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We construct a continuum model of twisted trilayer graphene using ab initio density-functional-
theory calculations, and apply it to address twisted trilayer electronic structure. Our model accounts
for moiré variation in site energies, hopping between outside layers and within layers. We focus on
the role of a mirror symmetry present in ABA graphene trilayers with a middle layer twist. The
mirror symmetry is lost intentionally when a displacement field is applied between layers, and
unintentionally when the top layer is shifted laterally relative to the bottom layer. We use two band
structure characteristics that are directly relevant to transport measurements, the Drude weight
and the weak-field Hall conductivity, and relate them via the Hall density to assess the influence
of the accidental lateral stacking shifts currently present in all experimental devices on electronic
properties, and comment on the role of the possible importance of accidental lateral stacking shifts
for superconductivity in twisted trilayers.

I. INTRODUCTION

Crystals with bandwidths that are small compared to
electron-electron interaction scales feature strong elec-
tronic correlations, tending toward magnetism and, at
integer total band fillings, Mott insulator states. It has
been found theoretically that the periodic moiré poten-
tial in twisted bilayer graphene (TBLG) slows low-energy
electrons as the twist angle becomes small[1, 2], with
electron velocities vanishing at a discrete set of magic
twist angles[3]. Interest in the flat moiré minibands
of TBLG increased after the discovery of superconduc-
tivity and correlated insulating states near magic an-
gle twists[4, 5]. Recent experimental and theoretical
work[6–42] has revealed a rich and detailed phenomenol-
ogy that includes exotic topological and correlated in-
sulating states[5, 15, 20, 43], stripe charge order[8] and
ferromagnetism[14].

Twisted multilayer graphene systems have also at-
tracted attention[21, 23, 35, 43–49], but are still rela-
tively lightly explored. In multilayers, flat bands tend
to occur at larger twist angles[50], are less likely to
yield energy gaps[21], and can support higher temper-
ature superconductivity[51, 52]. The low-energy elec-
tronic properties of multilayers depend on the orienta-
tion angle[21] of each additional layer and on the rela-
tive stacking[50]. Furthermore, unlike the TBLG case,
different layers have different chemical environments[53],
and will therefore differ in site energy. Low-energy ef-
fective models are periodic ( with discrete exceptions )
only if the multilayer has only two distinct orientations
among its layers. These complications severely challenge
the effort to derive predictive, yet simple models for both
structural and electronic properties.

In this article we focus on twisted trilayer graphene
(TTLG) in which two of the three layers are perfectly
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FIG. 1. Local stacking configurations in moiré lattices. (a)
Primary moiré unit cell with lattice vectors R1 and R2. In
the primary moiré unit cell local stacking between layers is
dependent on the position within the primary moiré unit cell.
(b) The local stacking value at a given position r within the
moiré can be approximated by a local displacement vector d
within a pristine unit cell. The lattice vectors of the pristine
graphene lattice are a1 and a2 as shown and the carbon atoms
in the two layers are distinguished by red and blue circles,
compare (c)-(e).

aligned. At a qualitative level, these structures are inter-
esting because they can yield cases in which flat bands
with slow electrons and strongly dispersive bands that re-
tain the isolated layer Dirac velocities are present simul-
taneously. We first derive low-energy continuum mod-
els from density-functional theory (DFT) calculations by
modeling the local stacking (shown in Fig. 1) for various
high symmetry stacking and twist configurations. These
calculations therefore account not only for the modula-
tion of closest layer hopping with moiré position, which
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is the dominant effect, but also for modulations of di-
rect hopping between the outside layers, intralayer Dirac
velocity, and site energies. Combining the effective con-
tinuum model and parameters from first-principle cal-
culations we obtain a first-principle continuum model
that not only provides a relative accurate modeling for
twisted multilayer graphene, but also avoids large-scale
first-principles calculations [49, 54, 55]. Indeed, the lat-
ter can only model compensated periodic moiré systems
and cost tremendous computational resources, especially
when considering the effect of lateral stacking shifts and
more layers. We find that the subdominant modulations
play an essential role in determining the energetic align-
ments between the large and small velocity bands[56].
More significantly we show that twisted trilayer graphene
electronic structure has a qualitative sensitivity to rel-
ative lateral stacking shifts of the outer layers, which
currently cannot be controlled experimentally, and to
perpendicular electric fields. To provide physically rel-
evant characterization of the influence of lateral stacking
shifts on electronic structure, we calculate Drude weights,
weak-field Hall conductivities, and Hall densities, which
are experimentally accessible and can thus be used to
provide a point of contact between theory and experi-
ment.

In the absence of twists, ABA stacked trilayer graphene
features an important mirror symmetry, which is pre-
served when only the middle layer is twisted. The mirror
symmetry decouples large velocity odd-parity and small
velocity even-parity states[50, 57]. A perpendicular elec-
tric field breaks the mirror symmetry while conserving
C2T symmetry that allows the Dirac point degeneracies.
More to the point, a lateral stacking shift of only the
top layer of TTLG breaks both symmetries. Since it is
– for now – not possible to stack layers with controlled
lateral stacking shifts, realistic TTLG devices do not pos-
sess the mirror symmetry of the ideal middle-layer-twist
structure. Indeed, lateral stacking shifts change the en-
ergetic alignment of the bands of the large- and small-
velocity states. Combinations of perpendicular electric
fields and lateral stacking shifts of the top layer change
the electronic structure in a non-trivial way, which we
characterize in terms of changes in the weak-field Hall
conductivity, the Drude weight and the Hall density.

