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We study Majorana zero modes properties in cylindrical cross-section semiconductor quantum
wires based on the effective-mass theory and a discretized lattice model. Within this model the
influence of disordered potentials in the quantum wire as well as amplitude and phase fluctuations
of the superconducting order-parameter are discussed. We find that for typical wire geometries,
pairing potentials, and spin-orbit coupling strengths, coupling between quasi-one-dimensional sub-
bands is weak, low-energy quasiparticles near the Fermi energy are nearly completely spin-polarized,
and the number of electrons in the active sub-bands of topological states is less than ten.

I. INTRODUCTION

One-dimensional (1D) p-wave superconductors are
topologically nontrivial1 and, in finite systems, support
end-localized Majorana zero modes.2 These states have
attracted considerable interest lately3–9 because of their
non-Abelian exchange properties,10,11 and related poten-
tial utility in quantum information processing systems3.
Theory has suggested12,13 that it should be possible
to engineer effective one-dimensional p-wave supercon-
ductors in proximity coupled semiconductor quantum
wires by combining broken inversion symmetry, and the
consequent Rashba spin-orbit interactions, with exter-
nal magnetic fields. Considerable progress has been
made in exploring this idea experimentally.14–44 There
has also been progressed toward Majorana-based quan-
tum state manipulation in other systems, including mag-
netic atom chains,45–47 interfaces between conventional
superconductors and topological insulators,48,49 iron-
based superconductors,50 and phase-controlled Joseph-
son junctions.51,52

The Majorana zero modes in semiconductor quan-
tum wires53–56 are expected to appear only when exter-
nal magnetic field strengths exceed a critical value, be-
yond which the proximity-induced superconductor gap
vanishes. Early experiments in cylindrical cross sec-
tion quantum wires exhibit many trends consistent with
expectations14–19 based on Majorana zero mode proper-
ties, although they also consistently exhibit evidence of
a soft gap, i.e. of quasiparticle states within the gap,
at all magnetic field strengths. The in-gap states can
be associated with spatially extended Andreev states,57

disorder58–60 or Kondo effects,61 and may influence elec-
tron transport experiments, and thus would poison any
attempt to achieve topologically protected state manip-
ulation.

In this paper, we study quasi-one-dimensional cylin-
drical quantum wires numerically (A main reason is
that in experiments, the longest quantum wires have ap-
proximate cylindrical cross-sections, longer wires have
weaker hybridization between Majorana zero modes at
the ends of quantum wire, and more electrons inactive

sub-bands.), using experimentally realistic geometries di-
ameters ∼ 100 nm, as shown in Fig. 1, experimen-
tally estimated pairing potential and spin-orbit coupling
strengths, and a variety of types of experimentally real-
istic disorder.
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FIG. 1. (Color online). Cylindrical semiconductor quantum
wire geometry. Here a labels the radius of the cylindrical
quantum wire, b is the lattice constant used to discretize po-
sition along the wire in our numerical studies, and t the cor-
responding hopping strength. The circles in the cross-section
schematically represent radial wavefunctions labeled by prin-
cipal axial quantum number n and angular momentum m.

The remaining of our paper is organized as follows. In
Section II we introduce a theoretical model for cylindrical
quantum wires and discuss its topological-state phase di-
agram as a function of Fermi energies and magnetic fields.
In Section III we analyze the Andreev states, and the tun-
neling density of states as a function of magnetic fields,
disordered potential, and pairing-potential(or phase) dis-
order in infinite quantum wires. In Section IV we ad-
dress the case of finite quantum wire with lengths on
the scale of experimental samples, discuss the effects of
finite-length Majorana energy splitting and disorder. In
Section V we discuss the use of models in which only
degrees of freedom in the semiconductor quantum wire
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are included, vs. models that account explicitly for the
superconducting metal.

II. EFFECTIVE-MASS THEORY

When Rashba spin-orbit interactions are neglected, the
cylindrical-coordinate effective-mass theory Hamiltonian
for an n-type semiconductor quantum wire oriented along
the x̂ direction (shown in Fig. 1) separates into a free-
particle contribution along the wire and a radial confine-
ment contribution.62,63 The Hamiltonian is

H0 =
~2

2m∗
(k2x −

∂2

∂r2
− 1

r

∂

∂r
− 1

r2
∂2

∂ϕ2
) + V (r, x) (1)

where ~ is Planck’s constant, m∗ is the conduction band
effective mass, V (r, x) is the confining potential, r =
(y, z) = (r cos(ϕ), r sin(ϕ)) is the position projected to
the wire cross-section, x is position along the wire, and
kx is wave vector along the wire. In the absence of disor-
der, we take V (r, x) to be 0 inside the wire (|r| < a where
a the radius of the wire) and +∞ outside the wire.

