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We calculate the electronic structure in quasiperiodic double-moiré systems of graphene sand-
wiched by hexagonal boron nitride, and identify the characteristic integers of energy gaps. We find
that the electronic spectrum contains a number of minigaps, and they exhibit a recursive fractal
structure similar to the Hofstadter butterfly when plotted against the twist angle. Each of the
energy gaps can be characterized by a set of integers, which are associated with an area in the
momentum space. The corresponding area is geometrically interpreted as a quasi Brillouin zone,
which is a polygon enclosed by multiple Bragg planes of the composite periods and can be uniquely
specified by the plain wave projection in the weak potential limit.

I. INTRODUCTION

In twisted multilayers of two-dimensional (2D)
materials, the moiré inteference pattern causes the
electronic band reconstruction leading to unusual
physical properties highly tunable by the twist an-
gle. The best known example is the twist bilayer
graphene1–8, where the flat band formation at the
magic angle gives rise to exotic phenomena9–12. The
superlattice of graphene on hexagonal boron nitride
(hBN) has also been extensively studied13–22, where
the moiré potential creates the superlattice subbands
in the Dirac cone.

Recently, attention is also paid to systems
where multiple moiré superperiods compete. The
hBN/graphene/hBN stack23–30 is a typical example,
where the moiré pattern caused by graphene and up-
per hBN layer and that by graphene and lower hBN
layer form an incommensurate doubly-periodic po-
tential to graphene as shown in Fig. 1(a). A similar
situation is also found in twisted bilayer graphene on
hBN31–33 and in twisted trilayer graphene.34–37

The hBN/graphene/hBN system is realized when
a monolayer graphene is encapsulated by top and
bottom hBN substrates. There the dual moiré effect
is relevant only when the lattice orientations of upper
and lower hBN layers are nearly aligned to graphene,
since otherwise the moiré wavelength is too short
and hardly affects the low-energy electronic states of
graphene. Nearly-aligned hBN/graphene/hBN su-
perlattices were experimentally fabricated using var-
ious techniques,23–26,29,30 and it was shown that the
coexistence of the different super periods gives rise to
multiple minigaps in the spectrum, which can never
be seen in a single moiré potential.24,25

Theoretically, double moiré systems are generally
hard to treat because the two superlattice periods are
incommensurate in general and then the Hamilto-
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FIG. 1. (a) Incommensurate moiré structure in trilayer
system. (b) The atomic model of hBN/graphene/hBN
trilayer system. Top and bottom hBN layers are stacked
with twist angles θα and θβ from middle graphene layer.
(c) Top and bottom moiré patterns. The moiré super-
lattice vector is depending on the twist angle, and the
moiré angle φ increases as the twist angle increases.

nian is essentially quasiperiodic. The band structure
of the hBN/graphene/hBN system was calculated
using large-scale numerical simulations27,28, where
several major gaps and pseudo gaps were found as
traces in the energy spectrum against the twist an-
gle.

Here we ask: How can we characterize energy
gaps in quasiperiodic systems? In a usual peri-
odic system, the electronic spectrum is separated
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into the Bloch subbands accommodating equal elec-
tron density, and the number of the subbands be-
low a given gap is a topological invariant of zero
dimension defined for the Hamiltonian at a single
Bloch wavenumber.38–40 In a doubly-periodic sys-
tem, however, the absence of the rigorous unit cell
prevents the definition of the Brillouin zone, so the
integer characterization is not obvious. In one-
dimension (1D), an energy gap in a double peroid
with wavenumbers Gα and Gβ is characterized by a
pair of integers p and q, where the electron density
below the gap is given by ne = (pGα + qGβ)/(2π).
This is regarded the Bragg gap of the (|p| + |q|)th-
order harmonics. The integers p and q are directly
related to the the topological properties such as the
adiabatic pumping41–44 and also the quantum Hall
effect.45 In the hBN/graphene/hBN system, simi-
larly, some of the gaps can be associated with the
Bragg gap of a composite reciprocal lattice vector,

pGα
1 + qGα

2 + rGβ
1 + sGβ

2 where indeces α, β la-
bel the two different moiré patterns.24,25,27,28 This
scheme successfully explains a few gaps in the low-
energy region, while does not generally work for all
the gaps in the spectrum.

In this paper, we calculate the electronic structure
of the hBN/graphene/hBN system in changing the
twist angle, and identify the characteristic integers of
all the energy gaps by using a different scheme. First,
we compute the band structures for a series of the
commensurate approximants to simulate a continu-
ous change of the twist angle. We find that the elec-
tronic spectrum actually contains a number of mini-
gaps, exhibiting a recursive fractal structure when
plotted against the twist angle. The integer charac-
terization for the energy gaps is employed as follows.
Now the system has the four distinct reciprocal lat-

tice vectors Gα
1 ,G

α
2 ,G

β
1 ,G

β
2 , and we can define a

momentum-space area element (Gλ
i ×Gµ

j )z by com-
bining two distinct vectors out of them. As a result,
we have four linearly-independent areas A1, · · · , A4

as shown in Fig. 2(a), which can be viewed as pro-
jected areas of the four-dimensional hypercube. We
find that each energy gap is characterized by a set
of integers m1, · · · ,m4 such that the electron den-
sity below the gap is given by ne =

∑
imiAi/(2π)2.

Moreover, we show that the area
∑
imiAi is geomet-

rically interpreted as a quasi Brillouin zone, which
is a certain polygon composed of multiple Bragg-
plane segments as shown in Fig. 2(b). The quasi
Brillouin zone for a given gap can be identified by
the plain wave projection in the weak potential limit.
The band-gap characterization proposed in this work
would be useful in other quasi-periodic 2D systems,
such as twisted trilayer graphene, twisted bilayer
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FIG. 2. (a) Independent unit area elements
A1, A2, A3, A4 obtained by cross product of the reciprocal
lattice vectors Gα

1 ,G
α
2 ,G

β
1 ,G

β
2 in hBN/graphene/hBN

double-moiré system [Eq. (19)]. The A5 and A6 (dashed
areas) can be expressed by others as A5 = −A3 − A4

and A6 = A3. (b) Example of quasi Brillouin zone (thick
lines), which is composed of the Bragg planes for com-
posite reciprocal lattice vectors (thin lines). See, Fig. 9
for more details.

graphene on hBN above mentioned, and also 30◦

twisted bilayer graphene.46–49

The paper is organized as follows. In Sec. II, we
define the commensurate approximants and intro-
duce the effective continuum Hamiltonian for the
hBN/graphene/hBN system. We calculate the en-
ergy spectrum in Sec. III A, and specify the charac-
teristic integers of the band gaps in Sec. III B. In
Sec. III C, we identify the quasi Brillouin zone asso-
ciated with the characteristic integers by using the
plain wave projection. A brief conclusion is given in
Sec. IV.

II. METHOD

A. Atomic structure

We consider a hBN/graphene/hBN trilayer system
as illustrated in Fig. 1, where the top (λ = α) and
bottom (λ = β) hBN layers are rotated by θα and θβ ,
respectively, relative to the middle graphene layer.
Graphene and hBN share the same honeycomb struc-
ture with different lattice constants, a ≈ 0.246 nm
and ahBN ≈ 0.2504 nm, respectively.50 We define A
and B as sublattices for graphene, and Aλ and Bλ as
nitrogen and boron sites of λ-th hBN layer, respec-
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tively. The geometry θλ = 0 is defined by the AB
bond and the AλBλ bond are parallel to each other.

The lattice vectors of graphene are given by a1 =
a(1, 0) and a2 = a(1/2,

√
3/2), and those of hBN

layers of λ = α, β by

aλi = MR(θλ) ai (i = 1, 2), (1)

where R(θλ) is the two-dimensional rotation matrix
by θλ, and M = (1 + ε)1 represents the isotropic
expansion by the factor 1 + ε = ahBN/a ≈ 1.018. In
the following, we assume the twist angles θα and θβ

are small enough (a few degree or less) such that the
moiré super period is much greater than the atomic
lattice constant a. The primitive lattice vectors of
the moiré pattern of the layer l are given by18,51

Lλi = [1−R(θλ)−1M−1]−1ai (i = 1, 2). (2)

The corresponding reciprocal lattice vectors are

Gλ
i = [1−M−1R(θλ)]a∗i (i = 1, 2), (3)

where a∗i is the reciprocal lattice vectors for graphene
which satisfies ai · a∗j = 2πδij .

