtle and most 
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noticeable for the lowest Landau levels at low field, or, in the quantum Hall regime, the smallest 

filling factors.  A spectroscopic experiment, sensitive to quantitative shifts in the Landau level 

energies, could in principle be sensitive to the shift of the lowest couple of Landau levels.  Such 

energy shifts are, however, invisible to a transport experiment.  Equivalently small changes in Δi, 

by contrast, drastically affect the Landau level spectrum. This point is illustrated in Fig. 1(f).  Here 

Δh, now, is set at a fixed value and spectra are plotted for various Δi, ranging from 0 to 60 meV.  A 

small change in Δi results in both splitting and shifting of the Landau levels, causing the locations 

of crossed Landau levels to change. In an experiment—a Hall measurement—this could be seen 

as a change in the sequence of quantum Hall filling factors observed as the external field is ramped, 

or as a change in the interplay of multiple frequencies in quantum oscillations. 

 

3. Experimental Methods 

Capped (001)-oriented Cd3As2 films were grown by molecular beam epitaxy and fabricated 

into gated Hall bar devices. Details regarding the growth and structural and electronic 

characterization of the resulting structures have been reported elsewhere [12,14-16].  The samples 

consist of a (100) GaSb substrate, cut 3º toward (111)B, onto which was grown a buffer layer of 

InxAl1˗xSb, a Cd3As2 layer, and finally a thin GaSb cap.  Where noted, an Al2O3 gate dielectric was 

deposited ex situ using atomic layer deposition after the as-grown devices were first measured.  

The gate metal, on top of the dielectric, lies above the region containing Hall bar’s voltage leads, 

and a dc bias is applied between the gate metal and the Cd3As2 film; the carrier density is 

determined from the low-field Hall effect.  Quasi-dc Hall measurements were performed in a 

Quantum Design PPMS Dynacool using standard lock-in techniques and a 1 μA current.  Raw 

resistance data were binned and interpolated before being symmetrized (Rxx) or antisymmetrized 
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(Rxy) with respect to B.  The thickness of each sample was determined from cross-sections using 

transmission electron microscopy. 

 

4. Results 

We refer to transport measurements on four samples, A, B, C, and D.  The samples differ 

in the thickness of the Cd3As2 layer, which is 12 nm for sample A, 14 nm for sample B, 18 nm for 

sample C, and 24 nm for sample D.  Table I lists the film thicknesses, the carrier density and Hall 

mobility extracted from the traces in Figs. 2 and 3.  Before we compare these four samples, we 

examine sample D in detail. 

Figure 2 shows magnetotransport data from sample D.  At magnetic fields below about 

5 T, the plateaus are weak and proceed according to an apparent degeneracy of two, i.e. the filling 

factor ν steps from 10 to 8 to 6, as can be seen from panel (b), with no hint of other dips in the 

longitudinal magnetoresistance, Rxx, that might reveal the missing odd filling factors [panel (a)].  

Around 6 T, the peak in Rxx is, however, clearly split, corresponding to a suppressed (that is, not 

observed) plateau at ν =  5, and the plateau at ν = 3 is more clearly recorded.  The resolution of 

these odd-numbered plateaus at higher field is a main feature of these data, and, except for a 

different background, it is repeated in samples A, B, and C, as discussed below. 

Comparisons between these samples must be made at fixed carrier density.  As shown 

elsewhere, the carrier density and mobility depend strongly on the surface Fermi level, which in 

turn depends on the chemical and other boundary conditions of the sample surface [17].  In Fig. 3, 

different carrier densities are achieved by adjusting the top gate bias.  Additional traces shown are 

from as-grown films, i.e. without the deposition of a gate dielectric.  As grown, the carrier density 

varies across the samples.  Here, the as-grown carrier density in samples A and B is nearly the 
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same (about 6.5 × 1011 cm–2), while it is highest in sample C (2.4 × 1012 cm–2), and sample D's 

falls in between (1.4 × 1012 cm–2). 

