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The bulk properties of nodal line materials have been an important research topic in recent
years. In this paper, we study the orbital magnetic susceptibility and the Hall conductivity of nodal
line materials using the formalism with thermal Green’s functions and find characteristic singular
behaviors of them. It is shown that, in the vicinity of the gapless nodal line, the orbital magnetic
susceptibility shows a δ-function singularity and the Hall conductivity shows a step function behavior
in their chemical potential dependences. Furthermore, these singular behaviors are found to show
strong field angle dependences corresponding to the orientation of the nodal line in the momentum
space. These singular behaviors and strong angle dependences will give clear evidence for the
presence of the nodal line and its orientation and can be used to experimentally detect nodal line
materials.

I. INTRODUCTION

Topological semimetals in three-dimensional space
have been extensively studied both theoretically and
experimentally in the field of topological materials
science.[1, 2] They consist of mainly three kinds of phases:
Weyl semimetals [3–10], Dirac semimetals [11–18], and
nodal line semimetals [19–36]. Weyl semimetals have
gapless points (Weyl points) in the momentum space and
linear dispersion around the gapless points. These gap-
less points are monopoles of the Berry curvature and
always appear in pairs with opposite chirality. Dirac
semimetals also have gapless points (Dirac points) with
linear dispersion, but the linear dispersive bands are dou-
bly degenerated, like two overlapping Weyl points. In
this case, the Dirac points must exist on high-symmetry
lines in the momentum space and they are protected by
some crystalline symmetry, such as rotational symmetry.
The third kind of the topological semimetals or the nodal
line semimetals that we study in this paper differ from
Weyl or Dirac semimetals in that the gapless points are
connected to a line (nodal line) in the three-dimensional
momentum space. This nodal line is also protected by
a crystalline symmetry or, if spin-orbit interactions are
negligible, by time-reversal and space-inversion symme-
tries.
To confirm topological nature, angle-resolved photo-

emission spectroscopy (ARPES) experiments have been
a strong tool, which enables us to detect the surface states
characteristic of the topological materials. For example,
the Fermi arc [7, 37–39], which is one of the character-
istic phenomena in Weyl semimetals, has been observed
experimentally. The presence of the Fermi arc is topolog-
ically protected by the chirality of Weyl points. In con-
trast, there are no topologically protected surface states
in the nodal line semimetals in the strict sense. Although
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the presence of drumhead surface states [19, 40, 41]
has been reported, they are not topologically protected
[26, 42, 43]. The symmetries that guarantee the nodal
lines are generally no longer present on the surface, and
thus the drumhead surface states can depend on the sur-
face configuration and the surface parameters, and even
can be pushed out to the bulk spectrum by tuning the
surface parameters. Therefore, the bulk properties for
detecting the nodal lines, which do not rely on the sur-
face states, are strongly demanded.
Quantum oscillations [28, 44–46], such as the

Shubnikov-de Haas (SdH) oscillations, are a good experi-
mental tool for this purpose. By observing the SdH oscil-
lation and its phase offset, we can determine the dimen-
sionality of the Fermi surface and the pocket type, usual
parabolic dispersive pocket or singular linear dispersive
pocket. The phase offsets are closely related to the for-
mation of the Landau level in the high magnetic field
region [47, 48]. Although a detailed analysis is generally
required to explicitly know the bulk dispersion [49–51],
the analysis of quantum oscillations and their field an-
gular dependence is a powerful tool for investigating the
features of topological semimetals, such as the structure
of the Fermi surface and the structure of gapless points
[28, 44].
In the present paper, as alternative good bulk measure-

ments, we study orbital magnetic susceptibility χ and
Hall conductivity σxy, which enable us to confirm the
existence of the nodal lines and to determine their di-
rections in the momentum space. It is expected that χ
and σxy will have characteristic angle dependences: They
will behave quite differently when the magnetic field is
perpendicular to the plane formed by the nodal-line ring
and when the magnetic field is parallel to the plane.
There have been some theoretical studies on the mag-

netic susceptibility for the nodal line semimetals [35, 52–
54]. However, the previous calculations assumed the local
Weyl-type linear dispersion of two-dimensional momen-
tum space at each point on the nodal line and obtained
the total magnetic susceptibility approximately by inte-
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FIG. 1. (a) Coordinate system used in the present paper
and nodal line (red line) in the three-dimensional momentum
space. The magnetic field B is assumed to be parallel to the
kz-axis, and the nodal line is lying on the gray plane. (b)
Band dispersion on the kx-k‖ plane when k⊥ = 0. The nodal
line (red line) is the intersection between the two parabolic
bands (red and blue bands).

grating the local susceptibility along the nodal line. As
a result, a δ-function singularity has been observed when
the magnetic field is parallel to the nodal line. In the
present paper, we obtain χ exactly using the formalism
with thermal Green’s functions. Our result is consistent
with the previous studies concerning the δ-function sin-
gularity, but we find that there are additional contribu-
tions in χ that is, interestingly, very similar to the or-
bital magnetic susceptibility in three-dimensional mas-
sive Dirac electron systems.
The Hall conductivity in the weak magnetic field has

been less understood compared with the magnetic sus-
ceptibility or the quantum oscillations. Only recently the
quantum Hall effect due to the drumhead surface states
has been discussed [55, 56]. We will show that the Hall
conductivity also shows a characteristic chemical poten-
tial dependence in the vicinity of the energy of the Dirac
point, depending on the magnetic field direction.
This paper is organized as follows: In section II, we in-

troduce a model Hamiltonian to describe nodal line ma-
terials. In section III, we calculate the orbital magnetic
susceptibility and its field angle dependence. In section
IV, we calculate the Hall conductivity in weak magnetic
fields and its field angle dependence. In section V, we
give interpretations to the characteristic behavior of the
obtained results by comparing them with the case of 2D
Dirac electron systems.