The organization of this paper is as follow: In section II
we introduce the continuum model used in this paper and
explain how to obtain the model parameters from DFT
calculations. In section III A we use the model to dis-
cuss and simplify the electronic band structures of sev-
eral single twist TTLG stacking configurations, including
the case of devices in which an outer layer is rotated and
the other two layers are held in the AB stacking con-
figuration. In section III B we introduce the experimen-
tally relevant band characteristics, including the Drude
weight, weak-field Hall conductivity and Hall density. In
sections III C and III D we discuss the dependence of
the electronic structure, Drude weight, and weak-field
Hall conductivity of middle-layer twist devices on elec-

tric field and lateral stacking shifts. Here we find that
lateral stacking shifts do have a strong influence on elec-
tronic properties, particularly electronic properties that
are likely to be relevant for superconductivity, and that
Hall density and Drude weight measurements can shed
light on the lateral stacking shifts of particular devices.
Finally, in section IV we summarize and discuss our re-
sults.

II. THEORETICAL METHODS

A. Continuum model

We describe the trilayer using a six-band continuum
model that accounts for π-orbitals on both honeycomb
sublattices of all three layers, allowing on-site energies
and both intra-layer and interlayer coupling to vary spa-
tially as the stacking changes on the moiré length scale.
The approach we take in this paper can be generalized
from the trilayers we consider to arbitrary graphene mul-
tilayers, all of which have Hamiltonians H that can be
partitioned as follows:

H =

∫
dr
[
HD +Hs(r) +Ht(r) + T (r)

]
, (1)

where HD is a valley-projected isolated layer Dirac
Hamiltonian for layer l with orientation:

HD =
∑
lαβ

hαβ(−i∂r, θl)c†lαclβ . (2)

h(−i∂r, θl) = h(k, θl)|k→−i∂r is given explicitly in
App. A. In Eq. 2 α, β are sublattice labels. Hs(r) ac-
counts for corrections to on-site energies due to the moiré
pattern,

Hs(r) =
∑
l,α

εlα(r)c†lα(r)clα(r), (3)

and Ht(r) for corrections to the coupling within and be-
tween aligned layers

Ht(r) =
∑
ll′,αβ′

tll
′

αβ′(r)c†lα(r)cl′,β′(r), (4)

i.e., to spatial variations of the Fermi velocity and cou-
pling variations between aligned layers. Finally, T (r)
is the term that captures tunneling between layers that
have different orientations, the term which most promi-
nently alters single-layer electronic structure in moiré
multilayers. The interlayer tunneling Hamiltonian has
the same form as that of a tight-binding model in which
the coupling between sites is a function of lateral stacking
shifts[3]:

T (r) =
∑

l 6=l′αβ′;n

ωll
′,Gn

αβ′ e−iq
ll′
n ·rc†lα(r)cl′β′(r), (5)
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where l(l′) labels layer and qll
′

n is the Dirac point mo-
mentum difference between the l and l′th layer, with

qll
′

n = Kl −Kl′ + G̃ll′

n . (6)

Here G̃ll′

n ≈ −θẑ×Gll′

n is the corresponding difference
between the reciprocal vectors that connect equivalent
downfolded Brillouin-zone corners Kl(Kl′) [3]. Since the
coupling elements that have equal magnitude momen-
tum boosts |qll′n | are related to each other by symme-

try, we group the qll
′

n into ”shells” of equal length. In
this approach it is natural to explicitly exhibit the de-
pendence on sublattice due to the difference in corre-
sponding π-orbital Wannier functions positions by let-

ting ωll
′,Gn

αβ′ → wll
′

αβ′eiG
ll′
n ·(τα−τβ′ ), where τα specifies the

α sublattice position in the lth layer and τβ′ = τβ + d
specifies a sublattice position in the l′th layer in which d
is shown in Fig. 1 (b).

In TBLG this approach can be successfully applied on
a purely phenomenological basis, because the number of
required parameters is small. In TTLG, however, the dif-
ference in chemical environment between the inside and
outside layers, and the possibility of tunneling directly
between top and bottom layers causes a proliferation in
parameters and guidance from ab initio theory is needed.

B. Ab initio calculations

Closely following an approach introduced by
Jung et al. [58], we employ the approximation that
the small twist angle moiré Hamiltonian mainly depends
on the local coordination between the layers. We are
interested in the case in which one subset of layers is
twisted relative to the others by an angle θ. If the twist
is rigid, the twisted layers are displaced relative to the
untwisted layers by (compare Fig. 1)

d(r) ≈ θ ẑ × r. (7)

Truncating the Hamiltonian to π-orbitals, the local
Hamiltonian H(r) can be expressed in terms of the dis-
placement vector d(r),

H(k,d(r)) =
∑
ll′,αβ′

〈lαk|H(r)|l′β′k〉 |lαk〉〈l′β′k|. (8)

Here l labels layer, α(β′) labels sublattice sites within
each layer’s honeycomb, and d is the displacement of the
twisted layers. The Hamiltonian as defined above is peri-
odic in d when translated by pristine lattice vectors. By
Fourier transforming the Hamiltonian matrix elements
subject to such a translation condition via,

H ll′

αβ(k,d(r)) =
∑
G

Ĥ ll′

αβ(k,G)eiG̃·r, (9)

and using the identity G̃ ·r = Gn · (−θẑ×r) = −G ·d(r)
one can approximate the r dependence of the Hamilto-
nian with just a few Fourier components. This approach

Shell ωb,mA,A ωb,mA,B ωm,tA,A ωm,tA,B ωb,tA,A ωb,tA,B

AAd
1st - - 91 106 2 3
2nd - - -9 6 0 0
3rd - - -5 4(47) 0 0

ABd
1st - - 90 105 3 3
2nd - - -9 5 0 0
3rd - - -4 5(56) 0 0

AdA
1st 93 105 93 105 - -
2nd -8 4 -8 4 - -
3rd -5 4(50) -5 4(50) - -

AdB
1st 94 107 91 105 - -
2nd -8 6 -9 5 - -
3rd -4 5(49) -4 5(43) - -

TABLE I. Interlayer tunneling parameters ωll
′,G

αβ for differ-
ent single-layer-twist trilayer structures. The four stacking
configurations (AAd, ABd,AdA, and AdB) are specified by
listing the layers from bottom to top, with the twisted layer
labelled d to suggest the displacements used in the DFT cal-
culations to represent twist locally. Each shell corresponds

to momentum boost qll
′
n shells containing members of equal

length (see Eq. 6). More explicitly to Gll′
n = i · b1 + j · b2

with (i, j) ∈ {(0, 0), (1,−1), (1, 0)} for the 1st shell, (i, j) ∈
{(0, 1), (0,−1), (2,−1)} for the 2nd shell, and (i, j) ∈ {(2,−2),
(1,−2), (−1, 0)} for the 3rd shell. Non-zero phases are de-
noted in brackets. The band parameters are given in meV
units and b,m,t label the bottom, middle and top layer re-
spectively. The smaller band parameters that account for
site-energy variation and hopping between aligned layers are
listed in the appendix.

will only be successful if |H ll′

αβ(K,G)| drops to zero suf-
ficiently quickly with increasing G.