The Hall data from sample D, shown in Fig. 3(a), demonstrate that the same spectrum is 

relevant across a wide range of carrier densities, which is equal to about 25% the total: there are 

no qualitative changes.  In other words, the evolution of the longitudinal magnetoresistance with 

the magnetic field, Rxx(B) is nearly the same across this range of carrier density.  Starting at 14 T 

and tracing Rxx(B) toward B = 0, two pairs of peaks in the magnetoresistance are evident, as 

discussed above in the context of Fig. 2, resulting in an apparent degeneracy factor of two at low 

field.  As the carrier density differs, so does the shape of the double peak that obscures ν =  5, 

being essentially a single peak for the lowest-density trace and most clearly two overlapping peaks 

in the highest-density one.   

A comparison between samples A, B, and D is shown in Figure 3(b), for a density of about 

6.5 × 1011 cm–2.  Sample D, the thickest, exhibits the longest classical and quantum scattering times 

(we deduce the difference in quantum scattering times from the onset of the quantum oscillations 

and the width of the oscillating features [18]).  Ignoring the difference in the magnetoresistance 

background and the broadening of the oscillations, all three traces exhibit the same behavior.  

Following all three Rxx(B) traces from high to low field, a double peak is visible around 11 T, more 

or less resolved according to the oscillation width, followed by another around 6 T, which in 

samples A and B is hardly resolved at all in Rxx, but slightly clearer in Rxy.  The sequence of filling 

factors appears to be identical, and the oscillations match modulo the difference in carrier density. 

The same picture is visible in Figs. 3(c) and (d).  Panel (c) shows the same two traces for 

samples A and B against two slightly higher density traces for samples C and D.  The apparent 

phase shift of the Rxx oscillations in sample C versus those in sample D is clearly due to the 
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difference in carrier density: the same sequence of filling factors is seen in Rxy.  Sample C, whose 

thickness is intermediate between that of samples B and D, has a mobility comparable to that of 

sample D (see Table I). 

Panel (d) shows traces at high density (approximately 2 × that of panels b and c) for samples 

B, C, and D.  (In this panel, data for sample D were acquired without the deposition of a gate.)  

Once again, while the background between the three samples varies significantly, and can be 

largely attributed to differences in the scattering times that are characteristic of the thickness of 

each sample (see Table I), the quantum oscillations for each sample reveal the same underlying 

Landau level spectrum.  Here, steps in two of the filling factor are only resolved in Rxx in sample 

C. 

Across panels (b) through (d), minima in Rxx are close to zero, but some amount of parallel 

conductance exists, similar to other studies of topological insulators [13].  The observed parallel 

conductance is not through three-dimensional bulk states, due to the lack of trend with film 

thickness.  The smallest Rxx values recorded for the thinnest sample, sample A, approach 22 Ω 

[panel (b)], whereas for samples C and D, the two thickest, the smallest values are 14 Ω [panel (c)] 

and 34 Ω [panel (b)], respectively.  Since thicker films should support more channels for parallel 

conductance through the bulk, we would expect to see more parallel conductance as the film 

thickness increases, which is not what is observed. 

We separate the oscillating part of the magnetoresistance from the slowly varying 

(classical) magnetoresistance.  As can be seen from the raw data (Fig. 3) the non-oscillating 

background differs greatly between the four samples.  In all cases, the procedure is to interpolate 

the raw data on a grid in 1/B.  Then a weighted polynomial is fit to a subset of the interpolated data 
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and then subtracted.  The results are shown in Figs. 4(a-d).  The Fourier transform of these traces 

reveals the frequency components of the oscillations.  These are shown in Figs. 4(e-h). 

At low carrier density, the Fourier transform for all samples appears to have a single large 

peak between about 15 and 20 T.  A high-frequency peak (40 to 60 T, depending on the sample), 

is also visible—it is most prominent in sample D [panels (d) and (h) in Fig. 4].  It is not a higher 

harmonic of the fundamental frequency.  Instead, it is due to the resolution of the two fans that 

appears at high field, which appears as a doubled peak at high field.  If the Fourier transform is 

applied only to the lower-field data—if we window out the double peak at high field—the high 

frequency peak disappears (not shown). 