Cylindrical symmetry implies that eigenstates can be
labeled by angular momentum m along the wire axis.
The confined radial wave functions are then Bessel func-
tions with zeros at the wire edge. The one-dimensional
transverse wave-functions are

fn,m(r, ϕ) = An,mJ|m|(un,m
r
a ) eimϕ, m = 0,±1,±2, ...

(2)
where J|m|(un,m

r
a ) is an mth−order Bessel function,

un,m is the nth zero of the mth-order Bessel function,
and An,m = 1/[a

√
πJ|m|+1(un,m)] is a normalization con-

stant. The one-dimensional sub-bands are rigidly offset
by an energy which is determined by the principal axial
quantum number n and the azimuthal quantum number
m that quantifies the angular momentum. The disper-
sion is

En,m(kx) =
~2

2m∗
k2x +

~2

2m∗
u2n,m
a2

. (3)

Note that since un,m = un,−m, so |m| 6= 0 sub-bands are
always doubly degenerate.

The mean-field Hamiltonian of a spin-orbit coupled
quantum wire with proximity-induced s-wave supercon-
ductivity and an external magnetic field includes one-
dimensional sub-band, Rashba, Zeeman, and pairing con-
tributions:

H = H0 +HR +HZ +HSC . (4)

It is convenient to express this Hamiltonian in the repre-
sentation of parabolic band quantum wire eigenstates.
Assuming that the quantum wire is placed on a sub-
strate with a ẑ direction surface normal, the quantum
wire Rashba Hamiltonian is

HR = α

[
−i(sinϕ ∂

∂r
+

cosϕ

r

∂

∂ϕ
)σx − kxσy

]
, (5)

where α is the Rashba coupling parameter and σα is a
Pauli matrix acting on spin. Note that although the ra-
dial and angular momentum operators are not Hermitian
in cylindrical coordinate, the sum of them is in fact Her-
mitian as we show in Appendix B. The matrix elements
of the Rashba Hamiltonian in the representation of un-
perturbed band states are

〈n,m|HR|n′,m′〉 = −iαkxσyδn,n′δm,m′ − αRnm;n′m′σx,
(6)

where

Rnmn′m′ = 〈fnm| (sinϕ
∂

∂r
+

cosϕ

r

∂

∂ϕ
) |fn′m′〉 (7)

is non-zero for m = m′ ± 1.
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FIG. 2. (Color online). One-dimensional band-structure
of a cylindrical semiconductor quantum wire with radius
a = 50nm, InSb conduction band mass m∗ = 0.015me, and
Rashba coupling parameter α = 0.02 eV · nm. The panels
on the right highlight the behaviors near band minima, which
are important for topological superconductivity.

The one-dimensional band structure with quantum
numbers labeled by (n,m) is illustrated in Fig. 2. These
results were obtained by using parameters that are ap-
propriate for the a = 50 nm InSb quantum wire (m∗ =
0.015me) studied in the first Majorana experiment14 with
Rashba coupling parameter α = 0.02 eV · nm. We note
that subsequent experiments studied quantum wires with
similar properties. Angular momentum m is not a good
quantum number for finite Rashba coupling strength.
Because the Rashba interaction couples only states that
differ by ±1 in angular momentum, the mixing between
m + 1 and m − 1 sub-bands is second-order in the ra-
tio of the Rashba coupling strength (∼ α/a) to the sub-
band separations, which is small and lift the ±m de-
generacy (as shown in Fig. 2) at finite kx, and lift the
spin-degeneracy within each sub-band.

In quantum wires with a radius of a = 50 nm, magnetic
orbital effects are inevitably present when the magnetic
field is along the quantum wire. The Hamiltonian arising
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from the orbital effect is:63

Horb =
~2

2m∗
1

l2x

∂

∂ϕ
, (8)

where lx =
√
~c/eBx is the magnetic length. This or-

bital contribution lifts the degeneracy of the subbands
with ±m, leading to an energy difference of m~2/m∗l2x
which depends on the angular quantum number and the
strength of the magnetic field. Note that the magnetic
orbital effect has no influence on subbands with angular
quantum number m = 0. According to the experimental
parameters, the critical magnetic field can lift the de-
generacy of subband m = ±1 by around 1 meV (This
magnetic orbital effect was also found to be related with
the observed large g factor in semiconductor quantum
wire.64). The Zeeman Hamiltonian can be written as:

HZ = B · σ, (9)

where B is the magnetic field expressed in energy units.
In most experiments the magnetic field is along the x̂
direction. The proximity-induced s-wave pairing contri-
bution to the Hamiltonian is

HSC =
∑
n,m

[
∆∗SCc

†
nm↓kc

†
nm↑−k + ∆SCcnm↑−kcnm↓k

]
,

(10)
where ∆SC = |∆SC |eiφ is the proximity induced gap.
The value of ∆SC depends on a complex hybridization
processes between orbitals in the quantum wire and or-
bitals in the surrounding superconductor but can be fit to
experimental observations. The relatively large values of
∆SC (0.25 meV in Ref. 14 for example) suggest that the
interface between the quantum wire and the surrounding
superconductor is quite transparent. We will return to
his point in the discussion section.