We find that this condition is fulfilled due to the
smoothness of the parameter variation obtained from
the sampled configuration space. Indeed, using Eq. 9 it
is possible to identify the expansion coefficients ε̂lα,G,

t̂ll
′

α,β,G and ωll
′,G

αβ of Eqs. 3-5 with the corresponding

Ĥ ll′

α,β(K,G) [58]. We thus obtain a moiré band model
from ab initio calculations performed on pristine cell
graphene multilayer structures that has the same struc-
ture as the continuum model outlined in section A. For
further details on the ab initio calculations we refer to
App. B.

A detailed analysis of the resulting band parameters re-
veals that many arguments advanced for the TBLG case
also hold for the trilayer case. In line with TBLG and
previous publications on TTLG[21, 50] the dominant con-
tribution to the interlayer coupling strength stems from
the first shell interlayer coupling elements which are of
similar magnitude as the values for TBLG. The first shell
here denotes the qn that connect the two layers at the
first Brillouin zone edges at the vicinity of the K point
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FIG. 2. Continuum model moiré bandstructures for four different TTLG at the largest magic angle including all ab initio
derived coupling elements. (a) top-layer twisted trilayer with the bottom two layers in AA stacking (AAd); (b) top-layer
twisted trilayer with the bottom two layers in AB stacking (ABd); (c) middle-layer twisted trilayer with the outer two layers
in AA stacking (AdA). This structure has an emergent mirror symmetry; (d) middle-layer twisted trilayer with the outer two
layers in AB stacking (AdB).

(see Table I). However, the second shell contributions are
not completely negligible in the TTLG case (see Table I).
Equally subtle and relevant is the energy alignment be-
tween the layers, and the spacial variation of on-site ener-
gies and Fermi velocities on the length scale of the moiré,
and the tunneling elements that coupling the outer two
layers (see Tables A1 and A2).

III. TWISTED TRILAYER ELECTRONIC
STRUCTURE

Armed with realistic single-particle trilayer Hamilto-
nians, we are now in a position to address electronic
structure. The most important difference compared to
the simple TBLG case is that electronic properties are in
most cases sensitive to translations of individual aligned
layers [50, 57]. We focus on four special cases: a middle-
layer twisted trilayer with the outer layers in either AA
stacking (AdA), or AB stacking configuration (AdB), and
top-layer twisted trilayers with the other two layers in ei-
ther AA (AAd) or AB stacking (ABd) (see Fig. 1). Our
results show that the moiré band-structure of twisted tri-
layers not only depends on parameters that are in princi-
ple experimentally controllable such as the twist-angle or
a gate-controlled displacement field, but also on one vari-
able beyond current experimental control, namely single-
layer lateral displacements on the atomic scale.

A. Trilayer Stacking Dependence

We first contrast the continuum model bandstruc-
tures for the four different single-twist trilayers (com-
pare Fig. 2), each calculated at a twist angle close to
its flatband condition using model parameters extracted

from the DFT calculations. The electronic structure is
most interesting in the AdA case, on which we subse-
quently focus, because its flat bands emerge cleanly and
are accompanied by strongly dispersive bands covering
the same energy interval.

K1 K2 K1
30

20

10

0

10

20

30

E 
/m

eV

(a)

K1 K2 K1
30

20

10

0

10

20

30

E 
/m

eV

(b)

FIG. 3. Moiré bands of TTLG in the AdA stacking configura-
tion at a twist angle of 1.55◦, successively adding terms from
the continuum model in Eq. 1. (a) Bands calculated includ-
ing only the twisted layer tunneling (T ) and intra-layer Dirac
cone (HD) terms in the Hamiltonian (red) and bands when
the site energy term (Hs) is also included (dashed blue). (b)
Bands when hopping between different sites of aligned layers
are also included (Ht). The red and blue curves respectively
include and neglect coupling between the outer layers.

To demonstrate the relevance of the smaller model-
parameters in the continuum model Hamiltonian that we
have estimated using DFT, we point to the band align-
ment of AdA stacked TTLG. We compare moiré band
calculations based either on only the dominant HD and
T terms in the model Hamiltonian (see Eq. 1) or also on
the on-site energies Hs (see Fig. 3)). We find that the
effect of Hs is to induce an energy difference between the
Dirac point of the dispersive bands and the flat band en-
ergy. Intralayer corrections to the Fermi velocity (the t’s
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from Table A1) and direct hopping between outer layers
(the t’s from Table A2) further modulate the bands in a
non-trivial manner (see Fig. 3) , particularly by changing
the shape and relative alignment of the flat bands. In-
deed, all of these contributions to the Fermi alignment are
of the same order of magnitude. A quantitative descrip-
tion of the final alignment between the highly dispersive
bands and the flat bands therefore requires carefully con-
sidering all of these terms.
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FIG. 4. Simplified bandstructure and density of states
(DOS) of ABd (a,c) and AdA (b,d) stacked TTLG. (a) and
(b) are the bandstructures of top-layer (ABd) and middle-
layer (AdA) twisted trilayers at a particular close-to-magic
twist-angle, and (c) and (d) are twist-angle-dependent DOS
with the twist angles of (a) and (b) labeled by blue dashed
lines.