II. HAMILTONIAN OF NODAL LINE
MATERIALS

In this section, we introduce a model Hamiltonian to
describe nodal line materials. We assume that the spin-
orbit coupling is negligible and construct a k · p pertur-
bation Hamiltonian which hosts a ring-shape nodal line.
The simplest Hamiltonian is given with two orbitals and
the nodal line lies in a two-dimensional plane in the mo-

mentum space as shown in Fig. 1. We fix the magnetic
field in the z-direction and assume that the angle between
the kz-axis and the normal vector of the plane formed by
the nodal line is φ. Then, the Hamiltonian is given as

Hk = (ak2x + bk2‖ −∆)σz + νk⊥σx, (1)

where a, b, ν, and ∆ are positive constants, σx and σz are
Pauli matrices, and k‖ and k⊥ are defined as

(

k‖
k⊥

)

=

(

cosφ sinφ
− sinφ cosφ

)(

ky
kz

)

. (2)

The eigenvalues of this Hamiltonian are

E± = ±
√

(ak2x + bk2‖ −∆)2 + ν2k2⊥ = ±ǫk. (3)

Gapless points appear on the points where E+ = E−
is satisfied, whose conditions are given by k⊥ = 0 and
ak2x + bk2‖ = ∆. A ring-shape nodal line exists on the

two-dimensional plane with k⊥ = 0 as shown in Fig. 1.
The present model (1) is an extension of the previous

model [20–22, 41] with arbitrary angles relative to the
magnetic field. It has been proposed for a low-energy ef-
fective Hamiltonian in several materials such as Cu3ZnN
[21], Ca3P2 [41], TaTlSe2 [40], and CaAgX (X=P, As)
[24, 32].
In the following sections, we calculate the orbital mag-

netic susceptibility χ and the Hall conductivity σxy ana-
lytically using the thermal Green’s functions. The ther-
mal Green’s function of the model (1) is obtained as

G(k, iǫn) = [iǫn −Hk + µ]−1

=
1

D
{(iǫn + µ)σ0 +Akσz +Bkσx} , (4)

in a matrix form, where µ is the chemical potential, σ0 is
the 2×2 identity matrix, Ak = ak2x+bk2‖−∆, Bk = νk⊥,

D = (iǫn + µ)2 − A2
k − B2

k, and ǫn is the Matsubara
frequency, ǫn = (2n + 1)πkBT (n ∈ Z). The energy

eigenvalues are now written as ±ǫk = ±
√

A2
k +B2

k.

III. ORBITAL MAGNETIC SUSCEPTIBILITY

The research of orbital magnetic susceptibility has a
long history since Landau and Peierls [57–65]. In partic-
ular, the problem of the large diamagnetism in Bi1−xSbx
was resolved by Fukuyama and Kubo [59] by consid-
ering the interband effect of the magnetic field. Then
Fukuyama developed a general formula of the orbital sus-
ceptibility per volume [60]

χ =
e2

~2

kBT

V

∑

n

∑

k

Tr [GγxGγyGγxGγy] , (5)

where the spin degree of freedom has been included, e
is the electron charge (e < 0), V is the volume of the
system, G := G(k, iǫn) is an abbreviation of the thermal
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Green’s function, and γx and γy are velocity operators
in the x- and y-direction, respectively. The Fukuyama’s
formula (5) is quite general and it has been applied to
graphene [66], bismuth [67, 68], and the Kane-Mele model
[69]. In particular, for graphene, the δ-function singular-
ity is reproduced, which was originally found by McClure
[70]. This δ-function singularity will be used later. It is to
be noted that, in contrast to the previous studies [52, 53],
it is not necessary to use the Landau levels, which are not
always obtained analytically.
When we apply the formula (5) to the present model,

the thermal Green’s function is given in Eq. (4) and the
velocity operators are given by

γx =
∂Hk

∂kx
= 2akxσz , (6)

γy =
∂Hk

∂ky
= 2bk‖ cosφσz − ν sinφσx. (7)

Note that ∂/∂ky = cosφ∂/∂k‖ − sinφ∂/∂k⊥.
By substituting Eqs. (4), (6), and (7) into Eq. (5), we

find that the orbital magnetic susceptibility becomes

χ = χ⊥ cos2 φ+ χ‖ sin
2 φ, (8)

with

χ⊥ =
e2

~2
kBT

∑

n

√
ab

ν

∫

dp

(2π)3

32p2xp
2
‖

D2

×
(

1 +
8A2

p

D
+

8A4
p

D2

)

, (9)

χ‖ =
e2

~2
kBT

∑

n

√

a

b
ν

∫

dp

(2π)3
8p2x
D2

×
(

− 1 +
8A2

pp
2
⊥

D2

)

, (10)

where px =
√
akx, p‖ =

√
bk‖, p⊥ = νk⊥, and now Ap =

p2x + p2‖ −∆. The term proportional to sinφ cosφ has a

k‖-antisymmetric integrand and thus vanishes.
It is straightforward to perform the Matsubara sum-

mation and the p-integral in χ⊥ using cylindrical coor-
dinates, p2 = p2x + p2‖. At absolute zero (T = 0), we

obtain

χ⊥ =

{

− 1
6π2

e2

~2

√
ab∆
ν ln 2Λ

∆ , |µ| ≤ ∆,

− 1
6π2

e2

~2

√
ab∆
ν ln 2Λ

|µ|+
√

µ2−∆2
, |µ| ≥ ∆,

(11)

where Λ is a cut-off energy. The details of the deriva-
tion are shown in Appendix A. We find that the orbital
susceptibility is constant for |µ| ≤ ∆, while its value
decreases as |µ| increases from |µ| = ∆ as shown in
Fig. 2. This chemical potential dependence is the same as
that of three dimensional Dirac electron such as bismuth
[66, 68, 71].
Similarly, the orbital susceptibility χ‖ for T = 0 is

calculated as follows.