The moiré superlattice period is given by

|Lλ1 | = |Lλ2 | =
1 + ε√

ε2 + 2(1 + ε)(1− cos θλ)
a. (4)

The moiré rotation angle, or the relative angle of Lλi
to ai is given by

φλ = arctan

(
− sin θλ

1 + ε− cos θλ

)
. (5)

Figure 3 plots (a) the moiré superlattice period L
and (b) the moiré rotation angle φ as a function of
the twist angle θ. The super period L is ∼ 13.9 nm at
θ = 0◦, and it decreases in increasing θ. The rotation
angle φ is zero at θ = 0 and rapidly increases in the
negative direction in increasing θ.

B. Commensurate moiré approximation

Generally, the two moiré superperiods of α and β
are incommensurate and hence there is no unit cell in
the trilayer systems as a whole. In any (θα, θβ), how-
ever, we always have a certain pair of lattice points
of the two moiré patterns which happen to be very
close to each other. The situation is expressed as

nα1L
α
1 + nα2L

α
2 = nβ1L

β
1 + nβ2L

β
2 + ∆L, (6)

where nλj are integers and ∆L is the difference.
When ∆L is much smaller than the moiré periods,
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FIG. 3. (a) Moiré period L [Eq. (4)] and (b) the moiré
rotation angle φ [Eq. (5)] as a function of the twist angle
θ

the electronic structure of such the system can be
approximated by an exactly-commensurate system
with ∆L neglected. Specifically, it is obtained by
slightly rotating and expanding / shrinking the moire
patterns so that ∆L vanishes. Figure 4(a) shows
an actual example of commensurate approximant for
(θα, θβ) = (0, 1.1908◦), where (nα1 , n

α
2 ) = (1, 1) and

(nβ1 , n
β
2 ) = (−1, 3).

When ∆L is neglected, Eq. (6) gives a primi-
tive lattice vector of the commensurate super moiré
structure, LSM

1 (‘SM’ stands for super moiré). The
other primitive vector LSM

2 is obtained by rotating
LSM

1 by 60◦. As a result, we have(
LSM

1

LSM
2

)
=

(
nα1 nα2
−nα2 nα1 + nα2

)(
Lα1
Lα2

)
=

(
nβ1 nβ2
−nβ2 nβ1 + nβ2

)(
Lβ1
Lβ2

)
. (7)

Correspondingly, the reciprocal superlattice vectors
GSM

1 ,GSM
2 are given by(
GSM

1

GSM
2

)
=

[(
nα1 −nα2
nα2 nα1 + nα2

)]−1(
Gα

1

Gα
2

)
=

[(
nβ1 −nβ2
nβ2 nβ1 + nβ2

)]−1(
Gβ

1

Gβ
2

)
. (8)
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FIG. 4. (a) Super moiré unit cell and (b) the correspond-
ing reciprocal lattice of the commensurate approximant
for (θα, θβ) = (0, 1.1908◦), where (nα1 , n

α
2 ) = (1, 1) and

(nβ1 , n
β
2 ) = (−1, 3).

Figure 4(b) is the reciprocal lattice corresponding to
Fig. 4(a).

In the following, we consider two series of
hBN/graphene/hBN trilayer systems,

I : (θα, θβ) = (0, θ); 0 ≤ θ ≤ 2◦

II : (θα, θβ) = (θ,−θ); 0 ≤ θ ≤ 2◦ (9)

In each case, we find a set of (θα, θβ) satisfying
that ∆L is less than 1% of |nα1Lα1 + nα2L

α
2 | and

nα1 , n
α
2 ≤ nmax, where nmax = 12 and 17 for se-

ries I and II, respectively. The full list of (θα, θβ)
in series I (II) is presented in Table I (II and III) in
Appendix A. In series II, the list is dominated by
exactly commensurate systems (i.e., ∆L = 0) which
appear when the moiré periods of α and β are equal.
For later reference, we label those commensuratel

cases by [(nα1 , n
α
2 ), (nβ1 , n

β
2 )] as

pmn ≡ [(m,n), (n,m)],

qmn ≡ [(m,n), (m+ n,−n)],

rmn ≡ [(m,n), (m,−m− n)]. (10)

C. Effective Hamiltonian

Since the hBN has a semiconducting gap, the low-
energy spectrum of the hBN/graphene/hBN system
is dominated by the Dirac cones of graphene. We
can derive the continuum Hamiltonian of the trilayer
system in a similar manner to that for graphene-hBN
bilayer.14–22 It is written in 6× 6 matrix form as

Heff =

 HG Uα† Uβ†

Uα HhBN 0
Uβ 0 HhBN

 (11)

which works on the basis of {A,B,Aα, Bα, Aβ , Bβ}.
The HG (2 × 2 matrix) is the Hamiltonian for
graphene, which is given by

HG ≈ −~vk · σξ, (12)

where ξ = ±1 is the valley index graphene which
correspond to the wave point Kξ = −ξ(2a∗1 + a∗2)/3,
k is the relative wave number measured from Kξ

point, and σξ = (ξσx, σy) with Pauli matrices σx
and σy. The HhBN in the second and third diagonal
blocks is the Hamiltonian for monolayer hBN, Here
we adopt an approximation only considering the on-
site potential as14,18

HhBN ≈
(
VN 0
0 VB

)
. (13)

The off diagonal matrix Uλ is the interlayer Hamil-
tonians of the twist angle θλ, which is given by18

Uλ = t0

[(
1 1
1 1

)
+

(
1 ω−ξ

ωξ 1

)
eiξG

λ
1 ·(r−r

λ
0 )

+

(
1 ωξ

ω−ξ 1

)
eiξ(G

λ
1 +Gλ

2 )·(r−rλ0 )

]
, (14)

where t0 ≈ 150 meV is the interlayer coupling energy,
and rλ0 is the origin of the moiré pattern of layer
λ, which can be changed by sliding the hBN layer
relative to graphene.44

The low-energy effective Hamiltonian for graphene
can be obtained by eliminating the hBN bases by the
second order perturbation. It is explicitly written as,

H
(eff)
G = HG + V αhBN + V βhBN, (15)
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FIG. 5. Band structure of (θα, θβ) = (0◦, 1.1908◦). The panel (d) shows the energy band of the full double moiré
potential plotted along the symmetric line of the super moiré Brillouin zone shown in (e), with the corresponding
DOS on the right. For comparison, we also show the energy bands with (a) no moiré potentials (intrinsic graphene),
(b) only the top moiré potential and (c) only the bottom moiré potential, plotted on the same path. The first order
gap of the top (bottom) moiré potential are colored by red (blue) and the double-moiré gaps by green. The dashed
blue curve in (d) is the position of the first order gap of the bottom moiré potential, which actually does not open.
The sets of numbers on the right side of the figure indicate the charcteristic integers (m1,m2,m3,m4) for energy gaps
(see, Sec. III B).

where

V λhBN ≡ Uλ†(−HhBN)−1Uλ

= V0

(
1 0
0 1

)
+

{
V1e

iξψ

[(
1 ω−ξ

1 ω−ξ

)
eiξG

λ
1 ·(r−r

λ
0 )

+

(
1 ωξ

ωξ ω−ξ

)
eiξG

λ
2 ·(r−r

λ
0 ) +

(
1 1
ω−ξ ω−ξ

)
eiξG

λ
3 ·(r−r

λ
0 )

]

+h.c.

}
, (16)

with

V0 = −3t20

(
1

VN
+

1

VB

)
, (17)

V1e
iψ = −t20

(
1

VN
+ ω

1

VB

)
, (18)

and Gλ
3 = −Gλ

1 − Gλ
2 , and V0 ≈ 29 meV, V1 ≈

21 meV, and ψ ≈ −0.29(rad).18

Using the effective Hamiltonian of Eq. (11),
we calculate the band structure of the approx-
imate commensurate systems introduced in the
previous section. The set of wavenumbers hy-
bridized by the commensurate double moiré pat-
tern is given by qm1,m2 = k + m1G

SM
1 + m2G

SM
2 ,

where m1 and m2 are integers and k is a resid-
ual wavenumber defined inside the first super-moiré
Brillouin zone spanned by GSM

1 and GSM
2 . We

construct the Hamiltonian matrix in the bases for
graphene, {|qm1,m2

, A〉, |qm1,m2
, B〉}, with k-space

cut-off |qm1,m2
| < qc. Here we take qc = 2|Gβ

1 |,
which is about 0.54 eV for θβ = 0◦ and 1.2 eV for
θβ = 2◦. Finally, the band diagram is obtained by
plotting the eigenvalues of the Hamitonian matrix as
a function of k.