While all small contributions in our ab-initio model are
relevant for the detailed analysis of the band evolution,
simplified models suffice for discussing qualitative band
structure properties. Importantly, the symmetries that
dictate many band properties, such as the mirror symme-
try for the AdA case, are present in both the full and the
simplified model. In the following we use the simplified
version, including only HD, Hs and T ; for ABd stacking
we additionally use the values from Table A2 in the Ap-
pendix. The simplified models facilitate the comparison
of AdA and ABd electronic structure in Fig. 4, and pre-
dict the difference of the first magic angles for top-layer
(ABd) and middle-layer (AdA) twisted trilayers, i.e. first

magic angle for the AdA stacking is ≈
√

2 times larger
ABd case.

AdA stacked TTLG has a mirror symmetry (ẑ → −ẑ),
which leads to even and odd parity bands and allows
the even-parity flat and odd-parity dispersive bands to
cross [21, 50]. As we will show in the following, this
mirror symmetry is important, especially for the density
of states (DOS) and for transport properties. The de-
coupled flatbands and dispersive Dirac bands hybridize
whenever the mirror symmetry is broken, for example by
substrate effects, by applying an external electric field
or by shifting the top layer laterally [50]. With broken

mirror symmetry the width of flatbands, and therefore
electronic correlation strengths, can be tuned by apply-
ing an electric field.

B. Experimentally Relevant Band Characteristics

We now focus on AdA single-layer-twist trilayers. In
order to provide a sense for the experimental relevance
of the electronic structure variability that we analyze, we
provide results not only for the energy band dispersion
and density-of-states, but also for other experimentally
relevant band-structure characteristics - i.e. other ob-
servables that depend only on the energy bands.

1. Drude Weight

The Drude weight (also known as the charge stiffness)
measures the inertia of the electronic response to external
electric fields. In the case of metallic bands, we can utilize
Kohn’s formula[59] to calculate the Drude weight from
band velocities vnkµ = 〈nk|∂H/∂kµ|nk〉/~, via:

Dµν =
e2

2π

∑
n

∫
BZ

dk
∂fnk
∂ε

vnkµvnkν (10)

In the case of interest, C3v symmetry in a two-
dimensional electron system ensures that the Drude
weight tensor is proportional to the unit matrix [60], i.e.
Dxx = Dyy and Dxy = Dyx = 0, as detailed shown in
App. C. The longitudinal conductivity is proportional to
the product of the Drude weight and the transport scat-
tering time.

2. Weak-field Hall Conductivity

Using the Jones-Zener solution of the Boltzmann equa-
tion [61],

σxy = 2
e3

~
B

∫
dk
−∂fk
∂ε

(vyτk)(vy∂kx − vx∂ky )(vxτk),

(11)
we also calculate the weak-field Hall conductivity σxy as
a function of displacement field and carrier density (see
Fig. 6 (d)). Here τk is the relaxation time, which we ap-
proximate τk ≈ τ by a constant, and ∂kµ ≡ ∂/∂kµ. We

express the Hall conductivity in units of (e2/h)(2[eV ]τ/~·
a/lB)2/π where lB =

√
~/eB is the magnetic length and

a is the lattice constant of graphene. At weak magnetic
fields the Hall resistivity ρxy = −σxy/σ2

xx is indepen-
dent of the transport scattering time and is a pure band-
structure property, and in the case of isotropic bands is
inversely related to the carrier density.
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FIG. 5. Bandstructure and transport properties of AdA stacked TTLG for various displacement fields. The top panels of
(a)-(d) show bandstructures as the displacement potential increases from 0 to 150 meV. Mirror symmetry breaking couples the
even parity flat bands to the odd-parity dispersive Dirac cone bands. The Dirac points of the outer layers are pushed away
from the Fermi level, but are protected by symmetry. The lower panels of (a)-(d) illustrate the evolution of the DOS and the
Drude weight with displacement potential.

3. Carrier Density and Hall Density

To facilitate comparison with experimental studies of
samples with gate controlled carrier densities, we will
sometimes express our results in terms of carrier density
instead of Fermi energy. The mapping from chemical po-
tential to carrier density can be obtained by integrating
the DOS D(E),

n = 4 · 1

Ωm

∫ EF

E0

D(E)f(E)dE, (12)

where Ωm = |R1|2 sinπ/3 is the area of a moiré unit
cell and |R1| ≈ |a1|/θ is the length of the moiré period.
The factor 4 accounts for valley and spin degeneracy. E0

is the Fermi energy at neutrality, where the bands of
the moiré system are half filled, and f(E) is the Fermi-
Dirac distribution function. The carrier density can be
compared directly with the so-called Hall density,

nH ≡
B

ρxyec
=
Bτ2D2

xx

σxyec
, (13)

which is independent of transport lifetime and therefore a
band characteristic. The expressions quoted above apply
only in the relaxation time approximation. In the limit
of a single isotropic closed Fermi surface, the Hall density
is equal to the carrier density.

C. Mirror Symmetry and Displacement Fields

We now discuss mirror symmetry breaking by gate-
controlled displacement fields. In our calculations the
influence of the displacement field is modelled by adding a
term to the Hamiltonian that creates a relative difference
between the energies of sites located in different layers:

HE(r) =
∑
l,α

Vl(E)c†lα(r)clα(r). (14)

In the following we will set the displacement potential in
the middle layer to 0, and in the outer layers to ±VE .