χ‖ =

{

− 1
12π2

e2

~2 ν
√

a
b ln

(

2Λ
∆

)

+ χ′, |µ| ≤ ∆,

− 1
12π2

e2

~2 ν
√

a
b ln

2Λ

|µ|+
√

µ2−∆2
, |µ| ≥ ∆,

(12)

with

χ′ = − 1

3π

e2

~2
ν∆

√

a

b
δ(µ). (13)

Figure 2 shows the obtained orbital magnetic suscep-
tibility as a function of chemical potential µ for several
choices of the angle φ (φ = π

2 ,
5π
12 , · · · , π

12 , 0 from top to
bottom). For convenience, χ is normalized with

χu = − 1

12π2

e2

~2
ν

√

a

b
ln

(

2Λ

∆

)

, (14)

which is the constant value of χ‖ in 0 < |µ|/∆ < 1. In
the inset, the corresponding nodal line orientations are
shown. In particular, according to Eq. (8), the amplitude
of the delta function χ′ at µ = 0 decreases as φ goes from
π/2 (χ‖) to 0 (χ⊥). This strong angle dependence of the
magnetic susceptibility will give clear evidence for the
presence of the nodal line and its orientation.
At finite temperature, χ′ shows a characteristic tem-

perature dependence

χ′ = − 1

12π

e2

~2
ν∆

√

a

b

1

kBT

1

cosh2 µ
2kBT

, (15)

instead of the δ-function peak (see Eq. (A3)).
The singularity near µ = 0 is similar to that obtained

in the two-dimensional massless Dirac electron systems
[66, 70, 72, 73], which will be discussed in detail in Section
V. As shown in Eqs. (11) and (12), there are additional
contributions in χ, which depend on the cut-off energy
Λ. This behavior, in particular the cut-off energy depen-
dence, is exactly the same as the orbital magnetic sus-
ceptibility in three-dimensional massive Dirac electron
systems [59, 66]. The origin of this behavior will be also
discussed later.

IV. HALL CONDUCTIVITY

For studying the Hall conductivity, we use the micro-
scopic formalism from Refs. [74, 75], in which the con-
ductivity is expressed using the retarded current-current
correlation as

σxy = lim
ω→0

ie2

ω
ΠR

xy(ω), (16)

In the linear order of the magnetic field B, ΠR
xy(ω) is

obtained by analytic continuation from [74, 75]

Πxy(iωλ) = −2i|e|BkBT

~4V

∑

n,k

Tr[γxG+γyGγxGγyG

−γxG+γyG+γxG+γyG], (17)

where the spin degree of freedom has been included,
G+ ≡ G(k, iǫn + iωλ) and ωλ = 2πλkBT with λ being
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FIG. 2. φ dependence of the orbital magnetic susceptibility.
The nodal line orientations for each φ are shown in the inset.

an integer is a Matsubara frequency representing the ex-
ternal frequency. The iωλ = ~ω+ iη substitution is made
and the η → 0 limit is taken at the end.

In the eigenstate basis the Hall conductivity can be
expressed as

σxy = −2B
|e|3
~4V

∑

k

∑

a,b,c,d

γx
daγ

y
abγ

x
bcγ

y
cdCabcd, (18)

Cabcd = − lim
ω→0

kBT

ω

∑

n

G+
a Gd

(

GbGc − G+
b G+

c

)

, (19)

where γx
da represents the matrix element of γx between

the d-th and a-th band and the thermal Green’s function
of the a-th band is given by

Ga(k, iǫn) =
1

iǫn − εa(k) + µ+ iΓa(k, iǫn)
. (20)

For the transport properties, we need a finite scattering
rate Γa(k, iǫn), so that we use the eigenstate basis for σxy

in contrast to the case of χ in the previous section. In the
present model, we have only two bands and ε1(k) = −ǫk
and ε2(k) = ǫk. For the scattering rate we assume the
simplest approximation where

Γa(k, ε) = sign (Im(ε)) Γ, (21)

where Γ is constant.

A. Weak-scattering limit

In the lowest order of the scattering rate (Γ) the Hall
conductivity can be expressed as [74, 75] (in the weak
scattering limit this is the same as the Hall conductivity
expressed using the Boltzmann transport theory)

σB
xy =2

|e|3τ2B
~4V

∑

k

∂ǫk
∂kx

{

∂ǫk
∂kx

∂2ǫk

∂ky
2 − ∂ǫk

∂ky

∂2ǫk
∂kx∂ky

}

× {f ′(ǫk)− f ′(−ǫk)} ,
(22)

where f(ǫ) is the Fermi distribution function defined by
f(ǫ) = 1/(e(ǫ−µ)/kBT + 1), and τ is the mean scattering
time (Γ = ~/2τ). The subleading-order term with re-
spect to the scattering rate is written in terms of the
Berry curvature and orbital magnetic moment, but it
vanishes in the present time-reversal symmetric case [75].
Note that, as is well known in the case of graphene
[66, 76], this weak scattering limit is valid for |µ| & Γ
because we will have contributions in the order of Γ/µ in
the small µ-region. The effect of finite Γ in the small µ
region will be discussed in the next subsection.
Using ǫk =