III. RESULTS

A. Electronic spectrum

As a typical example, we show the band structure
of the commensurate approximant for (θα, θβ) =
(0, 1.1908◦), which was considered in Fig. 4. Here

we set the origins of the moire potentials, rα0 , r
β
0 , to

zero. Figure 5(d) shows the energy band plotted
along the symmetric line of the super moiré Bril-
louin zone. For comparison, we also present the
band structures (a) with no moiré potential (intrinsic
graphene), (b) with only the top moiré potential and
(c) with only the bottom moiré potential plotted on
the same path. In all the panels, we set the origin of



6

energy (vertical axis) at the Dirac point of graphene.
In the single moiré systems in Fig. 5(b) and (c), the
biggest gap in the valence band (red / blue regions)
is the first order moiré gap corresponding to the elec-
tron density of one electron (per valley and per spin)
for a moiré unit cell. In the double moiré system, on
the other hand, we see a series of the higher order
gaps (green) due to the coexistence of the different
moiré periods.

To study the twist-angle dependence of the elec-
tronic spectrum, we perform the band calculations
for all the systems of the series I and II [Eq. (9)].
In any commensurate systems, the band structure
generally depends on the relative translation of the

moire potentials, ∆r0 = rα0 − rβ0 . The dependence
on ∆r0 is generally greater in the systems of smaller
LSM, and it quickly vanishes in increasing LSM. As
we see below, the gap structure as a function the
twist angle becomes continuous only after the aver-
age over the ∆r0 is taken at each angle. The rea-
son is following: Let us we consider a commensurate
system A and an incommensurate system B gener-
ated by infinitesimally rotating the system A. Now
the system B is regarded as a collection of all pos-
sible relative translations in A, just as a twisted bi-
layer graphene contains all the stacking structures
of non-rotated bilayer, such as AA-stack, AB-stack,
etc. Therefore, the spectrum of B smoothly connects
to that of A averaged over the relative translation.
Here we average the DOS over 25 grid points of ∆r0

for the systems with LSM < 50 nm, and otherwise
we just take ∆r0 = 0, since the dependence is minor.

Figure 6(a) shows the color map of the density of
states (DOS) calculated for the series I [(θα, θβ) =
(0, θβ)], plotted against θβ and energy. Here the
brighter color indicates larger DOS, and the dark
blue represents the gap. The array of bars in the
upper part of the figure represents θβ ’s in the series
I [listed in Tables I]. The case (θα, θβ) = (0, 1.1908◦)
considered in Fig. 5 is marked by the label (ii). Fig-
ure 6(c) shows the lower part of (a), where the first-
order gaps of the single moiré pattern λ = α and β
are highlighted by red and blue curves, respectively,
and typical higher-order gaps are marked by green
curves. Figure 6(b) is the corresponding map of the
energy gaps with vertical axis converted to the elec-
tron density, where the size of the black dots repre-
sent the gap width. In these plots, we see that the
spectrum continuously change as a function of the
twist angle, even though the adjacent approximants
in the series have completely different super moiré
periods and thus different numbers of minibands.

Figure 7 shows similar plots for the series II plot-
ted against θα = −θβ . The vertical lines labeled

by pmn, qmn, rmn represent the commensurate an-
gles defined in Eq. (10), and the numbers on the
top (0, 30, · · · , 120) indicate φβ − φα, or the rel-
ative angle between the two moiré patterns. The
r10 (θα ≈ 0.5972◦) and q01 (θα ≈ 1.8377◦) are special
cases where the relative angle of the two moiré pat-
terns is 60◦ and 120◦, respectively, and hence the two
moiré periods completely overlap. There we have a
relatively small number of the subbands because of
the coincidence of the double-period, but once mov-
ing away from these angles, we see that a number
of tiny levels branching out just like Landau levels
in a magnetic field. As a whole, we observe a recur-
sive pattern ruled by the commensurate lines such
as pn,n±1, qn,n±1, rn,n±1. The red dashed curve in
Figs. 7 (b) and (c) indicate the positions of the first-
order gaps of the two moiré patterns, which exactly
match because of |θα| = |θβ |. We observe that the
first-order gap closes throughout the figure (dashed
line) only leaving a small-DOS region around. The
reason for the absence of the first-order gap will be
explained in the next section.

B. Characteristic integers for band gaps

The microgap structure observed in Figs. 6 and
7 resembles the Hofstadter butterfly52, which is the
energy spectrum of the two-dimensional periodic lat-
tice in magnetic field. The Hofstadter system is es-
sentially equivalent to the one-dimensional Hamil-
tonian with double period53,54, where the fractal
minigap structure emerges when the two periods are
changed relatively to each other. There each mini-
gap is characterized by a pair of integers p and q,
such that the electron density below the gap is given
by ne = (pGα + qGβ)/(2π) where Gα and Gβ are
the wavenumbers for the two periods. The present
hBN/graphene/hBN system is a two-dimensional
version of this, where the double period is specified

by (Gα
1 ,G

α
2 ) and (Gβ

1 ,G
β
2 ). Actually, as shown in

the following, all the gaps observed in Figs. 6 and 7
can be uniquely characterized by four integers asso-
ciated with a specific k-space region.

Let us consider a general situation where the
two moire patterns are incommensurate. We
can define four independent unit-areas by combin-
ing the four independent reciprocal lattice vectors

Gα
1 ,G

α
2 ,G

β
1 ,G

β
2 as,

A1 = (Gα
1 ×Gα

2 )z, A2 = (Gβ
1 ×Gβ

2 )z,

A3 = (Gα
1 ×Gβ

1 )z, A4 = (Gα
1 ×Gβ

2 )z, (19)

which are illustrated in Fig. 2(a). Here (· · · )z rep-
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FIG. 6. (a) Color map of the density of states (DOS) of the series I [(θα, θβ) = (0, θβ)], plotted against θβ and energy.
The array of bars in the upper part of the figure represents θβ ’s listed in Tables I. (c) The lower part of (a), where
the first-order gaps of the single moiré pattern λ = α and β are highlighted by red and blue curves, respectively,
and higher-order gaps are marked by green curves. (b) The corresponding map of the energy gaps with vertical axis
converted to the electron density, where the size of the black dots represent the gap width.

resents the z-component perpendicular to the plane,
and it can be negative depending on the relative an-
gles between the two vectors. The A1 and A2 are the
Brillouin-zone areas of the individual moiré patterns
of λ = α and β, respectively, while A3 and A4 are
cross terms which combine the reciprocal vectors of
the different moiré patterns. We can also define two
more unit areas

A5 = (Gα
2 ×Gβ

1 )z, A6 = (Gα
2 ×Gβ

2 )z, (20)

which are shown as dashed parallelgrams in Fig.
2. In hBN/grahpene/hBN system, however, they
are not independent but can be expressed as A5 =
−A3 − A4 and A6 = A3, considering that the an-
gle between Gλ

1 and Gλ
2 is fixed to 120◦. Therefore,

a complete set of independent unit areas is given
by (A1, A2, A3, A4). The areas A1, · · ·A6 can be re-

garded as the projection of faces of four-dimensional
hypercube onto the physical 2D plane, which is anal-
ogous to the general argument of the quasicrystal.55

In a conventional periodic 2D system with primi-
tive reciprocal lattice vectors G1 and G2, the elec-
tronic spectrum is separated into Bloch subbands,
each of which accomodates the electron density |G1×
G2|/(2π)2. In a doubly-periodic 2D system, in con-
trast, the areas A1, · · · , A4 all serve as units of the
spectrum separation. More specifically, we find that
the electron density (per spin and valley) from the
Dirac point to any gap in the hBN/graphene/hBN
system can be uniquely expressed with four integers
m1,m2,m3,m4 as

ne = (m1A1 +m2A2 +m3A3 +m4A4)/(2π)2. (21)

These integers never change as long as the gap sur-
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FIG. 7. Plots similar to Fig. 6 for series II [(θα, θβ) = (θ,−θ)]. The vertical lines labeled by pmn, qmn, rmn represent
the commensurate angles defined in Eq. (10), and the numbers on the top (0, 30, · · · , 120) indicate the relative angle
between the two moiré patterns, φβ − φα.

vives in a continuous change of the moire pattern.