In the top panels of Fig. 5 we illustrate the depen-
dence of the flat bands around the Fermi energy on dis-
placement potentials. We see that hybridization between
the odd parity dispersive bands and the even parity flat
bands increases steadily with displacement field, with the
result that all bands become dispersive. The C2T sym-
metry that allows Dirac points at the moiré Brillouin-
zone corner is not broken by applied displacement fields
and linear band crossings therefore remain - although
they are shifted in energy. We see in the top panels of
Fig. 5 that the total width of the broadened flatbands is
approximately proportional to the displacement poten-
tial. In the bottom panels of Fig. 5 we show that the
DOS (red curves) peak is close to the neutrality point
at all displacement fields. By contrast the Drude weight
has a minimum in the vicinity of the neutrality point,
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due to the flatness (very low band velocities) of these
subbands (see lower panel of Fig. 5 (a)). When a finite
displacement field is present, the Dirac points originating
from the odd-parity bands and the minima of the Drude
weight are energetically shifted. Local minima of the
Drude weight emerge at the Dirac points and are present
until these touch the edges of the surrounding bands (See
lower panel of Fig. 5). Further increases in the displace-
ment field move the minimum of the Drude weight back
to neutrality. Two trends are at play: (i) the width of
the flatbands increases, raising the band velocity. The
Drude weight therefore increases despite the decrease in
the DOS. (ii) the Dirac points (where the DOS is mini-
mal) of the outer layers are shifted away from the charge
neutrality point E = 0. The Drude weight is then mainly
determined by the band velocities, which become mini-
mal near E = 0 (lower panel of Fig. 5).
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FIG. 6. Drude weight (in units of eV/~ · (e2/h)) and Hall
conductivity as a function of carrier density and displacement
potential. (a) The lower panel of Fig. 5(a) plotted over a
wider range of Fermi energy. The dashed green line is a plot
of the carrier density. The scale of the carrier density plot is
implied by the green arrows that mark where n = ±4ns, with
ns one electron per moiré unit cell (ns ≈ 1.58 × 1012cm−2).
(b) Density of states vs. Fermi level with the displacement
potential varied from -150 meV to 150 meV. (c) Drude weight
(2D = Dxx + Dyy) and (d) Hall conductivity (σxy), plotted
as a function of displacement field and carrier density.

The Drude weight’s dependence on Fermi energy in
Fig. 6 (a) is converted in Fig. 6 (c) to a dependence on
carrier density. The carrier density (n) changes rapidly
with Fermi energy in the region of the flatbands (see
Fig. 6 (a)). We find that the maximum of the DOS is
pinned to the flat band Dirac point (compare Fig. 6 (a)).
The edges of the subbands closest to the flatbands in en-
ergy tend to move together with increasing displacement
potential. The Drude weight (Fig. 6 (c)) is small over a
wide energy range near neutrality, as expected given the
ultra-low band velocities discussed above.

Analyzing the resulting Hall conductivity (σxy) we find
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FIG. 7. Hall density (nH) as a function of carrier density
(n) and displacement potential (Vε). The dashed yellow lines
mark the densities ±4ns. Between these densities the Fermi
level lies within the flat bands.

that — for filled flat bands — the carriers have electron
character even below neutrality, highlighting that the dis-
persive Dirac bands play a dominant role in the Hall con-
ductivity around half-filling, and that the Dirac point of
the dispersive band lies below the flat bands in energy.
Furthermore, the electron character of the Hall conduc-
tivity in general only weakly depends on the displacement
potential. In Fig. 7 we compare the actual carrier density
with the Hall density, defined in Eq. 13. Comparisons of
Hall density and total carrier density are readily made
experimentally and are therefore a convenient point of
comparison with theory. We see in Fig. 7 that the Hall
density is strongly dependent on displacement field when
the Fermi level lies within the flat bands, and much more
weakly so when the Fermi level lies outside the flat bands.

D. Mirror Symmetry and Lateral Stacking Shifts

Because accidental lateral stacking shifts are present in
all current trilayer devices, it is important to understand
their influence on electronic properties. In contrast to the
trilayer case, lateral stacking shifts have no influence on
the electronic structure of bilayers [3, 50]. For the TBLG
case, the interlayer tunneling Hamiltonian in Eq. 5 is,

T (r) =
∑
αβ′;n

wBLαβ′ eiGn·(τα−τβ′ )e−iqn·rc†α(r)cβ′(r), (15)

where the bilayer interlayer tunneling wBLαβ′ has no layer-
dependent index and we explicitly denote the phase
shift introduced by the atomic positions τα(β′). A gen-
eral change in layer alignment at the origin (τβ′ →
τβ′ + dtrans) can be expressed as a lateral stacking shift
d(rtrans) = θẑ × rtrans and thus simply manifests as

a extra phase eiG̃n·d(r+rtrans) in Eq. 15, without chang-
ing the phase of the interlayer tunneling matrix elements
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FIG. 8. Band and transport properties of TTLG with a twisted middle layer for several lateral stack shifts along the R1

direction. (a)-(d) (top panels) bandstructures, (lower panels) DOS and Drude weight: Shifting dM away from zero breaks the
mirror symmetry and the C2T symmetry, causing the Dirac points to gap.

ωBLαβ′ . Translating the layer that is rotated relative to the

two other layers (e.g. shifting the top layer in a ABd
configuration) in a TTLG therefore leaves the electronic
structure - in analogy to the TBLG case - unchanged. In
contrast, changing the relative lateral stacking of the two
aligned layer strongly alters the electronic structure of
the TTLG. Since all configurations with a twisted outer
layer except the ABd configuration depend on acciden-
tal lateral displacements, we herein focus on the case of
middle-layer twisted trilayers.

Translating the moiré patterns involving the top layer
changes the value of all coupling terms, as highlighted,
e.g., by the differences between AdB and AdA stacking in
Tables I, A1, and A2. However, these changes are small
and we will neglect them. The remaining moiré shifts can
be accounted for entirely by phase factor changes[50] for
tunneling between the top layer and the other two layers,

i.e. in wb,m,Gn

αβ and wm,t,Gn

αβ . We write a general spatial
shift of the moiré pattern as

dM = λ1R1 + λ2R2, (16)

where R1 and R2 are the lattice vectors of the moiré
unit cell. Since properties can depend only on the dis-
placement modulo moiré lattice vector shifts, we can re-
strict our attention to 0 ≤ λ1, λ2 ≤ 1. These moiré
pattern shifts correspond to top layer displacements by
λ = θẑ × dM = λ1a1 + λ2a2 with a1/a2 the lattice vec-
tors of graphene. The phase factors that account for
lateral displacements are therefore exp(iGn · λ), where
Gn · λ = λ1Gn · a1 + λ2Gn · a2.