At high carrier density, every sample’s Fourier transform consists of two comparable-

magnitude peaks, at around 10 and 30 T.  A reasonable question is whether the low-frequency 

(approx. 10 T) peak is spurious, i.e. introduced by an incomplete (or overzealous) background 

subtraction.  One test of the background subtraction is whether the oscillations vary around zero, 

as they can be seen to in Figs. 4(a-d).  The other test is the number: the Fourier transform of the 

subtracted polynomial has a low-frequency component if it oscillates (its derivative has zeroes) on 

the scale of the data.  One can estimate that a fourth-order polynomial (the highest degree used 

here) has at most one full peak or dip in the positive half of the number line.  If that were to fall in 

the range 2 T to 14 T (the plotted and Fourier-transformed range in Fig. 4), we would register a 

peak in the Fourier transform with a maximum of one half period per 12 T, i.e. a frequency in 1/B 

terms corresponding to about 6 T.  By contrast, the lowest-frequency peaks seen here, at a 

frequency of 10 T, would register in the background-subtracted data as having two peaks separated 

by 0.1 T˗1, which is clearly a feature of the raw data, and not just the background-subtracted traces. 

Both these factors, the success of the background subtraction and the size of the frequency relative 
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to that characteristic of the background, lead us to conclude that the low frequency peaks measured 

are not spurious. The results and interpretation are further confirmed by direct fitting of the 

Shubnikov–de Haas oscillations, as shown in Figs. 4(i-l).   

 

5. Discussion 

The relevant question in applying 3D TI model discussed in Section 2 to these data is how 

the Landau level spectrum, which depends on Δh, Δi, and the carrier density n, should evolve under 

the influence of experimental parameters varied here, namely the thickness and gate voltage.  The 

term Δh, which couples the two surfaces, is relevant when there is appreciable spatial overlap 

between the states on each surface, which we expect occurs only in very thin films.  Heuristically, 

if the length scale for the Dirac state goes as ħvF/Δ, a Fermi velocity vF of 8 × 105 m/s and a gap Δ 

of 100 meV suggest that hybridization of the surface states should occur in films thinner than about 

6 nm, which is similar to the estimate in ref. [2].  The hybridization gap Δh, accordingly, should be 

negligible for films thicker than that.  In other words, Δh may be a strong function of film thickness 

when the film is only a few nanometers thick, but, in the regime studied here, Δh is small and 

unchanging as the thickness is varied.  In addition, as discussed in the exposition of Figure 1(e), 

the Landau level spectrum is essentially insensitive to modest changes in Δh as long as the Fermi 

energy lies outside of the gap, meaning that, even if Δh did vary substantially for films 12 to 24 nm 

thick, our experiments would likely not detect its influence. 

The inversion-breaking term, Δi, we understand to be the energy difference between the 

Dirac nodes.  Microscopically, Δi should be relevant when the confining potential is not symmetric 

about the center of the film, such as in the case, relevant here, when the thin film is surrounded on 

either side by different materials.  Then it is the band alignments that cause the offset in energy 
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between the Dirac nodes of either surface state.  According to that picture, Δi does not depend on 

the thickness of the Cd3As2 as long as it is great enough to separate the outer layers from each 

other, which, as for Δh, is the case for films more than a few nanometers thick. 

What happens when a gate voltage is applied to the film?  Applied to the top gate electrode, 

which sits on top of a dielectric (Al2O3), relative to the Cd3As2 film, the gate voltage varies the 

carrier concentration, though its effect is mitigated somewhat by the presence of the semiconductor 

cap layer.  It also alters the band alignment, and so shifts the Dirac node of the top surface in 

energy.  We thus expect Δi to be affected by the gate voltage, though this effect, too, is mitigated 

by the intervention of the cap layer. 