Figure 6(c) shows m1,m2,m3,m4 found for some
major gaps in the case I. Figure 6(b) is the same
plot but with the vertical axis being the electron
density ne, and the black dots represent spectral
gaps with size indicating gap width. Here the in-
tegers m1, · · · ,m4 are identified from the commen-
surate approximants as follows. In a commensu-
rate case, A1, A2, A3 and A4 have the greatest com-
mon divisor ASM = (GSM

1 ×GSM
2 )z (the area of the

first Brillouin zone for the supermoiré period), so
they can be written as Ai = siASM with integers
si (i = 1, 2, 3, 4). The ne is also quantized in units of
ASM/(2π)2, and each band gap is characterized by
an integer t = ne/[ASM/(2π)2], which is the num-
ber of occupied subbands measured from the Dirac
point. Then Eq. (21) becomes the Diophantine equa-
tion t = m1s1 + m2s2 + m3s3 + m4s4. For each

gap in Fig. 6(c), we have the Diophantine equations
as many as the number of the data points (i.e., the
different systems), and the (m1,m2,m3,m4) is ob-
tained as a unique solution of the set of equations.
Here note that the area m1A1+m2A2+m3A3+m4A4

is a continuous function of the twist angle, while ASM

(and thus t, si) can only be defined for commensurate
systems and it discontinuously changes in changing
the twist angle. This result indicates that the same
(m1,m2,m3,m4) are shared by infinitely many com-
mensurate approximants (with ASM ranging from 0
to infinity) which exist in a close vicinity of a spe-
cific (θα, θβ), and hence it is valid in the limit of
ASM →∞, i.e., incommensurate systems.

Figures 7 (b) and (c) are similar plots for the case
II. Here the condition |θα| = |θβ | forces A1 = A2,
and thenm1 andm2 becomes indeterminate. We can
resolve the two integers by considering an infinitesi-
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FIG. 8. Band structure of a 1D Hamiltonian H =
−∂2/∂x2 +2V0 cosGx with V0 = 0, 5, 10. The black solid
lines represent the band dispersion εnk in the extended
zone scheme, and the size of blue points represents the
spectral weight projected to the plain wave, A(q, ε).

mal rotation of either top or bottom hBN layer, and
it turns out that m1 = m2 for any gaps of the case II.
This is explicitly proved as follows. By starting from
a case-II system (θα, θβ) = (θ,−θ), we can consider
two distinct systems X : (θα, θβ) = (θ + δθ,−θ) and
X ′ : (θα, θβ) = (θ,−θ − δθ). The system X and X ′

are actually identical by turning the whole system by
180◦ with respect to an in-plane axis, and hence they
have the exactly the same energy spectrum. The
same energy gap is labeled by a different set of inte-
gers as mi and m′i for X and X ′, respectively, which
satisfy

∑
imiAi =

∑
im
′
iA
′
i. By considering the

layer λ = α, β are interchanged in the 180◦-rotation
process, the unit areas of X and X ′ are related by
(A1, A2, A3, A4) = (A′2, A

′
1, A

′
3, A

′
4), and this leads to

the condition (m1,m2,m3,m4) = (m′2,m
′
1,m

′
3,m

′
4).

When the gap survives in the limit of δθ → 0, we
have mi = m′i, and hence we conclude m1 = m2.
The constraint m1 = m2 explains why the first-order
gap of individual moiré potential, (±1, 0, 0, 0) and
(0,±1, 0, 0) cannot open in Fig. 7(b).

Figures 6 and 7 also include (θα, θβ) = (0◦, 0◦),
where the two hBNs have the exactly same period-
icity. At (0◦, 0◦), the spectrum has a series of the
Bloch gaps of a single moiré pattern, where the elec-
tronic density ne is quantized into interger muitiples
of A1/(2π) = A2/(2π). In Figs. 6 and 7, however,
most of these gaps are smeared in averaging over
∆r0, only leaving the (0, 0, 0, 0) gap at the Dirac
point This also agrees with the above statement that
the gaps of (m, 0, 0, 0) and (0,m, 0, 0) with nonzero
m are not allowed (cannot be a continuous region in
changing the twist angle) for (θα, θβ) = (θ,−θ).

The constraint among the six unit areas
A1, · · · , A6 can be broken by uniformly distorting

either top or bottom hBN layer such that 120◦ sym-
metry is broken. If we extend the parameter space
to such the distorted systems, we should need six in-
tegers (m1, · · ·m6) to characterize minigaps, where

the electron density is given by
∑6
i=1miAi. This is

similar to situation in the series II, where m1 and m2

can be resolved by breaking the condition A1 = A2.

C. Quasi Brillouin zones

Actually, the area m1A1 +m2A2 +m3A3 +m4A4

can be associated with a specific region in the mo-
mentum space, which is referred to as quasi Brillouin
zone. In a conventional periodic 2D system defined
by G1 and G2, the Brillouin zones (n = 1, 2, 3 · · · )
are defined by a series of certain regions bounded
by the Bragg planes, i.e., the perpendicular bisec-
tors of the reciprocal vectors n1G1 + n2G2.56 There
all the Brillouin zones have equal area of |G1×G2|,
and therefore the carrier density below any gap is
quantized to an integer multiple of the area. In a
doubly-periodic 2D system, similarly, we can define
a quasi Brillouin zone as an area bound by the Bragg
planes for composite reciprocal vectors pGα

1 +qGα
2 +

rGβ
1 + sGβ

2 . In conventional 3D quasicrystals such
as Al-Mn alloys, the idea of the quasi Brillouin zones
was used to explain the pseudogaps and the stability
of the system.57 In an incommensurate case, gener-
ally, the momentum space is filled by infinitely many
Bragg planes, and there is no systematic way to de-
fine quasi Brillouin zones as in the periodic case. But
here, we claim that each single gap in the spectrum
can be associated with a specific figure, and the area
is equal to m1A1 + m2A2 + m3A3 + m4A4. Such
figures include a simple hexagon defined by a sin-
gle reciprocal vector as considered in the previous
works25,27,28, but more generally, it can be a non-
convex polygon composed of multiple segments of
different Bragg planes as shown in Fig. 9(a).

The shape of the quasi Brillouin zone for a given
gap can be specified by the plain wave projection
with the zero potential limit as follows. Let us
explain the scheme using a simple one-dimensional
Hamiltonian with a single periodic potential, H =
−∂2/∂x2 + 2V0 cosGx, where G = 2π. The eigenen-
ergy and the eigenfunctions are labeled as εnk and
|ψnk〉, respectively, where n is the band index and k
is the Bloch wavenumber in the first Brillouin zone
(−π ≤ k ≤ π). Figure 8 shows the band struc-
tures calculated for different potential amplitudes,
V0 = 0, 5, 10. The black solid lines represent the
band dispersion εnk plotted in the extended zone
scheme, and the size of overlapped blue points repre-
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FIG. 9. (a) Quasi Brillouin zones of (θα, θβ) = (0◦, 1.1908◦), where thick lines with different colors correspond to the
four gaps indicated in (c). Thin lines are the Bragg planes corresponding to different reciprocal lattice vectors. For
instance, the red lines are the perpendicular bisector of Gα

1 and its 60n◦ rotation. (b) Quasi Brillouin zone of the
gap (2, 1, 2,−2), where x and x′ represents a pair of boundary segments connected by the moiré potential. (c) Band
structure on a path from X to Y shown in (a) calculated for (0◦, 1.1908◦) with the moiré potentials reduced by the
factor η (0 ≤ η ≤ 1). The black solid lines represent the band dispersion plotted in the extended zone scheme, and
the blue dots represent the spectral weight A(q, ε). The bottom panels show the same plot without the band lines.

sents the spectral weight projected to the plain wave,
or

A(q, ε) =
∑
n,k

|〈q|ψnk〉|2δ(ε− εnk), (22)

where |q〉 = eiqx is the plain wave with −∞ < q <
∞, and the summation in k is taken over the first
Brillouin zone. The pink regions indicate the first
and the second energy gaps. In decreasing the po-
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tential amplitude V0, the gaps are narrowing, and the
spectral weight approaches a simple parabola ε = q2.
In the limit of V0 → 0, we can specify the points on
the parabola, at which the energy gap opens in an in-
finitesimal V0 (marked by red circles). These points
actually determines the Brillouin zone boundary.

The same strategy works for the double-period
system as well. In our hBN/graphene/hBN system,
we define the spectral weight as

A(q, ε) =
∑
α

∑
X

|〈q, X|ψα〉|2δ(ε− εα), (23)

where εα and |ψα〉 are the eigenenergy and the eigen-
states of the system, and |q, X〉 is the plain wave
basis of the sublattice X = A,B of the monolayer
graphene. For example, we take the commensurate
approximant for (θα, θβ) = (0◦, 1.1908◦) considered
in Figs. 4 and 5, and calculate the eigenstates of
the Hamiltonian Eq. (11) with the moiré potentials

(V αhBN, V
β
hBN) reduced by the factor η (0 ≤ η ≤ 1).