Topologically distinct phases are separated in
coupling-constant parameter space by gapless boundary
states. In the case of topological superconductivity in
quantum wires, the coupling constants that are readily
varied in experiments are the position of the Fermi level
relative to the conduction band minimum, which can be
altered by manipulating gate voltages, and the strength
of the magnetic field responsible for Zeeman coupling to
the spin degree of freedom. In the absence of an external
magnetic field all states are topologically trivial. As
the magnetic field strength increases, the energy gap
produced by the proximity effect pairing potential closes
at critical field. The phase diagram in Fig. 3 was con-
structed by tracking these band closings and identifying
each with a phase transition from a topologically trivial
to a nontrivial state. While increasing the magnetic
field with the Fermi level positioned near a sub-band,
the superconductor gap closes when the system is driven
from trivial superconductivity to non-trivial topological
superconductivity. The phase diagram is got by tuning
the Fermi level and magnetic field (shown as Fig. 3).

When the Zeeman Energy exceeds the pairing poten-
tial, a Majorana zero mode appears while the Fermi level

is tuned to lie at the bottom of a non-degenerate sub-
bands. Pairs of localized zero modes appear at each
end near the population thresholds of degenerated sub-
bands, they are not really Majorana zeros modes as at
each end of quantum wires as there are two or more zero
modes, which we called Majorana-like zero modes. These
states survive in quantum wires with small cross-section
in which the magnetic orbital effect is negligible. For
quantum wires with large cross section, the degeneracy
of the subbands is lifted by magnetic orbital effect, and
thus these states are back to Majorana zero modes.

For sub-bands n = 1, 2 and m = 0,±1 (see Fig.3),
these six sub-bands have the Fermi energy of EF1 ≈ 5.87
meV, EF2 ≈ EF3 ≈ 14.9 meV, EF4 ≈ 30.96 meV
and EF5 ≈ EF6 ≈ 50 meV. In the phase diagram we
use Roman numerals to label the number of Majorana
(or Majorana-like if there are more than 2 modes) end-
localized states (I – one localized state, II – two localized
states, etc.). The bottom panel of Fig. 3 shows the phase
diagram for small Zeeman energy where we note that
more detail can be seen. Due to the lack of degeneracy of
the sub-bands in Fig. 3(b,d) we expect robust Majorana
modes, but in Fig. 3(c,e) where sub-bands are nearly de-
generate, we expect Majorana-like modes that are weakly
coupled. When magnetic orbital effects are considered,
this degeneracy is lifted for subbands with non-zero an-
gular quantum numbers. In this case the phase diagrams
are shown in Fig. 3 (f)-(i), where the Majorana-like
states disappear. In contrast to the m = 0 subband, the
phase boundary of the m = ±1 subbands now depends
sensitively on the magnetic field strength. The linear
dependence of subband splitting with the magnetic field
through the magnetic orbital effect subtly adjusts the
chemical potential in order to maintain the topological
phase. In what follows we will ignore the magnetic or-
bital effect when calculating the properties of Majorana
zero modes for convenience in numerical evaluation.

III. ANDREEV STATES

In contrast to the Majorana modes, zero-bias conduc-
tance peaks (ZBCP) in transport experiments may also
come from Andreev states which were recently studied
experimentally.21 Here we distinguish between the evo-
lution of Andreev states and Majorana zero modes by
varying the magnetic field. From the discussion of Sec-
tion II, we see that there are degenerate sub-bands which
are weakly coupled by Rashba interactions for non-zero
angular momentum, while the zero-angular momentum
sub-bands are not degenerate. To find the energy spec-
trum for finite wires we use a quantization and discretiza-
tion scheme that takes kx → −i∂/∂x and ∂2c(x)/∂x2 ≈
(ci+1 + ci−1 − 2ci)/b

2 and ∂c(x)/∂x ≈ (ci+1 − ci−1)/2b,
where b is the effective lattice constant shown in Fig. 1.

With periodic boundary condition, i.e. cN+1 = c1,
there is no Majorana zero mode, and only Andreev states
appear as shown in Fig. 4, where we set the length of
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FIG. 3. (Color online). Phase diagram of the cylindrical semi-
conductor quantum wire as a function of Fermi level and mag-
netic field. (a) At each sub-band there appears Majorana(-
like) zero-modes when the magnetic field exceeds the pairing
potential and the Fermi level is tuned to the bottom of the
sub-bands, of which n = 1,2 and m = 0,±1 sub-bands have
the Fermi energy at EF1 ≈ 5.87 meV, EF2 ≈ EF3 ≈ 14.9
meV, EF4 ≈ 30.96 meV and EF5 ≈ EF6 ≈ 50 meV. In the
figure we use Roman numerals and color coordination to la-
bel the number of Majorana-like end-localized states. (b-e)
Phase diagram focused near the band minima for different
(n,m). (f-i) are phase diagrams when magnetic orbit effects
are considered.

quantum wire to be 1 µm. We find that numerical con-
vergence in the spectrum of the quantum wire Majorana
and Andreev states begins when b is less than 100 nm.
We have chosen a stringent convergence condition of b =
5 nm throughout the manuscript to also account for con-
verged bulk states. (See Appendix A for more details.)