We can check this reasoning by examining the frequency of the quantum oscillations (Fig. 

4).  The oscillating part of the magnetoresistance against 1/B has a frequency F that is proportional 

to the area of the orbit in reciprocal space, according to 𝐹 = (ℏ/2π𝑒)𝐴𝑘, where e is the magnitude 

of the electron charge and Ak is the area of the orbit.  A circular orbit, for example, has 𝐴𝑘 = π𝑘𝐹
2; 

kF is the magnitude of the Fermi wavevector.  Only extremal orbits contribute; if there are multiple 

extremal orbits with different areas, then multiple frequencies can be visible. 

The Fourier transforms at low carrier density all resemble each other; those at high carrier 

density are likewise similar to each other.  At low carrier density, the Fourier transform for all 

samples appears to have a single large peak between about 15 and 20 T.  At high carrier density, 

the Fourier transforms all consist of two comparable-magnitude peaks, at around 10 and 30 T (all 

samples).  In the TI surface state model presented in Section 2, finite values of Δi result in two 

frequencies for quantum oscillations, whose difference increases as a function of increasing EF or 

carrier density.  This can be seen heuristically by considering the case where Δh = 0 and Δi > 0. 

Then the dispersion looks like two offset Dirac cones [see Fig. 1(b)].  This results in two extremal 
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orbits: one around the higher-energy Dirac cone, which has a smaller radius, and the other around 

the lower-energy cone, which has a larger radius.  Because the dispersion is linear, the difference 

in radius is constant.  But, if the radii are k0 ˗ Δk and k0 + Δk, then the difference in area is Δ𝐴 =

4π𝑘0Δ𝑘.  Since 𝑘0 ∝ 𝐸𝐹, as EF increases, clearly Δ𝐴 ∝ Δ𝐹 increases, where ΔF is the difference 

in quantum oscillation frequency.  Using the dispersion relation in Eq. (2), with Δh = 0, one can 

calculate that the difference between the two frequencies for quantum oscillations is  

Δ𝐹 =
𝐸𝐹Δ𝑖

𝑒ℏ𝑣𝐹
2. 

As a sanity check, note that a difference in frequency of 20 T, suggests that the quantity EFΔi ≈ 

(60 meV)2, assuming vF = 5 × 105 m/s [19].  This is indeed what is observed in Fig. 4.  The 3D 

TI picture in the model therefore provides a satisfactory explanation for the essentially thickness-

independent properties of the quantum Hall effect in these films. 

It is instructive to examine what picture emerges from considering only the bands that form 

the 3D Dirac nodes.  The Dirac nodes lie along the kz axis at 𝑘𝑧 = ±𝑘𝐷.  Most first-principles 

calculations have found kD < 0.05 Å˗1 [2,20,21], consistent with several experimental studies [22-

25], though there are some discrepancies—for a recent review, see ref. [4].  Since the length of the 

first Brillouin zone is 5 × or 10 × kD, we consider a k·p approach to modeling the bulk band 

structure near the Dirac nodes to be accurate, as has been done elsewhere [2,26,27]. A naïve but 

effective way to model the thin film confinement is to treat an infinitely deep well, that is, quantize 

𝑘𝑧 = 𝑛π/𝐿, with n = 1, 2, 3… and L the thickness of the film.  By doing this, we have explicitly 

discarded surface states from our analysis. It is also worth noting that, though the confining 

potential V(z) does not break the fourfold symmetry of the kz axis, the bulk Dirac nodes are 

nevertheless destroyed.  As remarked elsewhere [12] the agreement between this heuristic 

approach and more sophisticated ones [2] is nearly quantitative.   
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In-plane spectra, E(kx = ky), are plotted in Fig. 5 across a range of thickness that includes 

the films studied here. Panels (a) through (f) show thicknesses from 6 nm (a) to 30 nm (f). (The 