Figure 9(c) shows the band structures from η = 0
to 1, calculated on a path from X (graphene’s Dirac
point) to a certain point Y shown in Fig. 9(a). The
black solid lines represent the band dispersion plot-
ted in the extended zone scheme, and the blue dots
represent the spectral weight A(q, ε). At η = 0, we
just have the graphene’s Dirac cone. By tracing the
gaps in the spectral weight in decreasing η from 1 to
0, we can specify the gap opening points just as in
the one-dimensional case.

In Fig. 9(c), we consider four gaps with differ-
ent indeces of (m1, ...,m4). The (−1, 0, 0, 0) is the
first-order gap of the moiré potential λ = α, and
others are double-moire gaps caused by the coexis-
tence of the two moiré patterns. In the limit η → 0,
we find the gap-opening wave numbers P1, · · · , P4

for these gaps. By following the same procedure
for paths in different directions, we finally obtain
the quasi Brillouin zone on the (kx, ky) plane as the
traces of P1, · · · , P4, which are illustrated as thick
colored lines in Fig. 9(a). The figures are composed
of segments of the Bragg planes, which are shown
as thin lines. The first-order gap (−1, 0, 0, 0) gives
a regular hexagon, which is the first Brillouin zone
of the moiré potential of λ = α. The double-moire
gap (−1,−1,−1, 1) also gives a hexagon but with a
smaller size, which corresponds to the first Brillioin

zone of a small reciprocal lattice vectors Gα
2 +Gβ

1 . In
contrast, the gaps (2, 1, 2,−2) and (−4,−2,−2,−2)
are associated with flower-like complex figures com-
posed of multiple Bragg line segments. In any cases,
the area of the figure is shown to be exactly equal
to m1A1 +m2A2 +m3A3 +m4A4. Just as the con-
ventional Brillouin zone in a periodic system, the

quasi Brillouin zone is also a closed object, in that
any sides of the boundary are precisely sticked to the
other side and one can never go out of the region by
crossing the boundary.

The quasi Brillouin zone continuously changes in
changing the twist angle, regardless of the unit cell
size of the commensurate approximants. Figure 10
shows the same plot calculated for a slightly different
angle (θα, θβ) = (0, 1.2967◦) [(iii) in Fig. 6]. The su-
per moiré unit area of the system is about 10 times
greater than that of Fig. 9(c), and accordingly we
see much more band lines due to the band folding
into the smaller Brillouin zone. If we see the spec-
tral weight (blue dots), however, we find that it ex-
hibits a similar structure to Fig. 9(c) (except that
the gap (−1,−1,−1, 1) is not fully open), and the
gaps close at the Bragg planes with the same inde-
ces in the limit of η → 0. As a result, we end up with
nearly the same shape of the quasi Brilluoin zone as
shown in Fig. 11(iii). In Fig. 10, we see a number of
extra band lines are just overlapping but hardly con-
tribute to the spectral weight, and therefore they are
neglected in the identification of the zone boundary.
Because of this, the quasi Brillouin zone obtained
here is generally different from one obtained by sort-
ing all the eigenvalues in energy and tracking the
same level index in the limit of the zero potential58,
which is fully affected by all the overlapping band
lines.

In Fig. 11, we show the continuous evolution of the
quasi Brillouin zones as a function of the twist angle
from (i) to (v) [corresponding to the labels in Fig.
6], where the figure continuously changes regardless
of the discontinuous change of the rigorous period
of the approximants. The areas of the figures are
always equal to m1A1 +m2A2 +m3A3 +m4A4.

Lastly we comment on connections of the inte-
gers mi’s to the topological properties. We have
several analogous situations in which the electron
density is quantized with topological numbers. In
a singly-periodic system (usual Bloch system), the
electron density is quantized as ne = mA/(2π)d

where A is the unit volume of the d-dimensional
Brillouin zone, and the integer m (the number of
bands) is a zero-dimensional topological number just
as mentioned in Sec. I. For double period sys-
tems, we have an analogous situation in a 1D system
H = p2/(2m) + Vα(x) + Vβ(x), where Vα and Vβ are
periodic potentials with wavenumbers of Gα and Gβ ,
respectively. The electron density below each gap is
given by ne = (mαGα + mβGβ)/(2π) with integers
mα and mβ . At the same time, mα and mβ are also
related to the adiabatic charge pumping,41–44 where
mλ (λ = α, β) represents the number of pumped elec-
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trons under an adiabatic translation of Vλ by a sin-
gle period. When the ratio Gα/Gβ is rational (i.e.,
the two periods are commensurate), in particular,
the mα and mβ are expressed as the Chern num-
bers. For irrational systems, the Chern number can-
not be defined, while a very recent work proposed
a mathematical scheme to topologically characterize
the charge pumping in 1D quasi-periodic systems59.
The present system, where the electron density is
given by ne =

∑
imiAi/(2π)2, is a natural extension

of the problem to 2D, and it strongly implies that
integers m1, · · · ,m4 are also related to the charge
pumping in 2D. Actually the 2D adiabatic pumping
for the commensurate case is shown to be character-
ized by sliding Chern numbers44,60,61, and we expect
that m1, · · · ,m4 should be related to these num-
bers, while we leave the verifying these relationships
for future works. Further studies on this problem
would shed light on a hidden relationship between
quasicrystal and topological physics.

IV. CONCLUSION

We theoretically studied the electronic structure
of the hBN/graphene/hBN double-moiré system as
a function of the top and bottom twist angles,
and demonstrated that the spectrum consists of
a number of fractal minigaps. Specifically, each
energy gap is characterized by a set of integers
(m1, · · · ,m4), where the electron density below the
gap is given by ne =

∑
imiAi/(2π)2 with char-

acteristic momentum-space areas A1, · · · , A4. The
area

∑
imiAi corresponds to a quasi Brillouin zone

bounded by multiple Bragg planes, which can be
uniquely identified by the spectral distribution in the
zero potential limit. In changing the twist angles,
the quasi Brillouin zone also changes continuously re-
gardless of the commensurability of the double moiré
pattern.

We neglect the lattice relaxation effect throughout
this work for simplicity, while the general theoreti-
cal scheme to characterize the band gap is valid as
long as the system has a well-defined double period.
The band-gap characterization proposed in this work
should also be useful in other quasi-periodic 2D sys-
tems, such as twisted trilayer graphene34–37, twisted
bilayer graphene on hBN31–33 , and also 30◦ twisted
bilayer graphene.46–49
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Appendix A: List of commensurate
approximants

We present the list of approximate commensurate
systems of series I in Table I, and those of series
II in Table II and III. The tables show the twist
angle, a set of integers (nα1 , n

α
2 , n

β
1 , n

β
2 ), the super

moiré period LSM[nm], and the correction ∆L[nm]
from the original incommensurate structure.
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TABLE I. List of approximate commensurate systems of of series (I)(θα, θβ) = (0, θ). The LSM[nm] is the super moiré
period, and ∆L[nm] is the correction from the original incommensurate structure (see the text).