In Fig. 4 (a)-(c) we show the density of states
(DOS) of the sub-bands with quantum number of
(n,m)=(1,0),(1,±1) and (2,0). The DOS is calculated
via the following definition:

D(E) =

∞∑
n=1

δ(E − En). (11)

In the numerical calculations, δ(E − En) is replaced by
a Gaussian smearing funcion:

g(E − En) =
1√
2πw

e−
(E−En)2

2w2 , (12)

in which w is that width of the smearing. In our cal-
culations w is set to 0.02 meV. We reiterate that the
sub-bands with quantum number (1,±1) are weakly cou-
pled through coupling to other sub-bands, as previously
discussed. The DOS when the Fermi level is tuned at
the bottom of the lowest sub-band (that with quantum

number of (n,m)=(1,0)) is shown in Fig. 4 (a), with the
Zeeman energy varying from 0 to 4∆SC . The edges of the
superconducting gap are labeled with red arrows. When
the magnetic field increases, a pair of Andreev states
cross when the Zeeman energy equals the pairing poten-
tial. Similar crossings happen for (n,m) = (1,±1) and
(n,m) = (2, 0) sub-bands. When the periodic bound-
ary condition is removed, i.e. for finite length quantum
wires, this pair of Andreev states evolve into Majorana
zero-modes, which remain at zero energy once the Zee-
man energy exceeds the pairing potential as in Fig. 4
(d).

0.4 0.2 0.0 0.2 0.4
Energy [meV]

DO
S

(a): (n,m) = (1,0)

0.4 0.2 0.0 0.2 0.4
Energy [meV]

DO
S

(b): (n,m) = (1,±1)

0.4 0.2 0.0 0.2 0.4
Energy [meV]

DO
S

(c): (n,m) = (2,0)

0.4 0.2 0.0 0.2 0.4
Energy [meV]

DO
S

(d): (n,m) = (1,0)

FIG. 4. (Color online). Evolution of Andreev states and
Majorana zero modes vs. magnetic field. (a)-(c) show the
DOS of the infinite wire when the Fermi level is tuned at the
bottom of sub-bands with different quantum numbers. The
magnetic field changes from 0 to B = 4∆SC where ∆SC =
0.25meV . The lines are separated by Zeeman energy of 0.02
meV. (d) DOS for finite quantum wire with Fermi level tuned
to the bottom of the (n,m) = (1,0) sub-band. The pair of
Andreev states evolve into the Majorana zero modes when
the Zeeman energy exceeds the pairing potential in this case.

It has been argued that the zero-bias peak observed in
experiments can also be caused by disorder.58–60 Here we
construct a binary disorder model for the chemical poten-
tial and pairing potential and use a Gaussian distribution
model of the pairing phase disorder. When the Fermi
level lies at the lowest sub-band with (n,m) = (1,0), the
DOS of the infinite wire with different kinds of disorder
is shown in Fig. 5 (a)-(c). To model a charge disorder in
the semiconductor we define a spatially varying chemical
potential:

µi = µ+ δµi (13)

where δµi is a tri-valued variable which is sampled in
(−δµ, 0, δµ) randomly for each site i. We find that the
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DOS is insensitive to the disorder of chemical potential
in the chosen disorder strength δµ = ∆SC for sub-band
with angular (n,m) = (1,±1), as shown in Fig. 5 (a).
However, this is not the case for disorder in the phase
and amplitude of the superconducting pairing potential.
To model the amplitude disorder of pairing potential, we
set the amplitude of pairing potential as:

|∆i
SC | = |∆SC | − δ|∆i

SC |, (14)

in which δ|∆i
SC | is a binary-valued variable that is sam-

pled randomly in the collection (0,δ|∆SC |). We use this
binary model for the assumption that the superconduct-
ing metals are not perfectly deposited on the semicon-
ductor quantum wire. For the position with perfect
deposited the proximitized superconducting pairing po-
tential is |∆SC |, while for the position with poorly de-
posited superconducting metals the pairing potential is
|∆SC | − δ|∆i

SC |. Disorder of the paring potential phase
is model as:

∆i
SC = |∆SC |ei(φ0+δφi), (15)

where φ0 is the average phase of the pairing potential,
and the statistics of δφi are sampled from a Gaussian
function:

f(δφi) = (1/
√

2πσ)e−δφ
2
i /2σ

2

. (16)

We set the variance of the phase to be bounded by
σ = π/2, which is the largest phase disorder strength.
Disorders in the amplitude and phase of pairing poten-
tial lead to substantial changes of the superconductivity
gap for the chosen disorder strength as shown in Fig. 5
(b) and (c), decreasing the size of the superconductor gap
at the value of disorder strength we used.