numerical values of the k·p coefficients are taken from ref. [27].) The gap shrinks non-

monotonically as thickness is increased: panel (g) shows the evolution of the gap at k = 0 as a 

function of thickness.  Across the range of thickness studied in our experiments, the gap should 

decrease from a maximum of about 20 meV to as low as 5 or 10 meV; if some uncertainty is 

allowed in the correspondence between the model and reality, we should expect that the gap can 

take on arbitrarily small values near certain critical thicknesses.  In any event, the prediction of the 

subband picture is that the thickness is a key parameter in determining the size of the gap.  More 

qualitatively, as L increases, so does the number of subbands in any particular low-energy window. 

Comparing panels (b) through (e), which have thicknesses comparable to samples A through D, 

respectively, the number of conduction bands relevant to the transport increases from one to two 

or three (depending on EF). As a result, the model predicts a commensurate increase in the 

complexity and/or apparent degeneracy of the Landau level spectrum.  Since the essential feature 

of the experimental data, by contrast, is no change of the Landau level sequence with thickness, 

the subband picture cannot be said to agree with the experiment. 

 

6. Conclusion and outlook 

At fixed carrier density, the insensitivity of the quantum Hall effect to the film thickness as it is 

varied from 12 nm to 24 nm is problematic if the 2D states are thought to originate from the 

quantization of the bulk spectrum.  The 3D TI picture in the model explored above is, by contrast, 

a satisfactory explanation for the essentially thickness-independent properties of the quantum Hall 

effect in these films.  We emphasize that surface state transport is observed across an energy range 
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that is much larger than the comparatively small energy scale calculated for the overlap of the two 

As p-like bands that give rise to the bulk nodes, because of the much larger energy scale for the 

5s-4p band inversion at the center of the Brillouin zone (hundreds of meV [2]).  It remains an open 

question why bulk subband states do not give rise to observable magnetoresistance oscillations in 

these films.  One possible explanation is that thin film strains may change the bulk band gap from 

those calculated in Fig. 5.  A future direction for future research lies in dual-gated devices, which 

can disentangle tuning of the carrier density from that of Δi.  That research will be enabled by 

optimization of the capping layer, gate dielectric [19,28], and device design, and is a critical step 

toward realizing the quantum spin Hall insulator state in cadmium arsenide. 
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Appendix A: 𝛑 Berry phase from the fan diagram 

Quantum oscillations from topological insulators are often analyzed in terms of a Berry 

phase, which is then used to support the topological nontrivial nature of their surface states.  

Extracting the phase from the fan diagram analysis is inherently fraught.  At higher filling factors, 

the analysis suffers because non-ideality of the Dirac spectrum (i.e. a nonlinear dispersion) causes 
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a departure from the expected behavior, and there is a long lever.  Furthermore, a large g factor 

causes deviations at low filling factor (the case here).  These points are discussed in detail in ref. 

[29].  Others have identified difficulties arising from inhomogeneity (at the scale considered, not 

relevant here) and, more subtly, a constant density vs. constant chemical potential criterion, the 

applicability of which can in principle change as a function of e.g. gate voltage [30].  Additionally, 

particle-hole asymmetry jeopardizes the analysis of the Berry phase from the fan diagram for the 

2D surface states of 3D TIs [31] as well as in bulk 3D Weyl and Dirac semimetals [32]. 

Besides these fundamental concerns, there are practical difficulties in applying the fan 

diagram analysis to our data, which fall into a combination of the quantum Hall regime and a 

transitional or incipient regime where the gaps between Landau levels are not fully established, 

there is significant parallel conductance, but the Shubnikov–de Haas oscillations are clear.  In other 

words, these data bridge low Landau level and high Landau level regimes, and the crossover not 

only splits our data in two, but also adds a layer of ambiguity to the analysis. 