θ [◦] nα1 nα2 nβ1 nβ2 LSM ∆L θ [◦] nα1 nα2 nβ1 nβ2 LSM ∆L θ [◦] nα1 nα2 nβ1 nβ2 LSM ∆L
0.0000 1 0 1 0 13.92 0 0.6946 6 6 -1 13 144.64 0.4885 1.2855 10 9 -10 30 229.12 0.1110
0.0992 6 6 5 7 144.64 0.0120 0.6985 11 1 6 10 160.51 0.4494 1.2967 5 1 0 9 77.49 0.0913
0.1083 11 11 9 13 265.18 0.0262 0.7009 11 6 2 17 207.84 0.3282 1.3109 8 7 -8 24 180.94 0.3575
0.1191 5 5 4 6 120.54 0.0144 0.7145 5 0 3 4 69.59 0.2464 1.3152 9 1 1 15 132.77 0.2972
0.1323 9 9 7 11 216.97 0.0319 0.7320 4 9 -5 16 160.51 0.1011 1.3238 3 10 -14 22 164.09 0.0440
0.1489 4 4 3 5 96.43 0.0179 0.7372 12 5 3 17 210.62 0.3335 1.3296 7 10 -13 28 205.97 0.1582
0.1624 11 0 10 2 153.10 0.0337 0.7443 4 4 -1 9 96.43 0.3654 1.3477 6 9 -12 25 182.01 0.2393
0.1701 7 7 5 9 168.75 0.0408 0.7513 7 12 -6 23 231.65 0.1193 1.3480 10 9 -11 31 229.12 0.3407
0.1786 10 0 9 2 139.18 0.0370 0.7550 11 4 3 15 187.25 0.3104 1.3526 10 5 -5 24 184.12 0.1326
0.1985 3 3 2 4 72.32 0.0237 0.7655 7 0 4 6 97.43 0.3867 1.3599 10 1 1 17 146.64 0.1881
0.2137 11 3 9 6 177.70 0.4663 0.7775 3 10 -7 17 164.09 0.1983 1.3666 9 8 -10 28 205.03 0.2428
0.2165 11 11 7 15 265.18 0.1029 0.7822 9 7 -1 18 193.36 0.3986 1.3831 2 10 -15 21 154.99 0.0052
0.2233 8 0 7 2 111.35 0.0459 0.7852 12 10 -2 25 265.54 0.0584 1.3900 8 7 -9 25 180.94 0.1668
0.2382 5 5 3 7 120.54 0.0563 0.7939 3 3 -1 7 72.32 0.3046 1.4086 2 6 -9 14 100.37 0.1440
0.2457 12 5 9 9 210.62 0.3425 0.8042 11 9 -2 23 241.47 0.0927 1.4207 7 6 -8 22 156.85 0.1219
0.2481 12 12 7 17 289.29 0.1464 0.8087 8 6 -1 16 169.32 0.1624 1.4356 4 8 -12 21 147.30 0.0359
0.2552 7 0 6 2 97.43 0.0521 0.8203 5 3 0 9 97.43 0.3427 1.4492 6 10 -15 28 194.86 0.2768
0.2646 9 9 5 13 216.97 0.1245 0.8273 10 8 -2 21 217.41 0.2860 1.4571 10 8 -11 31 217.41 0.3157
0.2707 11 11 6 16 265.18 0.1589 0.8344 12 8 -1 23 242.67 0.1292 1.4625 6 5 -7 19 132.77 0.1229
0.2977 2 2 1 3 48.21 0.0347 0.8440 7 5 -1 14 145.31 0.1614 1.4716 10 3 -3 22 164.09 0.0317
0.3248 11 0 9 4 153.10 0.1302 0.8518 9 5 0 16 171.03 0.0635 1.4904 9 7 -10 28 193.36 0.2114
0.3308 9 9 4 14 216.97 0.1911 0.8577 11 5 1 18 197.33 0.1873 1.5103 3 8 -13 20 137.08 0.1014
0.3402 7 7 3 11 168.75 0.1568 0.8606 11 7 -1 21 218.74 0.3712 1.5228 5 4 -6 16 108.71 0.1957
0.3450 12 7 7 13 231.65 0.1751 0.8931 2 0 1 2 27.84 0.1415 1.5330 8 6 -9 25 169.32 0.0362
0.3573 5 0 4 2 69.59 0.0709 0.9287 5 11 -9 22 197.33 0.0240 1.5516 3 2 -3 9 60.67 0.1985
0.3721 8 8 3 13 192.86 0.2124 0.9346 5 9 -7 19 171.03 0.0970 1.5689 4 10 -17 26 173.84 0.1515
0.3789 11 11 4 18 265.18 0.3021 0.9423 5 7 -5 16 145.31 0.3127 1.5785 1 8 -14 17 118.92 0.0345
0.3970 3 3 1 5 72.32 0.0899 0.9498 3 7 -6 14 123.71 0.4554 1.5898 7 5 -8 22 145.31 0.2386
0.4168 10 10 3 17 241.07 0.3281 0.9519 8 12 -9 27 242.67 0.1934 1.5999 1 9 -16 19 132.77 0.3700
0.4253 7 7 2 12 168.75 0.2385 0.9662 3 5 -4 11 97.43 0.1633 1.6065 8 5 -8 24 158.08 0.1204
0.4303 11 7 5 14 218.74 0.0922 0.9777 6 8 -6 19 169.32 0.1629 1.6173 4 3 -5 13 84.66 0.3899
0.4466 4 0 3 2 55.67 0.0861 0.9829 12 5 0 21 210.62 0.0849 1.6210 9 5 -8 26 171.03 0.3885
0.4631 9 9 2 16 216.97 0.3587 0.9923 3 3 -2 8 72.32 0.4324 1.6281 2 10 -18 23 154.99 0.1456
0.4673 5 9 -1 14 171.03 0.2277 1.0043 7 9 -7 22 193.36 0.1051 1.6406 5 3 -5 15 97.43 0.1220
0.4763 5 5 1 9 120.54 0.2098 1.0108 4 6 -5 14 121.34 0.3894 1.6590 6 3 -5 17 110.47 0.0304
0.4872 11 0 8 6 153.10 0.2776 1.0250 8 10 -8 25 217.41 0.1063 1.6735 7 3 -5 19 123.71 0.1045
0.4962 6 6 1 11 144.64 0.2711 1.0314 8 3 0 14 137.08 0.1263 1.6853 8 3 -5 21 137.08 0.1239
0.5104 7 0 5 4 97.43 0.1921 1.0524 1 8 -9 14 118.92 0.3587 1.6950 9 3 -5 23 150.55 0.1037
0.5210 8 8 1 15 192.86 0.3947 1.0909 8 10 -9 26 217.41 0.3308 1.7030 10 3 -5 25 164.09 0.0541
0.5262 1 8 -4 11 118.92 0.4765 1.1010 1 6 -7 11 91.27 0.0852 1.7861 1 0 0 2 13.92 0.1866
0.5293 9 9 1 17 216.97 0.4567 1.1126 9 6 -4 21 182.01 0.2095 1.8700 3 10 -21 27 164.09 0.3471
0.5359 10 0 7 6 139.18 0.2995 1.1199 2 7 -8 14 113.93 0.3313 1.8732 2 10 -21 25 154.99 0.1910
0.5391 12 9 3 19 253.99 0.4594 1.1381 2 10 -12 19 154.99 0.2998 1.8781 3 9 -19 25 150.55 0.3026
0.5440 1 11 -6 15 160.51 0.1779 1.1485 5 10 -11 23 184.12 0.3826 1.8822 2 9 -19 23 141.26 0.2703
0.5954 1 1 0 2 24.11 0.0625 1.1908 1 1 -1 3 24.11 0.1884 1.8878 3 8 -17 23 137.08 0.2860
0.6429 12 1 7 10 174.40 0.0461 1.2305 10 6 -5 24 194.86 0.3106 1.8932 2 8 -17 21 127.56 0.3269
0.6495 11 0 7 8 153.10 0.4613 1.2364 9 5 -4 21 171.03 0.3948 1.8995 3 7 -15 21 123.71 0.3057
0.6518 9 12 -3 23 253.99 0.1949 1.2402 10 3 -1 19 164.09 0.2320 1.9069 2 7 -15 19 113.93 0.3527
0.6576 9 1 5 8 132.77 0.2049 1.2487 9 2 0 16 141.26 0.3119 1.9140 3 6 -13 19 110.47 0.3742
0.6698 8 0 5 6 111.35 0.3536 1.2713 6 2 -1 12 100.37 0.3496 1.9243 2 6 -13 17 100.37 0.3359
0.6900 12 7 2 19 231.65 0.0804 1.2809 5 8 -10 21 158.08 0.2224 1.9345 10 3 -7 28 164.09 0.0546
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FIG. 10. Plot similar to Fig. 9(c) calculated for (θα, θβ) = (0◦, 1.2967◦).

(i) (0, 1.1010∘)

𝑮"
#

𝑮"$

𝑮%
#

𝑮%$

(-1,-1,-1,1) (2,1,2,-2)(-1,0,0,0) (-4,-2,-2,2)

(ii) (0, 1.1908∘) (iii) (0, 1.2967∘) (iv) (0, 1.4625∘) (v) (0, 1.5516∘)

FIG. 11. Quasi Brilluoin zones similar to Fig. 9(a) calculated for five different angles. The indeces (i) to (v) correspond
to the labels in Fig. 6.
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TABLE II. List of approximate commensurate systems of series (II) (θα, θβ) = (θ,−θ). The LSM[nm] is the super
moiré period, and ∆L[nm] is the correction from the original incommensurate structure (to be continued to Table
III).