IV. MAJORANA ZERO MODES PROPERTIES

In the previous section, it was shown that disorder in
the pairing potential substantial changes the size of the
superconductor gap. We now extend this discussion – us-
ing the same model and model parameters14 – to describe
a finite quantum wire with a length of 1 µm. Further de-
tails of the convergence of energies of Majorana states vs.
the effective lattice constant is shown in Appendix A.

Fig. 6 (a)-(c) shows the DOS vs. the Zeeman energy
for disorder in the chemical potential, superconducting
order-parameter amplitude, and pairing phase. The su-
perconductivity gap is robust to disorder in the chemical
potential but decreases with disorder in the supercon-
ducting order-parameter amplitude and phase at the cho-
sen disorder strength for the (n,m) = (1,±1) sub-band.

This sensitivity to magnetic fields found in the finite
system is not only a symptom of disorder. The Majorana
modes in the finite system are more sensitive to magnetic
field than the Andreev states seen in the infinite system
even in the absence of disorder. The polarization of the
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FIG. 5. (Color online). The effect of disorder and magnetic
field on Andreev states. (a)-(c) DOS of the infinite wire at
the lowest band with different types of disorder: (a) disorder
in the chemical potential; (b) pairing amplitude disorder; (c)
pairing phase disorder modeled as a normal distribution, with
the mean phase as 0 and the variance of the phase as π/2; (d)
The polarization n↑−n↓ of Andreev states along the quantum
wire (here L = 1 µm with periodic boundary conditions).

two states closest to zero energy, calculated as n↑ − n↓
as in Fig. 6(d), shows that the Zeeman energy needed
to polarize the Majorana modes is the size of the pairing
potential. This can be compared to Fig. 5(d) showing
the same quantity in the infinite wire where the Zeeman
energy required to polarize these states is a factor of ≈ 2
times the pairing potential. With these results we find
that the Andreev bound states in the infinite wire require
a larger Zeeman energy to polarize than the Majorana
zero-modes even in the absence of disorder.

For finite quantum wires, the Majorana end modes fuse
into Fermionic excitations at a finite energy ε0

65. To
study the disorder effect in the general case, we have plot-
ted the energies of Fermionic excitations (2ε0 = E0

+−E0
−)

combined by two Majorana end modes (or Andreev
modes if the quantum wire is in the trivial supercon-
ducting phase) and the lowest-lying bulk energy level
(2ε1 = E1

+ − E1
−) with varied disorder strengths. This

is shown in Fig. 7 (a)-(c) for (n,m) = (1,0) sub-band and
in (d)-(f) for (n,m) = (1,±1) sub-bands. The energies
of Fermionic excitations are shown in solid curves, while
the lowest-lying bulk energy levels are labeled with dot-
ted curves, and different colors represent different Zee-
man energies. For (n,m) = (1,0) sub-bands, the energies
of Fermionic excitations are insensitive to chemical po-
tential disorder up to the strength of δµ ≈ ∆SC . Similar
dependence happens for the (n,m) = (1,±1) sub-band.
The critical disorder strength, which depends on super-
conducting coherence length and topological coherence
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FIG. 6. (Color online). DOS at the lowest sub-band with
quantum number (n,m) = (1,±1) in the finite quantum wire.
The magnetic field changes from 0 at the bottom of the plots
in increments of 0.02 meV up to B = 4∆SC at the top of
the plots. Again, the pairing potential is ∆SC = 0.25meV .
(a) Disorder in the chemical potential; (b) Disorder of pair-
ing amplitude; (c) Disorder of pairing phase; (d) Polariza-
tion of Majorana zero modes along the quantum wire (with
L = 1 µm).

length65–68, is thus around δµ ≈ ∆SC and varies with
the Zeeman energy.

However, there is a different dependence on disorder
strength of pairing potential for (n,m) = (1,0) and (n,m)
= (1,±1) sub-bands. In the range of disorder strength
δ|∆SC | < 0.5∆SC and σ < π/4 for pairing potential am-
plitude and phase disorder case, energies of Fermionic
excitations for (n,m) = (1,0) sub-band have a monoton-
ically decreasing dependence on the disorder strength
when Zeeman energies are small. Beyond this disor-
der strength, the energies of Fermionic excitations and
lowest-lying bulk energy levels increase. Note that the
disorder of pairing potential amplitude and phase have
similar dependence on the strength. For (n,m) = (1,±1)
sub-bands, however, the energies of Fermionic excitations
always decrease in the range of disorder strengths we cal-
culates.