Figure A1(a-d) shows a plot of maxima in 𝜎𝑥𝑥 = 𝑅𝑥𝑥/(𝑅𝑥𝑥
2 + 𝑅𝑥𝑦

2 ) vs. an integer n that 

simply indexes the counted maxima.  These are used to construct the corresponding fan diagrams 

[Fig. A1(e-n)] as follows. First, the resistance (𝑅𝑥𝑥 and 𝑅𝑥𝑦) data are used to calculate the 

conductance 𝜎𝑥𝑥 = 𝑅𝑥𝑥/(𝑅𝑥𝑥
2 + 𝑅𝑥𝑦

2 ).  Second, the background is subtracted by fitting 𝜎𝑥𝑥(𝐵) =

𝜎0 + 𝜎1/2/√𝐵 + 𝜎1/𝐵 + 𝜎2/𝐵
2 + 𝜎3/𝐵

3 to the 𝐵 > 1 portion of the data (the data are weighted 

like 𝐵−2 to counteract the influence of the widening quantum oscillations on the fit). Third, peaks 

in the subtracted data (i.e. the fit residuals), called Δ𝜎𝑥𝑥 in Fig. A1 above, are identified using a 

peak finding routine.  At this stage, a couple of peaks are added and removed by hand (most low-

field peaks are removed; double-peak features are added by hand on a maximum value criterion). 

After this, the identified peaks are plotted on top of the subtracted data in Figs. A1(a-d) as open 
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circles.  Fourth, the field values where the peaks 𝐵𝑖 have been found are used to assemble the fan 

diagrams, where the peak positions are plotted in inverse fashion (1/𝐵𝑖) against an integer index, 

called n, which simply counts the number of maximums, from 𝑛 = 1 at the highest-field peak, 

counting up through the lower-field ones. Last of all, we fit a line to the fan diagrams. In doing so 

we exclude peaks that are doubled: the highest-field peaks in panels (e), (h), (i), (j), and (k), and 

the three highest-field peaks in panels (m) and (n). We have also excluded the extreme low-field 

peak in panel (l). 

The fitted x-intercepts accompany the fan diagrams in Figs. A1(e-n).  In most cases we see 

values near to 0.5 (after shifting n by the appropriate integer), corresponding to a Berry phase of 

𝜋.  For the reasons enumerated at the beginning of this section, we present this as tentative but not 

necessarily determinant support that reflects the nature of the topological surface states. 

The exclusion of some of the peaks in the fitting of the data in panels A1(e-n) affects the 

fitted intercept.  The rationale for these exclusions is the same as for avoiding the filling factor plot 

(Fig. A2) to find the Berry phase: were one to make a full accounting of all the filled Landau levels, 

transforming the index n into something like ν, one would simply recover the Landau level 

degeneracy formula. The analogy to graphene is perhaps the clearest way of looking at it (see Fig. 

1(c) in ref. [30]).  Another way of saying this is written above: the data fall in the regime where 

some of the data crosses between an incipient regime (the fitted data in the fan diagrams here) and 

the deep quantum Hall regime (partially excluded here), which can be seen from the low-n kinks 

in the fan diagrams. 

Figure A2 shows nearly the same plots as Fig. A1(e-n), with a crucial difference: ν is 

plotted instead of the arbitrary index n. Each 𝑅𝑥𝑥(𝐵) minimum is indexed by the concurrent value 

of 𝜈 = 𝑅𝐾/𝑅𝑥𝑦, where 𝑅𝐾 = ℎ/𝑒
2 is the von Klitzing constant. (Since there are fewer points where 
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ν can be identified, the fans here are somewhat sparser than in Fig. A1.) Note that, unlike in the n-

indexed plots, the expected value for the y intercept is zero. This is because, regardless of the zero-

field spectrum (linear vs. parabolic dispersion, presence or absence of Berry monopole), this plot 

reflects only the Landau level degeneracy, i.e., for the Nth Landau level, 1/𝐵𝑁 = 𝑁𝑒/ℎ𝑛2𝐷, see, 

e.g., discussion of Fig. 1(c) in ref. [30]. This is in contrast to the plots in Fig. A1, which have 