θ [◦] nα1 nα2 nβ1 nβ2 LSM ∆L θ [◦] nα1 nα2 nβ1 nβ2 LSM ∆L θ [◦] nα1 nα2 nβ1 nβ2 LSM ∆L
0.0000 1 0 1 0 13.92 0 0.3082 12 5 17 -5 201.65 0 0.5656 13 12 25 -12 263.73 0
0.0496 11 13 13 11 289.28 0 0.3155 7 3 10 -3 118.21 0 0.5668 13 13 26 -12 274.07 0.2702
0.0541 5 6 6 5 132.59 0 0.3209 3 10 10 3 156.56 0 0.5679 14 13 27 -13 284.55 0
0.0576 15 1 16 -1 215.73 0 0.3230 12 14 23 -1 299.13 0.2946 0.5690 15 13 28 -14 295.14 0.2507
0.0595 9 11 11 9 241.07 0 0.3251 9 4 13 -4 152.96 0 0.5699 15 14 29 -14 305.36 0
0.0616 14 1 15 -1 201.81 0 0.3311 2 7 7 2 108.38 0 0.5972 1 0 1 -1 12.02 0
0.0662 4 5 5 4 108.48 0 0.3339 15 13 26 -4 321.09 0.2727 0.6252 14 15 29 -15 298.26 0
0.0715 12 1 13 -1 173.97 0 0.3353 13 6 19 -6 222.48 0 0.6262 14 14 28 -15 287.79 0.2446
0.0744 7 9 9 7 192.85 0 0.3383 15 7 22 -7 257.24 0 0.6273 13 14 27 -14 277.44 0
0.0777 11 1 12 -1 160.05 0 0.3406 3 11 11 3 168.59 0 0.6285 12 14 26 -13 267.23 0.2632
0.0851 3 4 4 3 84.37 0 0.3451 4 15 15 4 228.79 0 0.6297 12 13 25 -13 256.63 0
0.0916 11 15 15 11 313.37 0 0.3577 2 1 3 -1 34.76 0 0.6311 12 12 24 -13 246.15 0.2847
0.0940 9 1 10 -1 132.21 0 0.3726 3 13 13 3 192.63 0 0.6326 11 12 23 -12 235.81 0
0.0992 5 7 7 5 144.63 0 0.3765 15 8 23 -8 264.13 0 0.6360 10 11 21 -11 215.00 0
0.1051 8 1 9 -1 118.29 0 0.3794 2 9 9 2 132.43 0 0.6402 9 10 19 -10 194.18 0
0.1083 9 13 13 9 265.15 0 0.3817 13 15 26 -4 316.44 0.2687 0.6453 8 9 17 -9 173.37 0
0.1117 15 2 17 -2 222.67 0 0.3833 11 6 17 -6 194.61 0 0.6519 7 8 15 -8 152.55 0
0.1191 2 3 3 2 60.26 0 0.3858 3 14 14 3 204.65 0 0.6559 13 15 28 -15 284.29 0
0.1276 13 2 15 -2 194.83 0 0.3888 9 5 14 -5 159.86 0 0.6606 6 7 13 -7 131.74 0
0.1295 9 14 14 9 277.19 0 0.3975 1 5 5 1 72.23 0 0.6660 11 13 24 -13 242.66 0
0.1323 7 11 11 7 216.93 0 0.4024 13 12 24 -6 280.47 0.2992 0.6724 5 6 11 -6 110.92 0
0.1374 6 1 7 -1 90.45 0 0.4039 12 7 19 -7 215.44 0 0.6775 15 1 15 -16 180.10 0
0.1407 14 14 20 7 334.35 0.2842 0.4128 5 3 8 -3 90.34 0 0.6802 9 11 20 -11 201.03 0
0.1418 8 13 13 8 253.08 0 0.4209 13 8 21 -8 236.26 0 0.6832 14 1 14 -15 168.09 0
0.1489 3 5 5 3 96.41 0 0.4222 14 14 27 -7 311.94 0.2651 0.6898 4 5 9 -5 90.11 0
0.1567 7 12 12 7 228.97 0 0.4260 1 6 6 1 84.25 0 0.6976 12 1 12 -13 144.05 0
0.1624 5 1 6 -1 76.53 0 0.4302 12 13 24 -6 277.82 0.2963 0.7019 7 9 16 -9 159.40 0
0.1702 5 9 9 5 168.71 0 0.4319 11 7 18 -7 201.50 0 0.7067 11 1 11 -12 132.03 0
0.1729 14 3 17 -3 215.68 0 0.4352 14 9 23 -9 257.08 0 0.7177 3 4 7 -4 69.29 0
0.1752 6 11 11 6 204.86 0 0.4374 2 13 13 2 180.51 0 0.7274 11 15 26 -15 256.34 0
0.1766 15 13 22 4 332.86 0.2827 0.4473 3 2 5 -2 55.58 0 0.7311 9 1 9 -10 107.99 0
0.1787 9 2 11 -2 139.15 0 0.4561 2 15 15 2 204.55 0 0.7390 5 7 12 -7 117.76 0
0.1813 8 15 15 8 277.16 0 0.4602 13 9 22 -9 243.14 0 0.7478 8 1 8 -9 95.97 0
0.1848 13 3 16 -3 201.76 0 0.4640 1 8 8 1 108.29 0 0.7527 9 13 22 -13 214.70 0
0.1985 1 2 2 1 36.15 0 0.4710 7 5 12 -5 131.98 0 0.7579 15 2 15 -17 179.93 0
0.2102 15 4 19 -4 236.52 0 0.4773 1 9 9 1 120.30 0 0.7694 2 3 5 -3 48.47 0
0.2144 11 3 14 -3 173.91 0 0.4802 15 11 26 -11 284.77 0 0.7827 13 2 13 -15 155.89 0
0.2166 7 15 15 7 265.07 0 0.4882 4 3 7 -3 76.40 0 0.7856 9 14 23 -14 221.54 0
0.2195 6 13 13 6 228.93 0 0.4972 1 11 11 1 144.34 0 0.7902 7 11 18 -11 173.06 0
0.2207 13 15 22 4 330.18 0.2804 0.5012 9 7 16 -7 173.61 0 0.7924 13 12 24 -18 238.22 0.2541
0.2234 7 2 9 -2 111.30 0 0.5049 1 12 12 1 156.36 0 0.7982 6 1 6 -7 71.93 0
0.2291 4 9 9 4 156.63 0 0.5115 5 4 9 -4 97.21 0 0.8034 14 14 27 -20 265.35 0.2255
0.2331 10 3 13 -3 159.99 0 0.5172 1 14 14 1 180.40 0 0.8052 8 13 21 -13 200.71 0
0.2383 3 7 7 3 120.48 0 0.5198 11 9 20 -9 215.24 0 0.8166 3 5 8 -5 76.12 0
0.2453 5 12 12 5 204.81 0 0.5222 1 15 15 1 192.41 0 0.8293 7 12 19 -12 179.89 0
0.2553 3 1 4 -1 48.69 0 0.5266 6 5 11 -5 118.03 0 0.8315 12 13 24 -18 233.83 0.2494
0.2648 5 13 13 5 216.84 0 0.5323 13 11 24 -11 256.87 0 0.8386 5 1 5 -6 59.91 0
0.2708 3 8 8 3 132.51 0 0.5372 7 6 13 -6 138.84 0 0.8514 5 9 14 -9 131.42 0
0.2733 14 12 23 -1 303.06 0.2984 0.5414 15 13 28 -13 298.50 0 0.8559 14 3 14 -17 167.71 0
0.2750 11 4 15 -4 180.82 0 0.5450 8 7 15 -7 159.66 0 0.8597 6 11 17 -11 159.07 0
0.2765 0 26 15 15 349.32 0.2585 0.5511 9 8 17 -8 180.47 0 0.8620 15 13 26 -22 258.22 0.2193
0.2781 4 11 11 4 180.69 0 0.5558 10 9 19 -9 201.29 0 0.8656 9 2 9 -11 107.80 0
0.2822 8 3 11 -3 132.13 0 0.5597 11 10 21 -10 222.10 0 0.8699 8 15 23 -15 214.36 0
0.2883 13 5 18 -5 215.58 0 0.5629 12 11 23 -11 242.92 0 0.8759 13 3 13 -16 155.69 0
0.2979 1 3 3 1 48.18 0 0.5644 12 12 24 -11 253.25 0.2929 0.8993 1 2 3 -2 27.65 0
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TABLE III. List of approximate commensurate systems of series (II) (continued from Table II).