In Fig. 8 we show the energies of Fermionic exci-
tations (solid lines) and lowest-lying bulk energy level
(dashed lines) vs. Zeeman splitting with varied disorder
strengths. In the plots x-axis is the Zeeman splitting, and
different disorder strength is represented by different col-
ors. Fig. 8 (a)-(c) are the plots for sub-bands (n,m) =
(1,0), while Fig. 8 (d)-(f) are for the sub-bands (n,m)
= (1,±1). Solid and dashed lines with the same color
label the same disorder strength. In the absence of mag-
netic field, the pairing potential behaviors insensitive to
the strength of chemical potential disorder, however, the

disorder of pairing potential and phase do reduce the su-
perconducting gap. When the magnetic field is applied,
the critical magnetic field for Fermionic excitations gap
does not appear significant changes until the strength of
disorder exceeds the critical value discussed above.

In tunneling experiments on proximitized quantum
wire systems, the local density of states at the end of
the quantum wire is probed. The DOS at the edge of the
superconducting gap is found to be larger than the zero-
biased peak associated with Majorana modes. We can
probe this feature in our model by calculating the pro-
jected DOS for different length scales measured from the
end of the wire. Fig. 9 (a) and (b) shows the projected
DOS parameterized by the Zeeman energy for states pro-
jected within 50 nm, and 250 nm from the end of the wire
(the length of the wire in this simulation is 1 µm). In this
way we can compare states at the end of the wire with
the bulk system. While we find the DOS near the edge
of the gap is small when we focus on the end of the wire
(Fig. 9 (a)), this becomes comparable with the zero-bias
peak when we include more bulk states (Fig. 9 (b)). The
size of the DOS at the superconducting gap energy rela-
tive to the zero-bias peak found in experiments, can thus
not be accounted for by this model.

V. DISCUSSION

In this paper, we have studied the properties of cylin-
drical semiconducting quantum wires proximity coupled
to a superconductor. Topological states occur in the pres-
ence of an external magnetic field for Fermi levels just
above the population thresholds of all angular momen-
tum m = 0 quasi-one-dimensional sub-bands. Majorana
zero modes are localized near wire-ends at m = 0 sub-
band population thresholds. In contrast, pairs of local-
ized Majorana-like states appear at each end near the
population thresholds of degenerated sub-bands when
magnetic orbital effects are negligible. This states can
give rise to zero-bias anomalies in transport. Further-
more, we studied the influence of disorder of chemical
potential and pairing potential amplitude with a binary
model. However, this binary model does give a simi-
lar dependence of superconducting gap on disorder com-
pared with the disorder based on Gaussian distribution69

in one-dimensional lattice model.
The DOS measured in experiments strongly depends

on not only the Majorana zero modes spectrum, but also
the superconducting element which donates its supercon-
ductivity to the semiconductor quantum wire. We clar-
ify this point by estimating the semiconductor and metal
(superconductor) electron density for direct comparison
(See Appendix C for details). We find that the number of
electrons in the metal/superconductor Nsc greatly out-
numbers the number of electrons in the semiconductor
Nqw (Nsc >> Nqw), with their ratio ranging from ∼ 103

to ∼ 105 depending on the specific materials. Summa-
rized in Table I, which includes semiconductor quantum
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FIG. 7. (Color online). Dependence on disorder strength for energies of Fermionic excitations combined by two Majorana end
modes(or Andreev modes) 2ε0 = E0

+−E0
− (solid curves), and for lowest-lying bulk energy level 2ε1 = E1

+−E1
− (dotted curves).

In the plots x-axis is the disorder strength, different color represent different Zeeman energy. For solid and dotted lines with
the same color, they label the same Zeeman energy. (a)-(c) are the plots for sub-bands (n,m) = (1,0), while (d)-(f) are for the
sub-bands (n,m) = (1,±1).
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FIG. 8. (Color online). Energis of Fermionic excitations 2ε0 = E0
+ − E0

− (solid curves) and lowest-lying bulk energy level
2ε1 = E1

+−E1
− (dotted curves) vs. Zeeman splitting with various disorder strength. In the plots x axis is the Zeeman splitting,

different color represent different disorder strength. (a)-(c) are the plots for sub-bands (n,m) = (1,0), while (d)-(f) are for the
sub-bands (n,m) = (1,±1). For solid and dashed lines with the same color, they label the same disorder strength.

wires with various cross sections including cylindrical and
hexagonal quantum wires, are the estimates of the elec-
tron count. The number of electrons in the supercon-
ducting metal is many orders of magnitude larger than
the number of electrons in the semiconductor quantum

wire.
This shows that electrons in the superconducting met-

als will play an important role in understanding measure-
ments of Majorana zero-modes in proximatized quantum
wires, an indirect evidence is that the superconducting
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FIG. 9. (Color online). Projected DOS at the end of the
quantum wire. (a) is the results of DOS projected at the end
within 50nm and (b) is the results of DOS projected at the
end within 250nm.