√

A2
k +B2

k and ∂/∂ky = cosφ∂/∂k‖ −
sinφ∂/∂k⊥, the Hall conductivity becomes

σxy = σB
xy⊥ cos2 φ+ σB

xy‖ sin
2 φ, (23)

with

σB
xy⊥ =2

|e|3τ2B
~4

√
ab

ν

∫

dp

(2π)3
{f ′(ǫp)− f ′(−ǫp)}

8p2xA
3
p

ǫ3p
,

σB
xy‖ =2

|e|3τ2B
~4

√

a

b
ν

∫

dp

(2π)3
{f ′(ǫp)− f ′(−ǫp)}

4p2xA
2
p

ǫ3p
,

(24)

where ǫp =
√

A2
p + p2⊥. As in the orbital magnetic sus-

ceptibility in the previous section, the term proportional
to sinφ cosφ has a k‖-anti-symmetric integrand and thus
vanishes.
At zero temperature, f ′(ǫp) is explicitly written with

the δ-functions as

−δ(ǫp − µ) = − µθ(µ)
√

µ2 −A2
p

[

δ
(

p⊥ −
√

µ2 −A2
p

)

+ δ
(

p⊥ +
√

µ2 −A2
p

)]

,

(25)

where θ(µ) is the Heviside function, i.e., θ(µ) = 1 for
µ > 0 and 0 otherwise. Using the cylindrical coordinates
and x = p2 − ∆ as in the case of orbital magnetic sus-
ceptibility, we obtain at T = 0
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σB
xy⊥ =− 2

|e|3τ2B
π2~4

√
ab

ν

sign(µ)

µ2

∫ ∞

−∆

dx
x3(x+∆)θ(µ2 − x2)

√

µ2 − x2

=







− 3
2

b
ν2∆σuµ

2sign(µ), |µ| ≤ ∆,

− 3
2

b
ν2∆σu

[

µ2

{

π
2 + arctan

(

∆√
µ2−∆2

)}

+ ∆
9

(

7 + 2∆2

µ2

)

√

µ2 −∆2

]

sign(µ), |µ| ≥ ∆,

(26)

and

σB
xy‖ =− |e|3τ2B

π2~4
ν

√

a

b

sign(µ)

µ2

∫ ∞

−∆

dx
x2(x+∆)θ(µ2 − x2)

√

µ2 − x2

=







−σusign(µ), |µ| ≤ ∆,

−σu

[{

π
2 + arctan

(

∆√
µ2−∆2

)}

+ 1
3

(

4− ∆2

µ2

)

√
µ2−∆2

∆

]

sign(µ), |µ| ≥ ∆,

(27)

FIG. 3. φ dependence of the Hall conductivity. The nodal
line orientations for each φ are shown in the inset.

where σu is defined as

σu =
|e|3τ2B
2π~4

ν∆

√

a

b
. (28)

Figure 3 shows the obtained Hall conductivity as a
function of chemical potential µ for some choices of the
angle φ (φ = π

2 ,
5π
12 , · · · , π

12 , 0 from left top to bottom, and
from right bottom to top). In the inset, the correspond-
ing nodal line orientations are shown. For a material with
a fixed µ, this strong angle dependence of σxy will give
clear evidence for the presence of the nodal line and its
orientation.
When the magnetic field is parallel to the nodal line

(σxy‖, or φ = π/2), the obtained Hall conductivity is
constant at 0 < |µ|/∆ < 1, but flips its sign at µ = 0
(violet line in Fig. 3). This behavior is similar to the two-
dimensional massless Dirac electron systems [66], which

will be discussed in detail below. The step size at µ = 0
is 2σu.
For example, if we choose the parameters as ν/~ ≃

1.0 × 106 [m/s], ∆ = 0.5 [eV], τ = 1.0 × 10−13 [s], a
transfer integral t = 1.5 [eV], and a lattice constant L =

5.0 Å, then b can be estimated as b ∼ L2t
2 = 1.875 ×

10−19 [eV ·m2] and as a result, σu becomes σu/B ≃ 4.5×
105 [m−3 · kg−2 · s5 ·A3]. In this assumption, the radius
of the nodal line is roughly 0.26π.
On the other hand, when the magnetic field is per-

pendicular to the nodal plane (σxy⊥, or φ = 0), the ob-
tained Hall conductivity is approximately proportional to
−µ2sign(µ). This behavior will be also discussed later.
At finite temperature, f ′(ǫp) has finite width spread of

about kBT and it smears the step function singularity.

B. Effect of finite scattering near µ = 0

As mentioned in the previous section, the weak-
scattering limit is valid for |µ| & Γ. To obtain precisely
the effects of the scattering rate in the small chemical
potential region, we have to evaluate the Hall conduc-
tivity in Eqs. (16) and (17) at finite Γ numerically. At
zero temperature, the obtained Hall conductivity can be
expressed as (see Appendix. B)

σxy⊥ = σu
b∆

ν2
I⊥(µ̃, Γ̃), (29)

σxy‖ = σuI‖(µ̃, Γ̃), (30)

where Γ̃ = Γ/∆, µ̃ = µ/∆, and I⊥/‖ are dimension-
less integrals in x and p⊥. Their explicit expressions are
shown in Appendix B. We evaluated these double in-
tegrals numerically and the results are shown in Fig. 4.
For general φ, the Hall conductivity is given by Eq. (23).
The explicitly plotted figures are shown in Appendix C.
As we can see at |µ| & Γ we recover the analytic results

of the previous section. At small chemical potentials the
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FIG. 4. Γ dependence of the Hall conductivity. Violet lines
and red lines represent the cases of φ = π/2 and φ = 0,
respectively.

scattering rate does not really affect σxy⊥ in the perpen-
dicular case. On the other hand, for the parallel case
(σxy‖), we see a bump appearing in the plateau for small
chemical potentials. The bump expands with increasing
scattering rates. This result for the parallel case is very
similar to the result obtained for graphene in Ref. [66],
which will be discussed in the next section in detail.
At finite temperature, the bump would be suppressed

due to the smearing effect.