θ [◦] nα1 nα2 nβ1 nβ2 LSM ∆L θ [◦] nα1 nα2 nβ1 nβ2 LSM ∆L θ [◦] nα1 nα2 nβ1 nβ2 LSM ∆L
0.9196 15 4 15 -19 179.52 0 1.2803 10 10 15 -19 150.41 0.2505 1.6862 9 7 8 -16 100.24 0.2600
0.9269 11 3 11 -14 131.63 0 1.2803 15 4 10 -20 150.66 0.2505 1.6904 17 16 18 -33 205.86 0.2518
0.9308 7 15 22 -15 200.35 0 1.2830 16 9 16 -25 190.21 0 1.6944 9 8 9 -17 105.91 0
0.9358 6 13 19 -13 172.70 0 1.2851 17 14 22 -30 232.97 0.1611 1.7020 10 8 9 -18 111.94 0.2296
0.9380 13 15 26 -22 248.88 0.2114 1.2941 1 5 6 -5 48.03 0 1.7087 10 9 10 -19 117.63 0
0.9428 7 2 7 -9 83.75 0 1.3054 13 12 18 -24 185.83 0.1982 1.7149 11 9 10 -20 123.64 0.2056
0.9488 11 11 20 -18 194.36 0.2675 1.3089 12 7 12 -19 142.58 0 1.7203 11 10 11 -21 129.35 0
0.9530 4 9 13 -9 117.40 0 1.3150 17 10 17 -27 201.96 0 1.7255 12 10 11 -22 135.35 0.1860
0.9566 14 12 23 -22 229.04 0.2255 1.3184 3 16 19 -16 150.88 0 1.7301 12 11 12 -23 141.07 0
0.9602 10 3 10 -13 119.60 0 1.3297 5 3 5 -8 59.38 0 1.7344 13 11 12 -24 147.05 0.1699
0.9641 13 10 20 -20 202.25 0.2533 1.3405 3 17 20 -17 157.66 0 1.7344 12 12 13 -24 146.88 0.1699
0.9696 3 7 10 -7 89.76 0 1.3489 13 8 13 -21 154.32 0 1.7383 13 12 13 -25 152.79 0
0.9824 5 12 17 -12 151.86 0 1.3518 14 14 20 -27 203.56 0.1730 1.7420 14 12 13 -26 158.76 0.1563
1.0009 3 1 3 -4 35.86 0 1.3608 1 6 7 -6 54.81 0 1.7454 14 13 14 -27 164.51 0
1.0155 4 17 22 -14 190.69 0.2558 1.3710 12 13 18 -24 180.17 0.1922 1.7486 14 14 15 -28 170.33 0.1448
1.0186 5 13 18 -13 158.67 0 1.3750 11 7 11 -18 130.50 0 1.7515 15 14 15 -29 176.23 0
1.0248 17 6 17 -23 203.11 0 1.3832 14 9 14 -23 166.06 0 1.7516 16 13 14 -29 176.50 0.2791
1.0300 3 8 11 -8 96.56 0 1.3884 2 13 15 -13 116.41 0 1.7543 15 15 16 -30 182.05 0.1348
1.0346 14 12 22 -23 220.48 0.2171 1.3938 5 15 18 -18 148.39 0.2285 1.7569 16 15 16 -31 187.95 0
1.0379 11 4 11 -15 131.39 0 1.4130 3 2 3 -5 35.56 0 1.7570 15 16 17 -31 187.94 0.2605
1.0438 4 11 15 -11 131.02 0 1.4305 5 17 20 -20 161.63 0.2024 1.7593 17 15 16 -32 193.90 0.1261
1.0471 12 14 23 -22 219.13 0.2158 1.4350 2 15 17 -15 129.96 0 1.7616 17 16 17 -33 199.67 0
1.0518 8 3 8 -11 95.53 0 1.4391 16 11 16 -27 189.54 0 1.7617 16 17 18 -33 199.66 0.2442
1.0571 6 17 23 -17 199.93 0 1.4451 13 9 13 -22 153.98 0 1.8377 0 1 1 -1 6.77 0
1.0636 13 5 13 -18 155.21 0 1.4480 14 17 22 -30 215.83 0.1492 1.9190 17 16 15 -33 187.04 0.2288
1.0668 17 4 14 -22 185.97 0.2495 1.4548 1 8 9 -8 68.37 0 1.9191 16 17 16 -33 187.03 0
1.0825 1 3 4 -3 34.45 0 1.4622 17 12 17 -29 201.27 0 1.9217 16 16 15 -32 181.14 0.1179
1.0969 17 7 17 -24 202.85 0 1.4647 16 4 8 -21 146.01 0.2171 1.9244 16 15 14 -31 175.32 0.2430
1.0992 16 4 13 -21 173.73 0.2583 1.4728 7 5 7 -12 82.85 0 1.9245 15 16 15 -31 175.31 0
1.1029 12 5 12 -17 143.17 0 1.4805 17 4 8 -22 152.73 0.2049 1.9275 15 15 14 -30 169.42 0.1255
1.1108 5 16 21 -16 179.07 0 1.4891 1 9 10 -9 75.14 0 1.9306 15 14 13 -29 163.60 0.2591
1.1176 7 3 7 -10 83.49 0 1.4968 15 11 15 -26 177.44 0 1.9308 14 15 14 -29 163.59 0
1.1239 10 13 20 -20 187.06 0.2343 1.5000 14 2 5 -17 118.35 0.2593 1.9342 14 14 13 -28 157.70 0.1340
1.1285 3 10 13 -10 110.16 0 1.5000 5 12 14 -16 118.61 0.2593 1.9378 12 15 14 -27 152.16 0.2774
1.1328 12 14 22 -23 210.16 0.2070 1.5178 4 3 4 -7 47.29 0 1.9380 13 14 13 -27 151.87 0
1.1371 9 4 9 -13 107.31 0 1.5339 16 2 5 -19 131.89 0.2260 1.9419 13 13 12 -26 145.98 0.1439
1.1422 11 11 18 -20 176.84 0.2434 1.5364 17 13 17 -30 200.90 0 1.9461 11 14 13 -25 140.46 0.2985
1.1495 2 7 9 -7 75.70 0 1.5421 1 11 12 -11 88.68 0 1.9464 12 13 12 -25 140.15 0
1.1554 15 13 22 -26 223.82 0.1901 1.5529 9 7 9 -16 106.31 0 1.9510 12 12 11 -24 134.26 0.1553
1.1581 13 6 13 -19 154.94 0 1.5630 1 12 13 -12 95.46 0 1.9563 11 12 11 -23 128.43 0
1.1645 15 7 15 -22 178.75 0 1.5697 6 16 18 -21 149.61 0.1929 1.9619 10 12 11 -22 122.70 0.1687
1.1693 3 11 14 -11 116.95 0 1.5811 5 4 5 -9 59.02 0 1.9682 10 11 10 -21 116.71 0
1.1788 4 15 19 -15 158.20 0 1.5970 1 14 15 -14 108.99 0 1.9750 10 10 9 -20 110.81 0.1845
1.1820 6 16 21 -18 179.34 0.2313 1.6042 11 9 11 -20 129.76 0 1.9828 9 10 9 -19 104.99 0
1.2056 2 1 2 -3 23.81 0 1.6110 1 15 16 -15 115.76 0 1.9913 9 9 8 -18 99.08 0.2037
1.2303 4 17 21 -17 171.78 0 1.6235 6 5 6 -11 70.74 0 2.0011 8 9 8 -17 93.27 0
1.2335 2 16 19 -14 151.75 0.2601 1.6346 1 17 18 -17 129.30 0 2.0064 16 17 15 -33 180.60 0.2209
1.2382 3 13 16 -13 130.53 0 1.6398 13 11 13 -24 153.21 0 2.0119 8 8 7 -16 87.36 0.2272
1.2420 17 9 17 -26 202.27 0 1.6538 7 6 7 -13 82.47 0
1.2469 15 8 15 -23 178.46 0 1.6660 15 13 15 -28 176.66 0
1.2532 2 9 11 -9 89.28 0 1.6663 8 6 7 -14 88.54 0.2996
1.2584 13 15 22 -26 212.97 0.1809 1.6715 16 13 15 -29 182.69 0.2888
1.2619 11 6 11 -17 130.83 0 1.6766 8 7 8 -15 94.19 0
1.2675 3 14 17 -14 137.32 0 1.6815 16 15 17 -31 194.13 0.2691
1.2744 9 5 9 -14 107.01 0 1.6860 17 15 17 -32 200.10 0
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