TABLE I. Extracted experimental parameters. The ratio
of the superconducting pairing potential ∆ to the spin-orbit
energy Eso, the number of electrons in the quantum wire Nqw,
and the ratio of the number of electrons in the superconductor
Nsc to the number of electrons in the quantum wire.

Materials ∆/Eso Nqw Nsc/Nqw

InSb/Nb14 0.8 5.0 2.0 × 105

InSb/Nb19 0.6 1.4 2.3 × 104

InAs/Al16 0.8 0.4 1.3 × 104

Nb/InSb/Nb15 0.3 3.0 1.4 × 105

InSb/NbTiN17 1.4 0.6 2.3 × 105

InAs/NbN18 16.5 1.9 4.8 × 104

InAs/Al20,21 2.1 0.6-2.5 9.3 × 102

gap measured in semiconductor quantum wires (typi-
cally 0.15− 0.2 meV for Aluminum for example) is very
close to the bulk superconducting gap (which is ∼ 0.2
meV, a summary of this parameters can be found in
ref. 7). A complete model that includes both electrons
in semiconductor quantum wires and superconducting
metal explicitly9 is thus necessary.

The present proximitized semiconductor quantum wire
based Majorana systems may be in fact treated as
a superconducting metal perturbed by magnetic field
and spin-orbit interaction proximitized by semiconductor
quantum wires, the main contribution to the tunneling
DOS comes from the electrons in superconducting metal
instead of the semiconductor quantum wire. Ultrathin
film metals with strong spin-orbit coupling70 are thus a
prospective platform to realize topological superconduc-
tors if the g-factor is large enough and effective tools are

found to tune the Fermi level.
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Appendix A: Convergence with effective lattice
constant

For quantum wires with infinite length ( that with peri-
odic boundary condition), the energies of Andreev states
vs. effective lattice constant b are shown in Fig. 10, in
which we may see that the energies are converged at the
effective lattice constant of b ≈ 100 nm. Note that in Fig.
10(a) the two modes are labeled with green dotted solid
lines, while in Fig. 10(b) there are four modes, which
are labeled with blue dots and green solid lines. To get
reliable results b = 5 nm is used in our calculations.
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FIG. 10. (Color online). Selected eigenenergies close to the
chemical potential vs. the effective lattice constant b for quan-
tum wires with infinite length. The periodic quantum wire
length is set to 1 µm. In the plots the energies of Andreev
states are already converged at the effective lattice constant of
b ≈ 100 nm. The bulk states (red dashed lines), the two An-
dreev states (green dotted lines) in (a) and the four Andreev
states (green lines and blue dots) in (b) are well converged at
b = 5 nm, the value used in this work.

The convergence of energies of Majorana states vs. the
effective lattice constant is shown in Fig. 11(a) where the
two modes are labeled with green dotted solid lines, and
in Fig. 11(b) where four Majorana modes are shown and
labeled with blue dots and green solid lines.

Appendix B: Radial and angular quantum numbers

Although−i sinϕ ∂
∂r or−i cosϕr

∂
∂ϕ is not Hermitian, the

sum of them is in fact Hermitian as we show below. In
the cylindrical coordinate, we have:

x = r cosϕ, y = r sinϕ, (B1)
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FIG. 11. (Color online). Selected eigen-energies close to the
chemical potential vs. the effective lattice constant b for quan-
tum wires with finite length. The quantum wire length is set
to 1 µm. The energies of Majorana states are converged at an
effective lattice constant of b ≈ 160 nm. The bulk states (red
dashed lines), the two Majorana states (green dotted lines) in
(a) and the four Majorana states (green lines and blue dots)
in (b) are well converged at b = 5 nm, the value used in this
work.

with r =
√
x2 + y2. We may separate the Rashba term

into two parts:

∂

∂y
= −i(sinϕ ∂

∂r
+

cosϕ

r

∂

∂ϕ
) ≡ p̂′r + p̂′ϕ, (B2)

that is composed with a radial momentum operator p̂′r
and a angular momentum operator p̂′ϕ. For radial mo-
mentum operator, the matrix elements are:

〈p̂′r〉ij = −i
∫ 2π

0

dϕ sinϕ

∫ ∞
0

rdrΨ∗i (r, ϕ)
∂Ψj(r, ϕ)

∂r

= 〈p̂′r〉
∗
ji + i

∫ 2π

0

dϕ sinϕ

∫ ∞
0

drΨ∗i (r, ϕ)Ψj(r, ϕ).