V. INTERPRETATION OF THE CHEMICAL
POTENTIAL DEPENDENCES OF χ AND σxy

A. The parallel case (φ = π/2)

As shown in the previous sections, when the magnetic
field is parallel to the plane where the nodal line exists,
the chemical potential dependence of χ‖ has a δ-function
singularity and σxy‖ behaves like a step function. So let
us consider this case first.
In this case (φ = π/2), the Fermi surfaces at µ = ∆/2

on the kz = 0 plane are shown in Fig. 5(a), which are the
two separated rings. These rings are the cross-sections
of two linear dispersive bands and they enclose the nodal
line (Fig. 5(b)). Therefore, it is natural to interpret the
chemical potential dependences of χ‖ and σxy‖ in terms
of the two-dimensional massless Dirac electron systems,
as was discussed in the previous studies on the magnetic
susceptibility [35, 52–54]. In the present paper, we can
compare the results obtained approximately by integrat-
ing the local susceptibility along the nodal line with the
exact value obtained in this paper.
The two-dimensional massless Dirac electron system,

or a model for graphene, is described by a Hamiltonian

H = γxkxσx + γykyσy . (31)

FIG. 5. Fermi surfaces at µ = ∆/2 and band dispersions on
the kz = 0 (a) Fermi surface at µ = ∆/2 (blue surface) and the
nodal line (red line) for the case of φ = π/2. The green and
yellow lines represent the Fermi surfaces on the kz = 0 plane.
(b) Band dispersion on the kz = 0 plane. The red points
represent the cross-sections of the nodal line, and the Fermi
surfaces are shown by green and yellow lines at E = µ = ∆/2
on the kz = 0 plane. (c) Fermi surface at µ = ∆/2 (blue
surface) and the nodal line (red line) for the case of φ = 0.
The green and yellow lines represent the Fermi surfaces on the
kz = 0 plane. (d) Band dispersion on the kz = 0 plane. The
red line is the nodal line and the cross sections on E = µ are
shown by green and yellow lines, which represent the Fermi
surfaces on kz = 0.

In this model the orbital magnetic susceptibility has a
δ-function singularity [66, 70, 72, 73]

χ2D
Dirac = −e2γxγy

3π~2
δ(µ), (32)

and the Hall conductivity behaves as [66].

σ2D
Dirac = −|e|3τ2B

2π~4
γxγysign(µ), (33)

where the spin degrees of freedom has been taken into
account. [Note that σ2D

Dirac can be understood from the
classical form σxy,classical = −neff |e|3τ2B/m2

eff as follows.
In the Dirac electron system, neff = 2πk2F, while meff can
be assumed to satisy kF/meff = γx or γy (=constant),
which means that meff is proportional to kF. There-
fore, if we substitute neff = 2πk2F and m2

eff = k2F/γxγy
in σxy,classical, we obtain Eq. (33).] In this section, we do
not consider the bump appearing in the plateau for µ ∼ 0
(see Fig. 5), which will be understood similarly with this
plateau value.



7

Note that Eqs. (32) and (33) are for the two-
dimensional systems and we need to transform them into
contributions of the nodal line in the three-dimensional
systems. Assume that there are Nc independent layers
of Dirac electron systems stacked three-dimensionally,
each layer being separated by a distance c. Then the
total magnetic susceptibility and the total Hall conduc-
tivity per volume become (using the length of the c-axis,
Lc = Ncc)

χ3D
Dirac =

Nc

Lc
χ2D
Dirac =

χ2D
Dirac

c
,

σ3D
Dirac =

Nc

Lc
σ2D
Dirac =

σ2D
Dirac

c
. (34)

In this case, the length of the (straight) nodal line in the
three-dimensional momentum space is 2π/c. Therefore,
the contributions of the nodal line per length should be

χ3D
nodal/length =

χ2D
Dirac

2π
, σ3D

nodal/length =
σ2D
Dirac

2π
. (35)

In the present model, the nodal line forms an oval ring
in the kx-kz plane, and a point on the nodal line is ex-
pressed as (see Fig. 6)

(k0x, k0y, k0z) =

(

√

∆

a
cos θ, 0,

√

∆

b
sin θ

)

. (36)

In the two-dimensional momentum space perpendicular
to this nodal line, the band dispersion looks like a two-
dimensional Dirac cone and thus the Hamiltonian is ap-
proximately written like Eq. (31) with properly chosen
momenta. Actually, in the vicinity of the above point,
by choosing (k0x + δkx, k0y + δky, k0z + δkz), the energy
eigenvalues become

E± = ±
√

(2ak0xδkx + 2bk0zδkz)2 + ν2(δky)2. (37)

Therefore, we can see that the coefficients of k in
Eq. (31), γx and γy, are given as

γx = 2
√
∆
√

a cos2 θ + b sin2 θ, γy = ν. (38)

The axis of the Dirac cone, which is normal to the
two-dimensional momentum space, is

t =
1

√

a cos2 θ + b sin2 θ

(

−
√
b sin θ, 0,

√
a cos θ

)

, (39)

which is the tangent vector of the nodal line. Therefore,
the angle η between the magnetic field and the Dirac cone
axis is

cos η =

√
a cos θ

√

a cos2 θ + b sin2 θ
. (40)