The top layer lateral stacking shift breaks not only
the mirror symmetry but, unlike an applied external dis-
placement field, also C2T symmetry. As illustrated in
the top panel of Fig. 8, the flat-band Dirac cone is there-
fore gapped when dM 6= 0, and the dispersive band Dirac
points are both gapped and, because of mirror symmetry
breaking, shifted away from the flat bands. When the
lateral stacking shift moves from dM = 0 along R1, the
maximum in the Fermi level DOS shifts away from neu-
trality. Lateral stacking shifts split the flat band DOS
peak , and the Drude weight develops two local maxima
around its global minimum (lower panels of Fig. 8).

For dM = 0, the Hamiltonian features C3v symmetry
for all displacement fields guaranteeing isotropic linear-
response transport coefficients (see App. C). By contrast,
C3v symmetry is lost when dM 6= 0. To quantify the de-
gree of transport anisotropy produced by accidental lat-
eral stacking shifts we consider Dxx and Dyy as a func-
tion of Fermi energy and dM along R1 (see Fig. 9 (a)
and (b)). The difference between Dxx and Dyy becomes
maximal at dM = R1/2 (Compare Fig. 9 (a) and (b)).
It follows that measuring the transport anisotropy can
be extremely valuable in characterizing twisted trilayer
devices.

In Fig. 10) we examine the influence of lateral stacking
shifts on the flatband width, the Drude weight, and the
Hall conductivity. For the perfect AdA stacking configu-
ration without a lateral stacking shift, the Drude weight
(D = Dxx +Dyy) is always small for carrier densities in
the flatband range −4ns ≤ n ≤ 4ns (See Fig. 10 (a)).
In this range of density the Hall conductivity varies ap-
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FIG. 9. Drude weight Dxx and Dyy versus the Fermi en-
ergy. Unlike the case where we included a displacement field,
lateral stacking shifts break the C3v symmetry and lead to
anisotropic transport.

proximately linearly with carrier density and features an
n-type sign at charge neutrality.

5 0 5
n [1012cm 2]

0.00

0.25

0.50

0.75

1.00

D 
[eV

e2 h
]

4ns 4ns

(a): No shift
Drude
Hall

R1

R2

(b): Flatband width

10 0 10
n [1012cm 2]

0.00

0.25

0.50

0.75

1.00

St
ac

k 
Sh

ift
 [R

1]

(c): Drude weight

10 0 10
n [1012cm 2]

0.00

0.25

0.50

0.75

1.00

St
ac

k 
Sh

ift
 [R

1]

(d): Hall conductivity

2

1

0

1

2

xy
 [e2 h

(4e
V h

a B
)2 ]

0

20

40

60

Ba
nd

wi
dt

h 
[m

eV
]

0.0
0.5
1.0
1.5
2.0
2.5

D 
[eV

e2 h
]

0.8
0.4

0.0
0.4
0.8

xy
 [e2 h

(4e
V h

a B
)2 ]

FIG. 10. Influence of stacking-shift on experimentally accessi-
ble observables. (a) Drude weight (D = Dxx +Dyy) and Hall
conductivity (σxy) at zero lateral stacking shift (dM = 0). (b)
Flatband width, defined as the difference in energy between
the top of the first band above neutrality and the bottom of
the first band below neutrality, vs. top layer stacking shifts
over one moiré unit cell bounded by R1 and R2 (see also
Fig. 12 (a)). The bandwidth, which is minimal at zero lateral
stacking shift, reaches up to around 70meV for some config-
urations. (c) Drude weight and (d) Hall conductivity vs. dM
along the R1 direction.

The evolution of the width of the flat bands as a func-
tion of stacking shift (Fig. 10 (b)) reveals that the two
bands closest to charge neutrality are not narrow at all
lateral stacking shifts, reaching up to 70 meV - close to
typical bandwidths in graphene multilayer moirés [3, 62].
The flatband width is minimal near dM = 0 and close to
the dM = (R1 + 2R2)/3 and dM = (2R1 + R2)/3 lines.
Magic angle behavior is therefore common but not uni-

versal as a function of lateral stacking shift. Correspond-
ingly, the Drude weight near neutrality increases when
the top layer is shifted away from the AdA configuration.
Generally speaking, it still remains small compared to
values outside the flatband region of carrier density. The
increase in Drude weight is linked to the increase of band
velocity due to increased flatband width. The change in
sign of the Hall conductivity (see Fig. 10 (d)) shifts to-
wards neutrality for non-zero dM . The evolution of the
Hall densities with n at different stacking shifts (Fig. 11)
shows a similar trend: for dM = 0, the Hall density
changes sign not at neutrality but at a negative carrier
density. The reason is a competition between the con-
tributions from the odd-parity dispersive band and the
even-parity flatband to the Hall conductivity. When the
two sets of bands are coupled by dM 6= 0, the Hall density
sign change generally occurs much closer to charge neu-
trality. Measurements of the Hall density can therefore
be used to determine the strength of mirror symmetry
breaking in AdA trilayers.
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FIG. 11. Hall density (nH) as a function of carrier density (n)
and lateral stacking shift (dM ). The Hall density at neutrality
is n-type for dM = 0, and much closer to 0 for dM 6= 0. Hall
density measurements are sensitive to the strength of coupling
between even and odd parity bands.

Finally, we comment on the band gaps that are opened
by coupling between even and odd parity bands at dM 6=
0. We identify three different gaps: ∆g between the flat
conduction band (first band above neutrality) and the
flat valence band (first band below neutrality), ∆c be-
tween the first and second conduction bands, and ∆v be-
tween the first and second valence bands (see Fig. 12 (a)).
In Fig. 12 (b)-(d) we show that gaps are present for some
lateral stacking shifts in our single particle picture. There
is, however, no shift for which ∆g 6= 0 and ∆c/∆v 6= 0
simultaneously, highlighting the rarity of isolated gapped
flatbands in a TTLG system.
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FIG. 12. Evolution of the gaps between AdA minibands.
The band gaps ∆g, ∆c and ∆v are defined in (a). The depen-
dence of their magnitudes on lateral stacking shift is plotted
in (b)-(d). For most stacking configurations no gap is present.
However for some stacking configurations a small gap opens
between the flatbands shown in (b), as well as between the
flat bands and the dispersive bands shown in (c) and (d).