intercepts that are approximately an integer-and-a-half.  But this plot, in which the Berry phase 

does not appear as an intercept, demonstrates that, even with unambiguous peak indexing as in the 

quantum Hall regime, there is some amount of error (see the nonzero intercepts for the high-density 

sample C and D traces). With that caveat, we observe as well that, along the lines of the discussion 

in ref. [30], the discrepancy between the ν- and n-indexed plots indicates against a reservoir of 

bulk states pinning the Fermi level of the surface states. 
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Table I. Hall density and mobility extracted from the data shown in Figs. 2 and 3.  The Hall 

mobility is calculated by fitting a line to the < 0.5 T antisymmetrized Rxy data to find the Hall 

coefficient, which is then divided by Rxx(0 T).  

 

 Thickness (nm) n2D (1011 cm-2) μ𝐻 (cm2/Vs) 

Sample A 12 6.43 5,380 

Sample B 14 6.92 3,260 

  14.0 2,490 

  15.0 2,420 

Sample C 18 7.62 21,600 

  14.5 17,700 

  15.0 17,400 

Sample D 24 6.52 21,700 

  6.95 19,400 

  13.6 10,800 
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Figures with Captions 

 

 

Figure 1: Model Hamiltonian spectra.  (a)-(d) Zero-field spectra for small k and vF = 8 × 105 m/s. 

The parameter values are chosen for clarity. In panel (a), the cones are doubly degenerate 

everywhere because Δi = Δh = 0.  (b) The effect of finite Δi is to displace the two cones in energy. 

The upper and lower cones are associated one to the eigenvalues of the τ𝑧 operator.  (c) By contrast, 

a finite Δh opens a gap in the spectrum, minimal at k = 0, which affects both surfaces in equal 

measure; the two bands are doubly degenerate everywhere.  (d) When both Δh and Δi are 

appreciable, a gap opens and the two bands are in general nondegenerate. Whether away from k = 

0 or E = 0, however, the spectrum is qualitatively and quantitatively similar to that in panel (b). 

(e) and (f) Landau level spectra as a function of Δh and Δi.  Throughout g* is set at +25. (The 

positive sign means that the zeroth Landau level disperses lower in energy with increasing field.) 
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The changing parameter is colored according to the scale at the far right.  (e) Effect of changing 

Δh with finite Δi. The Landau levels are shifted in energy, which is more noticeable for Landau 

levels with low indices.  (f) Effect of changing Δi with finite Δh. Small changes to Δi cause large 

changes to the spectrum because the two fans [more visible in panel (e)] are pushed to higher and 

lower energies, respectively. 
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Figure 2: The quantum Hall effect in sample D (nHall = 6.95 × 1011 cm˗2).  (a) The longitudinal 

magnetoresistance, Rxx, acquired at 2 K, is plotted against magnetic field. Minima are indicated 

with arrows, matching those in the lower panel.  (b) The von Klitzing constant (RK = h/e2) is divided 

by Rxy, the Hall resistance, to show that the plateaus match integer filling factors ν, indicated by 

the dashed lines and labels.  Arrows correspond to the minima in Rxx, shown in panel (a). Though 

a plateau does not form with ν = 5, a corresponding minimum in Rxx is nevertheless visible (dashed 

arrows). 
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Figure 3:  A comparison of the quantum Hall effect, measured at 2 K, in samples A, B, C, and D 

at various values of carrier density.  (a) The quantum Hall effect in sample D. Each trace is 

recorded under a different top gate bias, corresponding to a different carrier density. For legibility, 

the traces in the longitudinal magnetoresistance, Rxx, are offset from each other by sequential 

multiples of 250 Ω. The true values are all comparable to the lowest resistance trace, which is not 
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offset.  (b)-(d) A comparison of the quantum Hall effect in samples A, B, C and D at carrier 

densities of (b) about 6.5 × 1011 cm˗2 (traces for samples A and B were acquired prior to gate 