Now let us evaluate χ‖ by integrating the contribution

of the nodal line, χ3D
nodal/length, along the nodal line. Since

FIG. 6. Nodal line (red line) of the φ = π/2 case and locally
defined 2D Dirac cone (gray cones).

the tangent vector t is not parallel to the magnetic field
(‖ z), the effective magnetic field is B cos η. Furthermore,
since the induced magnetic moment is also parallel to t,
we should integrate the z component of this magnetic
moment. The line integral along the nodal line using

√

∆

ab

√

a cos2 θ + b sin2 θ dθ, (41)

leads to

Mz =

∫ 2π

0

χ3D
nodal/length cos

2 ηB

√

∆

ab

√

a cos2 θ + b sin2 θ dθ

= −
∫ 2π

0

e2

3π2~2
δ(µ)ν∆

√

a

b
B cos2 θdθ

= − e2

3π~2
δ(µ)ν∆

√

a

b
B. (42)

This exactly reproduces the obtained result χ′ in
Eq. (13).
We can see that the same argument holds for the Hall

conductivity. As in the case of the magnetic suscepti-
bility, the effective magnetic field is B cos η. Further-
more, the induced Hall current jeff is not parallel to the
x-axis as shown in Fig. 6. Therefore, we need to integrate
jx = jeff cos η along the nodal line. As a result, we have
the similar line integral as in Eq. (42):

〈jx〉 =
∫ 2π

0

σ3D
nodal/length cos

2 ηEy

√

∆

ab

√

a cos2 θ + b sin2 θ dθ

= −
∫ 2π

0

|e|3τ2B
2π2~4

sign(µ) ν∆

√

a

b
Ey cos

2 θdθ

= −|e|3τ2B
2π~4

sign(µ) ν∆

√

a

b
Ey. (43)

This exactly reproduces the step of σB
xy‖ at µ = 0, i.e.,

σu obtained in the previous section.
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The above arguments show that the δ-function singu-
larity in χ‖ and the plateau region in σxy‖ can be un-
derstood in terms of the nodal line. However, there is
an additional contribution in χ‖ which depends on the
energy cut-off. Since the two-dimensional massless Dirac
electron system has only the δ-functional singularity, this
additional contribution can not be understood only from
the nodal line. This will be due to the band disper-
sion that has not been taken into account in the two-
dimensional massless Dirac model.
As for σxy‖, in the region of |µ|/∆ > 1, the Hall con-

ductivity is no longer constant and it decreases when
µ > ∆ and increases when µ < −∆. This is because
the two rings of the Fermi surface touch each other
at µ/∆ = ±1 and they become a single large ring in
|µ|/∆ > 1. The single large ring encloses two Dirac
points and thus the non-trivial property of the nodal line
is not captured.

B. The perpendicular case (φ = 0)

The behavior of χ⊥ (Eq. (11)) that is the same as the
orbital magnetic susceptibility of bismuth can be under-
stood from its Landau levels. In the present case, the
energy eigenvalue under the magnetic field can be ob-
tained analytically as E = ±Ej,k⊥

with

Ej,k⊥
=

√

√

√

√

{

2|e|
√
abB

~

(

j +
1

2

)

−∆

}2

+ ν2k2⊥, (44)

where j = 0, 1, · · · is the Landau level index. The grand
potential is expressed as

Ω = −2kBT
|e|BL2

2π~

∑

±,k⊥

∞
∑

j=0

ln
{

1 + e−β(±Ej,k
⊥
−µ)
}

,

(45)
where the prefactor |e|BL2/2π~ represents the degener-
acy of each Landau level. In the small magnetic field
region, the summation over the Landau level j can be
estimated by using the Euler-MacLaurin expansion for a
smooth function F (λ) and for a large N :

1

N

n2
∑

j=n1

F

(

j

N

)

=

∫

n2+1/2
N

n1−1/2
N

F (λ)dλ

+
1

24N2

{

F ′
(

n1 − 1
2

N

)

− F ′
(

n2 +
1
2

N

)}

+O

(

1

N3

)

,

(46)

where we can assume N = 1/B and x = Bj. Then, after
some algebra, we obtain the grand potential Ω as

Ω =− 2kBT
|e|L2

2π~

∑

±,k⊥

[
∫ ∞

0

ln
{

1 + e−β(±E(x,k⊥)−µ)
}

dx

± B2

24

2|e|∆
√
ab

kBT~
√

∆2 + ν2k2⊥
f

(

±
√

∆2 + ν2k2⊥

)]

,

(47)

with E(x, k⊥) =
√

(2|e|
√
abx/~−∆)2 + ν2k2⊥. The first

term in Eq. (47) represents the grand potential at B = 0.
From the second term, we obtain

χ = − ∂2Ω

∂B2

=
e2L2

6π~2

∑

±,k⊥

[

± ∆
√
ab

√

∆2 + ν2k2⊥
f

(

±
√

∆2 + ν2k2⊥

)

]

,

(48)

When we perform the k⊥ integral at T = 0, we reproduce
the result in Eq. (11).

For bismuth, we have Landau levels as[68]

EBi
j,k⊥

=

√

∆2 +
2|e|γxγyB

~

(

j +
1

2
+

σz

2

)

+ γ2
zk

2
⊥,

(49)
where σz takes values ±1. Although there are some dif-
ferences between the present case and bismuth, the Euler-
MacLaurin expansion gives a similar grand potential in
both cases, which leads to our results that χ⊥ in the
present model has the same µ-dependence as the orbital
magnetic susceptibility in bismuth. The main reason for
this coincidence is that the magnetic susceptibility is de-
termined by the term F ′((n1−1/2)/N) in Eq. (46) that is
related to the first Landau level with j = 0, and that the
energy of the first Landau level is

√

∆2 + γ2
xk

2
z + O(B)

in both cases of the present case and bismuth.