(B3)

For angular momentum operator,

〈p̂′ϕ〉ij = −i
∫ ∞
0

rdr

∫ 2π

0

dϕ
cosϕ

r
Ψ∗i (r, ϕ)

∂Ψj(r, ϕ)

∂dϕ

= 〈p̂′ϕ〉
∗
− i
∫ ∞
0

dr

∫ 2π

0

dϕ sinϕΨ∗(r, ϕ)Ψ(r, ϕ).

(B4)

Note that in above equations the non-Hermitian parts
of radial and angular momentum operators cancel, We
thus have:

〈p̂′r + p̂′ϕ〉ij = 〈p̂′r + p̂′ϕ〉
∗
ji
. (B5)

Appendix C: Estimation of experimental parameters

To estimate the electrons involved in Majorana zero
modes in semiconductor quantum wire, we consider the
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FIG. 12. Radial distribution of wavefunctions for different
quantum numbers (n.m). The thickened red and blue lines
in (a) are the two subbands whose results are shown in our
manuscript. The yellow and black dashed vertical line labels
the magnetic length corresponding to the magnetic field of
0.3 T and 0.6 T, the related Zeeman energy is around 2∆SC

and 4∆SC .

active sub-band and model it with the following quasi-
one-dimensional Hamiltonian:

Hk =
~2

2m∗
k2 + αkσy (C1)

where ~ is the reduced Plank constant, m∗ is the effec-
tive mass of electrons in semiconductor, α is the Rashba
coupling. The band energy can be solved to be:

Ek =
~2

2m∗
k2 ± αk. (C2)

To estimate the number of electron in the semiconductor
quantum wires Nqw, we take advantage of the quasi-1D

nature of the wires and find Nqw = kso·L
π (see Table I).

Here kso = 2αm∗

~2 is the spin-orbit wave vector and L is
the length of quantum wire. This assumes that the chem-
ical potential has been tuned to Eso by the gate volt-
age. The spin-orbit wave vector and spin-orbit energy

Eso = α2m∗

2~2 = α
4 kso are estimated from the extracted

experimental effective electron mass m∗ and Rashba cou-
pling α. The estimation of the experimental parameters
in semiconductor quantum wire are shown in Table II.

Via proximity effect, the Cooper pairs tunnel into the
quantum wire, the DOS in Aluminum is

D(EF ) =
m∗

π2~3
√

2m∗EF =
2m∗

~2k2F
~2k2F
2π2

√
2m∗

~2
EF (C3)

since EF =
~2k2F
2m∗ , then

D(EF ) =
1

EF

k2F
2π2

√
1

EF
k2FEF =

1

EF

k3F
2π2

(C4)
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TABLE II. Summary of parameters of semiconductor quantum wires.

Materials Geometry L[nm] α[eV nm] m∗[me] kso[nm−1] λF [nm] ree[nm] Eso[meV ] Nqw

InSb/Nb14 Cir ∼ 2000 0.02 0.015 0.0079 127 399 0.315 5
InSb/Nb19 Ret ∼ 600 0.019 0.015 0.0075 134 420 0.284 1.4
InAs/Al16 Cir ∼ 150 0.0113 0.03 0.0089 112 353 0.201 0.4

Nb/InSb/Nb15 Cir ∼ 740(680) 0.032 0.015 0.0126 79 250 0.806 3(2.7)
InSb/NbTiN17 Cir ∼ 250 0.02 0.015 0.0079 127 399 0.315 0.6
InAs/NbN18 Cir ∼ 1000 0.01 0.023 0.006 166 520 0.121 1.9
InAs/Al20,21 Hex 330 − 1500 0.008 0.025 0.0052 190 598 0.084 0.6-2.5

while the density of free electron in 3D system is n =
2·4πk3F
(2π)3 → k3F = 3π2n, then the DOS is

D(EF ) =
3n

2EF
(C5)

To calculate the number density of free electrons (n):

n = z
NA
VA

(C6)

where z is the valency,NA is the Avogadros constant,VA
is the molar volume.To calculate the molar volume:

VA =
Mr × 10−3

ρ
(C7)

where Mr is the relative atomic mass (the 10−3 is to
convert Mr from grams to kg),ρ is the density. We then
get

n =
zρNA

Mr × 10−3
(C8)

For Aluminum z = 3 and Mr = 27, while for Niobium,
z = 5 and Mr = 93, and the Avogadro constant is 6.02×
1023, then n = 1.8 × 1029m−3 for Aluminum and n =
2.8× 1029m−3 for Niobium.

The number of electron in the superconducting metal
is estimated by:

Nso = D(EF ) · Eso · Vsc =
3n

2

Eso
EF
· Vsc, (C9)

where Vsc is the volume of the superconducting shell,
this expression for Nsc assumes that the DOS is con-
stant on the scale of Eso and that only electrons near
Eso contribute, the corresponding parameters estimated
from experiments are shown in Tabel III.
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