IV. SUMMARY AND DISCUSSION

We have used density-functional-theory input to con-
struct a continuum model for twisted trilayer graphene
that allows for moiré-induced spatial variation not-only
in tunneling between adjacent layers but also in hopping
between top and bottom layers, in Fermi velocity, and
also in the site-energies of both interior and exterior lay-
ers. The additional moiré effects are secondary to the
variation of adjacent layer tunneling, but do have a quan-
titative impact on moiré superlattice electronic proper-
ties of TTLG systems.

Using this platform, we examine the dependence of
moiré electronic structure on the accidental lateral stack-
ing shift dM , which is not controlled experimentally in
current devices. For the interesting case of middle-layer-
twist devices, we view the electronic structure through
the filter of mirror symmetry, which plays an essential
role in the ideal dM = 0 (AdA stacked) case. In such
a configuration a crossing between a strongly dispersive
odd-parity band and even-parity bands emerges. The lat-
ter show magic-angle flatband behavior at a twist angle
that is larger than the case in twisted bilayer by a factor
of
√

2. We characterize electronic structure not only by
bandstructure plots and DOS profiles, but also by calcu-
lations of the Drude weight, the Hall conductivity, and
the Hall density - which are closely related to routine
transport characterizations of moiré superlattices. We
find that all electronic properties can be strongly altered
by accidental lateral stacking shifts. Our results for the
Hall density and the Drude weight can be used to exper-
imentally infer the value of dM in a particular device.

Recent experimental work[51] has demonstrated that
AdA trilayers at their magic angle can exhibit supercon-
ducting domes similar to those of magic-angle twisted
bilayer graphene (MATBG). The simplest interpretation
of these experiments is that superconductivity occurs in
the even parity bands, with the odd-parity bands acting
as passive spectators, and that the microscopic physics
behind the superconductivity is very much like that of
MATBG. If so, our work shows that dM must be small
in the measured devices. This property could be con-
firmed by Hall density measurements, for which our cal-
culations show that odd-parity bands are not spectators
at dM = 0. It is possible that the value of dM achieved
by the stacking processes employed today is not acciden-
tal, and that dM = 0 is preferred for unknown reasons.
In this case superconductivity in magic angle twisted bi-
layers and trilayers could indeed be very similar. Our
analysis motivates Hall density and Drude weight mea-
surments that could prove or disprove this Ansatz.

Moiré superlattice continuum models in multilayers are
less constrained by symmetry than in the bilayer case.
Our mircoscopic DFT calculations capture details that
have not been included in previous continuum models.
Although the secondary terms in the model are less im-
portant than tunneling between adjacent layers, they do
have a significant effect on observable quantities. Their
importance is magnified by the narrow widths of the flat-
bands, especially for the symmetry protected cases of
dM = 0 middle-layer twisted trilayers. For this case,
the energetic alignment of flat bands and the decoupled
Dirac cone strongly affects the DOS and the Hall conduc-
tivities. As our quantitative understanding of graphene
multilayer moiré systems improves, including these sec-
ondary terms will play a more important role.

Many of these conclusions concerning middle-layer
twisted trilayers generalize to odd-number-layer twisted
multilayers, which are projected to feature flat bands at
even larger twist angles, and therefore possibly a higher
superconducting Tc. Understanding accidental lateral
stacking shift properties and the relationship between
lateral shift variability and stacking processes will be im-
portant if we wish to use layer number as an intentional
design parameter for multilayer moirés.
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Appendix A: Definitions for pristine graphene

Throughout the manuscript the following lattice pa-
rameters are assumed: The lattice vectors of a pristine
unit cell of graphene are defined as,

a1 = a(0,−1) a2 = a(

√
3

2
,

1

2
) (A1)

with a = 2.46 the lattice constant (except for DFT calcu-
lations). With the corresponding reciprocal lattice vec-
tors as,

b1 =
2π

a
(

1√
3
,−1) b2 =

2π

a
(

2√
3
, 0) (A2)

The positions of atoms in the unit cell are: τ
A

= (0, 0, 0)

and τ
B

= (a/
√

3, 0, 0).
The Dirac Hamiltonian for a layer rotated by an angle

θ with respect to a fixed coordinate system is

h(k, θ) = ~v
F
k

(
0 ei(θk−θ)

e−i(θk−θ) 0

)
. (A3)

The 6 linear combinations of reciprocal lattice vector
with smallest magnitude {G1, . . . ,G6} are defined as,

G1 =
4π√
3a

(
1

2
,−
√

3

2
), G2 =

4π√
3a

(−1

2
,

√
3

2
), (A4)

G3 =
4π√
3a

(−1, 0), G4 =
4π√
3a

(−1

2
,−
√

3

2
), (A5)

G5 =
4π√
3a

(
1

2
,

√
3

2
), G6 =

4π√
3a

(1, 0). (A6)

Fourier components of coupling elements t̂ll
′

αβ,G between
aligned layers and equally Fourier components of the spa-
cial variation of site energies ε̂lα,G, which allow the con-
struction of

tll
′

αβ(r) =
∑

G={0,G1,...,G6}

t̂ll
′

αβ,Ge
−iG·d(r) (A7)

and

εlα(r) =
∑

G={0,G1,...,G6}

ε̂lα,Ge
−iG·d(r) (A8)

are listed in Table A1-A2. The tables list the zeroth (f̂0)

and first (f̂G1,...,6
) intralayer (see Table A1) and inter-

layer (see Table A2) Fourier component. All other com-
ponents can be deduced from phase relations listed in the
table captions.