Next we discuss σxy⊥ in Fig. 3. Its µ dependence is
simply explained by the structure of the Fermi surface.
In the weak scattering limit, i.e., in the semi-classical pic-
ture, the Hall effect is discussed within a two-dimensional
momentum space perpendicular to the magnetic field.
At the same time, at zero temperature only the con-
tributions from the Fermi surface are to be taken into
account. Therefore, the structure of the intersection of
the Fermi surface and kz = const. plane determines the
behavior of the Hall conductivity. For φ = 0, the Fermi
surfaces on a kz = const. plane are two concentric rings
(Fig. 5(c)). These concentric rings are the cross-sections
of two parabolic bands and they do not enclose the nodal
line (Fig. 5(d)). Therefore, this Fermi surface structure
gives the free-electron-like Hall conductivity as shown in
the red line in Fig. 3.

To make more quantitative interpretation, let us
use again the classical Hall conductivity σxy,classical =
−neff |e|3τ2B/(mx,effmy,eff). In the present case, we can
assume mx,eff = ~

2/2a and my,eff = ~
2/2b and that neff

is estimated from the volume of the Fermi surface. Let
us consider the case with 0 < µ < ∆. In this case the yel-
low line in Fig. 5(d) is the electron Fermi surface and the
green line is the hole Fermi surface. Taking into account
the k⊥-direction, neff that is electron density minus hole
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density becomes

neff =
2

(2π)3

∫
µ
ν

−µ
ν

dk⊥

∫

dkxdk‖

×
[

θ

(

√

µ2 − ν2k2⊥ −Ak

)

− θ

(

Ak −
√

µ2 − ν2k2⊥

)]

=
1

4π2

∫
µ
ν

−µ
ν

dk⊥

×
[

∆+
√

µ2 − ν2k2⊥√
ab

− ∆−
√

µ2 − ν2k2⊥√
ab

]

=
µ2

4πν
√
ab

,

(50)

where θ(x) is the Heviside step function and Ak =
ak2x+bk2‖−∆. The first term corresponds to the electron

density and the second term to the hole density. Substi-
tuting of neff into σxy,classical, we obtain

σxy,classical = −|e|3τ2B
π~4

√
ab

ν
µ2

(

= 2
b

ν2∆
σuµ

2

)

, (51)

which reproduces the µ2-dependence of the exactly ob-
tained result σxy⊥ in Eq. (26). The difference exists only
in the numerical prefactor, 3/2 → 2.
Similarly, for the case with µ > ∆, we obtain

neff =
1

4π2

∫
µ
ν

−µ
ν

dk⊥

[

∆+
√

µ2 − ν2k2⊥√
ab

− ∆−
√

µ2 − ν2k2⊥√
ab

θ

(

∆−
√

µ2 − ν2k2⊥

)]

=
1

4π2ν
√
ab

{

µ2

(

π

2
+ tan−1 ∆

√

µ2 −∆2

)

+∆
√

µ2 −∆2

}

.

(52)

From this neff , σxy⊥ in Eq. (26) is reasonably reproduced.

C. Effect of energy fluctuation of nodal line

Generally, the energy of the Dirac point can fluctuate
along the nodal line. In this case, we expect that the

chemical potential dependences in Figs. 2 and 3 will be
smeared out. For example, the delta function peak in χ
will change to have a finite width. Even in this case, we
can detect the angle dependences of physical quantities
due to the nodal line as long as the energy fluctuation
of the Dirac point is not too large compared with the
bandwidth.

VI. SUMMARY

We have calculated the chemical potential dependence
and magnetic field angle dependence of the orbital mag-
netic susceptibility and the Hall conductivity in nodal
line materials. These quantities show characteristic sin-
gular behaviors in the chemical potential dependence,
which is attributed to the non-trivial gapless structure
of the bulk band dispersion. They also show a strong
field angle dependence corresponding to the orientations
of the nodal line. These results allow us to detect the
presence of nodal lines and to determine their orienta-
tions in the momentum space using bulk properties that
are independent of the surface state.
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Appendix A: Matsubara summation and momentum
integrals in orbital magnetic susceptibility

Using cylindrical coordinates, the susceptibility χ⊥ in
Eq. (9) is expressed as
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χ⊥ =
e2

~2
kBT

∑

n

1

2π2

√
ab

ν

∫ ∞

−∞
dp⊥

∫ ∞

−∆

dx
(x+∆)2

(x2 + y2)2

{

1− 8x2

x2 + y2
+

8x4

(x2 + y2)2

}

= − e2

~2
kBT

∑

n

1

2π2

√
ab

ν

∫ ∞

−∞
dp⊥

∆

3(∆2 + y2)

= − 1

2π2

e2

~2

√
ab

ν

∮

dz

2πi
f(z)

∫ ∞

−∞
dp⊥

∆

3(z2 − p2⊥ −∆2)

=
1

2π2

e2

~2

√
ab

ν

∫ ∞

−∞
dp⊥

∆

6ǫz
{f(ǫz)− f(−ǫz)} ,

(A1)

where x = p2 − ∆, y2 = −(iǫn + µ)2 + p2⊥, ǫz =
√

∆2 + p2⊥, and f(z) is Fermi distribution function defined by

f(z) = 1/(e(z−µ)/kBT + 1), respectively. At T = 0, the p⊥-integral leads to Eq. (11).
Similarly, the susceptibility of χ‖ is calculated as

χ‖ =
e2

~2
kBT

∑

n

ν

2π2

√

a

b

∫ ∞

−∞
dp⊥

∫ ∞

−∆

dx
x+∆

(x2 + y2)2

{

−1 +
8x2p2⊥

(x2 + y2)2

}

=
e2

~2
kBT

∑

n

ν

2π2

√

a

b

∫ ∞

−∞
dp⊥

{

−y2 − p2⊥
2y4

+
p2⊥(y

2 −∆2)

6y2(∆2 + y2)2
+

∆(y2 − p2⊥)

2y4

∫ ∞

∆

dx

x2 + y2
− π∆(y2 − p2⊥)

2y5

}

.