deposition), (c) about 7 × 1011 cm˗2 (traces for samples A and B were acquired prior to gate 

deposition), and (d) about 1.5 × 1012 cm˗2 (the trace for sample D was acquired prior to gate 

deposition). No offsets have been added in panels (b)-(d). 
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Figure 4:  Frequency analysis of quantum oscillations. (a)-(d) Oscillations with background 

subtracted for samples A through D, respectively. (e)-(h) Fourier transform of the background-

subtracted data from samples A through D, respectively.  (i)-(l) Fits (lines) of the background-

subtracted oscillations (markers) according to Δ𝑅𝑥𝑥 = 𝐴 exp(−𝐵0/𝐵) cos(2π𝐹/𝐵 + ϕ) and 

Δ𝑅𝑥𝑥 = 𝐴1 exp(−𝐵0,1/𝐵) cos(2π𝐹1/𝐵 + ϕ1) + 𝐴2 exp(−𝐵0,2/𝐵) cos(2π𝐹2/𝐵 + ϕ2), where 

𝐴,  𝐴1, 𝐴2, 𝐵0, 𝐵0,1, 𝐵0,2, 𝐹, 𝐹1, 𝐹2, ϕ, ϕ1, and ϕ2 are fit parameters. The extracted oscillation 

frequencies 𝐹, 𝐹1, and 𝐹2, are compared to those derived from the Fourier transform. Note that the 

oscillation data are interpolated on even intervals in 1/B. Panels (i)-(l) are labeled by the difference 

𝛥𝐹 = 𝐹fit–𝐹𝐹𝑇. Where two cosines are used to fit the data, two values are reported, the lower first. 
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The fit did not converge for the middle sample B trace, and no difference is reported. The 

agreement for the high-frequency peak is generally very good, less than 2 T—that is, Δ𝐹 and Δ𝐹2 

are generally small.  
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Figure 5:  Thickness dependence in the subband picture. (The k·p model and coefficients are those 

from ref. [27]) In-plane spectra (k|| = kx = ky) are plotted for a film thickness L equal to (a) 6 nm, 

(b) 12 nm, (c) 15 nm, (d) 18 nm, (e) 24 nm, and (f) 30 nm. (g) Evolution of the gap EG as a function 

of L. The thicknesses corresponding to panels (a)-(f) are marked with labeled, colored vertical 

lines. 
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Figure A1: Background-subtracted oscillations in conductivity (a)-(d) and corresponding fan 

diagrams (e)-(n). Panels (a)-(d) show quantum oscillations, plotted against magnetic field, for 

samples A-D, respectively. For samples B, C, and D, traces are offset by 40 and 80 μS (zero is 

denoted by a horizontal dashed line). In all cases the higher density traces are on the top; the 

scheme follows the indexing of the fan diagrams in the bottom half of the figure. Peaks are 

identified in the conductivity. The magnetic field values for the peak centers are used to make the 
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fan diagrams in the bottom half of the figure, in panels (e) through (n). These fan diagrams are 

identified by the sample (a letter) and the carrier density (in units of 1011 cm-2). Note that not all 

peaks (open circles) are fitted (solid lines). The x-intercept is identified as 𝑛0 in each panel, along 

with an error (one standard deviation). Finally, note that the abscissa of the fan diagrams (e)-(n) is 

in all cases simply an un-adjusted integer index of the conductivity peaks, counting up from 1 for 

the peak at highest field. 
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Figure A2: Fan diagrams extracted from the magnetoresistance data shown in Fig. 3.  Each 

minimum in 𝑅𝑥𝑥(𝐵) is indexed by the concurrent value of ν = 𝑅𝐾/𝑅𝑥𝑦, rounded to an integer, 

which is plotted against the value of the inverse of the magnetic field (1/𝐵) where the minimum 

occurs. Linear fits are shown; y-intercepts are consistent with zero except for the high-density 

traces in samples C and D. 

 