Appendix B: DFT Calculations

All DFT calculations were performed using the Vienna
ab initio simulation package(VASP) [63], within the lo-
cal density approximation and the associated equilibrium

t̂bbAB,0 t̂bbAB,G1
t̂mmAB,0 t̂mmAB,G1

t̂ttAB,0 t̂ttAB,G1

ε̂bA,0 ε̂bA,G1
ε̂mA,0 ε̂mA,G1

ε̂tA,0 ε̂tA,G1

AAd
2611 0 2606 2(60) 2605 2(60)

6 0 -9 2(28) 3 2(-31)
ABd

2591 0 2608 2(60) 2606 2(60)
2 0 -13 2(-40) 11 2(30)

AdA
2605 2(60) 2602 3(60) 2605 2(60)

5 2(-30) -10 3(30) 5 2(-30)
AdB

2605 2(60) 2602 1 2583 2(-60)
5 1(-60) -11 2(-36) 6 1(-150)

TABLE A1. Fourier components of intralayer coupling con-
stants. Units are set to meV, subscripts b,m,t label the bot-
tom, middle and top layer respectively, phases are denoted
in brackets. In this table the Fourier components not explic-
itly listed f̂G2,...,6 can be obtained via f̂G1 = f̂G3 = f̂G5 =

f̂†G2
= f̂†G4

= f̂†G6
if α = β and f̂G1 = f̂G4 = f̂G2e

i2π/3 =

f̂G5e
i2π/3 = f̂G4e

−i2π/3 = f̂G6e
−i2π/3 if α 6= β [58]. Further-

more ε̂lA = ε̂l,†B and t̂AB = t̂†BA.

t̂bmAA,0 t̂bmAA,G1
t̂bmBB,0 t̂bmBB,G1

t̂bmAB,0 t̂bmAB,G1
t̂bmBA,0 t̂bmBA,G1

AAd
225 0 225 0
0 0 0 0

ABd
0 0 0 0

357 2 0 0

t̂btAA,0 t̂btAA,G1
t̂btBB,0 t̂btBB,G1

t̂btAB,0 t̂btAB,G1
t̂btBA,0 t̂btBA,G1

AdA
4 2(-70) 4 2(70)
0 2(60) 0 2(-60)

AdB
0 -2 0 2(-60)
4 2(-60) 0 -2

TABLE A2. Fourier components of coupling constants be-
tween aligned layers. Units are set to meV, subscripts b, m,
t label the bottom, middle and top layer respectively, phases
are denoted in brackets. In this table the Fourier compo-
nents not explicitly listed f̂G2,...,6 can be obtained via f̂G1 =

f̂G3e
i2π/3 = f̂G5e

−i2π/3 = f̂†G4
= f̂†G2

ei2π/3 = f̂†G6
e−i2π/3

if α = β and f̂G1 = f̂G3e
−i2π/3 = f̂G5e

i2π/3 = f̂†G4
=

f̂†G2
e−i2π/3 = f̂†G6

e2iπ/3 if α = A and β = B. If α = B and

β = A, the relations f̂G1 = f̂G3 = f̂G5 = f̂†G2
= f̂†G4

= f̂†G6

hold.

lattice constant of a = 2.449Å (note that this deviates
from the values used elsewhere in the manuscript) and a
periodic image separation of 25Å. We used a Monkhorst
k-point grid of 25×25×1. We sampled the configuration
space on a 10 × 10 × 1 grid via successive lateral trans-
lations of the corresponding twisted layer by a

10 along
each lattice vector direction. We performed 100 pristine
trilayer graphene calculations for each stacking configu-
ration. At each stacking configuration we allowed atomic
positions to equilibrate along the out-of-plane axis. Sub-
sequently we transformed and truncated (to pz-orbitals)
each resulting pristine cell Hamiltonian into real space
using Wannier90 [64, 65]. To obtain explicit parameters
for the continuum model, we deduce effective Fermi ve-



12

locities and Fermi alignments using calculations where
interlayer coupling elements are neglected.

Appendix C: Drude Weight

In the absence of disorder, the Drude weight tensor of
a metal [59],

Dµν = π lim
ω→0

ωImσµν(ω), (C1)

is related [66] to the ac dependent conductivity (σregµν (ω))
by

σµν(ω) = Dµν [δ(ω) +
i

πω
] + σregµν (ω). (C2)

In the case of band metal, with Kohns formula[59], the
Drude weight becomes the Fermi volume integral:

Dµν = 2πe2
∑
n

∫
BZ

dk

(2π)d
∂fk
∂ε

1

~2
∂2εnk
∂kµ∂kν

, (C3)

with ∂fk/∂ε ≡ ∂f(εnk, µ)/∂εnk where f(εnk, µ) is the
Fermi-Dirac occupation function, µ is the chemical po-
tential, ~ is the reduced Planck constant and εnk is the
band energy. By means of an integration by parts, the
Drude weight in two-dimensions may be calculated using

band velocities, via:

Dµν =
e2

2π

∑
n

∫
BZ

dk
∂fk
∂ε

vnµvnν , (C4)

where the velocity vnµ may be calculated with the veloc-
ity operator vnµ = 〈nk|∂H/∂kµ|nk〉. In the case of C3v

symmetry, the tensor of Drude weight must include this
symmetry according to Neumann’s principle [60]. The
representation of C3v symmetry is:

R(2π/3) =

cos 2π
3 − sin 2π

3 0
sin 2π

3 cos 2π
3 0

0 0 1

 . (C5)

With the tensor of Drude weight after the operation of
R(2π/3) denoted as D′µν , the invariance of the compo-
nents of the tensor implies that D′µν = Dµν , that is:

D′µν = aµαaνβDαβ = Dµν , (C6)

using Einsteins convention, with aµα and aνβ the matrix
element of R(2π/3). The tensor of Drude weight with
C3v symmetry is thus:

D =

Dxx 0 0
0 Dxx 0
0 0 Dzz

 . (C7)
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