(A2)

The last term of Eq. (A2) becomes

χ′ ≡ − e2

~2
kBT

∑

n

ν

2π2

√

a

b

∫ ∞

−∞
dp⊥

π∆(y2 − p2⊥)

2y5

= − e2

~2
kBT

∑

n

ν

2π2

√

a

b

2π

3

∆

ǫ2n

= − 1

3π

e2

~2
ν

√

a

b

∮

dz

2πi
f(z)

∆

z2

=
ν∆

3π

e2

~2

√

b

a
f ′(0). (A3)

At T = 0, χ′ gives a δ-function singularity because f ′(0) = −δ(µ).
The remaining terms of Eq. (A2) can be integrated as

χ‖ − χ′ =
1

2π2

e2

~2
ν

√

a

b

∫ ∞

−∞
dp⊥

∑

±





p2⊥f
′(±ǫz)

12ǫ2z
∓ p2⊥(ǫ

2
z +∆2)f(±ǫz)

12ǫ3z∆
2

±∆

∫ ∞

∆

dx

√

x2 + p2⊥f
(

±
√

x2 + p2⊥

)

4x4





=
1

24π2

e2

~2
ν

√

a

b

∫ ∞

−∞
dp⊥

[

ǫz
∆2

{−f(ǫz) + f(−ǫz)}+ 3∆

∫ ∞

∆

dx

√

x2 + p2⊥
x4

{

f

(

√

x2 + p2⊥

)

− f

(

−
√

x2 + p2⊥

)}

]

.

(A4)

At T = 0, the p⊥- and x-integral lead to Eq. (12).

Appendix B: Matsubara summation for the finite scattering rate case

We calculate the Hall conductivity in Eqs. (16) and (17) at finite Γ numerically. The Matsubara summation is
evaluated by transforming the summation to an integral using the Fermi distribution function [75, 77].

σ⊥
xy = 2

|e|3B
~2V

∑

k

32a2bk2xRe

[
∫

dε

2πi
f ′(ε)Ak

(

1

2D2
R

+
2A2

k

3D3
R

− ε2 + Γ2 +A2
k −B2

k

D2
RDA

)]

,

σ‖
xy = 2

|e|3B
~2V

∑

k

16a2k2xν
2Re

[
∫

dε

2πi
f ′(ε)

(

1

2D2
R

+
2A2

k

3D3
R

− ε2 + Γ2 +A2
k −B2

k

D2
RDA

)]

,

(B1)
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where DR = (ε+ iΓ)2 −A2
k −B2

k and DA = (ε− iΓ)2 −A2
k −B2

k

At zero temperature the integration can be done analytically using f ′(ε) = −δ(ε − µ). Then we use cylindrical
coordinates and integrate the azimuth variable analytically. For the remaining two integrals we make the expressions
dimensionless and get

σxy⊥ = σu
b∆

ν2
I⊥(µ̃, Γ̃), σxy‖ = σuI‖(µ̃, Γ̃), (B2)

where Γ̃ = Γ/∆, µ̃ = µ/∆, and

I⊥ = − 64

3π2
µ̃Γ̃5

∞
∫

−1

dK

∞
∫

−∞

dk
g‖(µ̃, Γ̃,K, k)

h(µ̃, Γ̃,K, k)
, (B3)

I‖ = − 32

3π2
µ̃Γ̃5

∞
∫

−1

dK

∞
∫

−∞

dk
g⊥(µ̃, Γ̃,K, k)

h(µ̃, Γ̃,K, k)
, (B4)

g⊥ = K(K + 1)

[

3
(

k2 +K2 + Γ̃2
)2

+ 2
(

−3k2 + 5K2 + 3Γ̃2
)

µ̃2 + 3µ̃4

]

,

g‖ = g⊥/K

h =

[

(

k2 +K2 + Γ̃2
)2

− 2
(

k2 +K2 − Γ̃2
)

µ̃2 + µ̃4

]3

, (B5)

with K = x/∆ and k = p⊥/∆.

Note that the same expression can be achieved start-
ing from Eq. (17). The matrix elements of the velocity
operators can be expressed as

Tr [γxQaγyQbγxQcγyQd] , (B6)

where Qa are the projection operators of the Hamilto-
nian. The projection operators can be calculated using
the Frobenius covariant [78, 79]:

Qa =
∏

b
a 6=b

H − Eb

Ea − Eb
. (B7)

In the present model there are only two bands with ±ǫk.

Appendix C: Detailed field angle dependence for
the finite scattering rate case

Also for the Hall conductivity for the finite scattering
rate case, we find that the sinφ cosφ proportional term
vanishes in the integral and thus the Hall conductivity
becomes

σxy = σxy⊥ cos2 φ+ σxy‖ sin
2 φ. (C1)

Figure 7 shows the obtained Hall conductivity as a func-
tion of chemical potential µ for some choices of the angle
φ (φ = π

2 ,
5π
12 , · · · , π

12 , 0) and for three scattering rates
(a) Γ = 0.1, (b) Γ = 0.05, and (c) Γ = 0.01. The corre-
sponding nodal line orientations are shown in the right.
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