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We generalize the family of approximate Momentum Average (MA) methods to formulate a
numerically exact, convergent hierarchy of equations whose solution provides an efficient algorithm to
compute the Green’s function of a particle dressed by bosons, suitable in the entire parameter regime.
We use this approach to extract ground state properties and spectral functions. Our approximation-
free framework, dubbed the Generalized Green’s function Cluster Expansion (GCCE), allows access
to exact numerical results in the extreme adiabatic limit, where many standard methods struggle or
completely fail. We showcase the performance of the method, specializing to three important models
of charge-boson coupling in solids and molecular complexes: the molecular Holstein model, which
describes coupling between charge density and local distortions, the Peierls model, which describes
modulation of charge hopping due to inter-site distortions, and a more complex Holstein+Peierls
system with couplings to two different phonon modes, paradigmatic of charge-lattice interactions
in organic crystals. The GGCE serves as an efficient approach that can be systematically extended
to different physical scenarios, thus providing a tool to model the frequency-dependence of dressed
particles in realistic settings.

I. INTRODUCTION

The interaction of a particle with its environment is
central to the study of many physical systems. One
classic problem of this type is that of the polaron,
which describes a mobile carrier dressed by bosonic
fluctuations.1 Originally predicted by Landau,2 expanded
upon by Pekar3,4 and cemented into condensed matter
canon by Lee, Low and Pines,5 Fröhlich, Pelzer and
Zienau,6,7 Feynman,8 and Holstein,9,10 a polaron forms
when a particle such as an electron or hole moves in
a deformable medium. The motion of the particle in-
duces a local polarization cloud, which is dragged along
with the particle as it moves, renormalizing its effective
mass and yielding a non-zero quasiparticle weight. Po-
larons arise in a variety of physical contexts beyond that
of electron-phonon systems,11 such as excitons in pho-
toexcited molecular crystals,12–15 hole-doped magnets,16

light-matter systems,17–19 impurities embedded in ul-
tracold gases20–23 and in other more exotic physical
settings.24–26

Over the last two and a half decades, many
(in principle) exact numerical methods have been
devised to study polaronic problems. One can
broadly classify these approaches into two main cate-
gories: real- and imaginary-frequency methods. Ap-
proaches in the former class include Variational Ex-
act Diagonalization,27 and its variants,28,29 Limited
Phonon Basis Exact Diagonalization30 and Matrix-
Product-State techniques.31–34 Methods in the latter
class are most prominently Monte Carlo methods, such
as Diagrammatic,,35–37 Path-integral38 and Continuous-
time39 Monte Carlo. While Monte Carlo techniques are
well suited for the study of finite-temperature systems
over the complete range of polaronic model parameters,
they require ill-conditioned analytic continuation to the

real-frequency axis in order to study dynamics.40 In con-
trast, direct real-time methods face a daunting challenge
in several parameter regimes, including the so-called adi-
abatic limit where the lattice response is slow, as well as
the strong-coupling limit, where a large number of bosons
is excited in the system and the size of basis states be-
comes too large to efficiently manage.

In this work, we introduce the Generalized Green’s
function Cluster Expansion (GGCE), a non-perturbative
approach that enables an exact, efficient numerical com-
putation of real-frequency Green’s functions of pola-
ronic models even in regimes challenging for related
real-frequency approaches. We restrict ourselves to the
limiting case of a single carrier in an otherwise unoc-
cupied band,1,41 reserving an attempt to formulate a
cluster expansion approach for the real-frequency prop-
erties of polaron models at finite concentrations42 for
future work. In particular, we show that the GGCE
provides access to exact spectra in the portions of
the adiabatic and strong-coupling limits inaccessible to
more standard Variational Exact Diagonalization ap-
proaches, while converging more rapidly in accessible
regimes. Our method builds on the Momentum Average
(MA) Approximation,43 proposed by Berciu in 2006,44

which has since been adapted to describe realistic ma-
terials.45,46 Our procedure is applicable to any form of
particle-boson coupling, and proceeds via efficient gener-
ation of an equation of motion (EOM) in orders of the
spatial extent of bosonic clusters that arise in the dy-
namics. We show that this approach variationally recov-
ers the exact infinite boson Hilbert space, provided that
one converges the computation with respect to the clus-
ter size, and we find that this is achieved with a high
level of efficiency when compared against standard nu-
merical approaches, even in the adiabatic limit. In ad-
dition to providing access to quasiparticle spectra over
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a wide frequency range, the GGCE comes with several
strengths. In particular, it is formulated in the infinite
system size limit, and thus provides access to exact spec-
tra in the thermodynamic regime. It affords sufficient
flexibility that permits extensions to finite-ranged models
at finite temperatures and in higher dimensions, as well
as to studies of bipolarons, and systems with different
boundary conditions. Additionally, it allows the study
of dynamics of non-equilibrium initial states. Lastly,
since existing linear algebra solvers represent the only
computational bottleneck in the approach, the GGCE
serves as an easy-to-implement, methodologically uncon-
strained technique whose performance is limited only by
access to computational resources such as large-scale par-
allel computing or GPU technology.

Our manuscript is organized as follows. In Section II,
we review the foundations of the MA methods and de-
vise a generalized formalism we use in the GCCE ap-
proach (Subsection II.A). We briefly discuss our compu-
tational implementation of the method (Subsection II.B)
and highlight the relationship to and differences between
our and other methods (Subsection II.C). In Section III,
we demonstrate the power and scope of this implementa-
tion and present a combination of numerically exact and
quasi-converged results on the Holstein,9,10 Peierls47–50

and mixed-boson mode Holstein+Peierls51 models. Fi-
nally, in Section IV, we conclude and discuss possible
future work.

II. METHODOLOGY AND GENERAL
CONSIDERATIONS

Consider a mobile particle (e.g. electron, hole, etc.)
coupled to a bosonic field

Ĥ =
∑
k

εkĉ
†
kĉk +

∑
q

~Ωqb̂
†
qb̂q

+
∑
k,q

g(k,q)ĉ†k+qĉk(b̂†−q + b̂q). (1)

Here, the carrier (boson) has dispersion εk (~Ωq), and

the interaction V̂ contains a vertex g(k,q) that in general
depends on both k and q. We use a compact notation

∑
k

to imply a discrete sum for a problem formulated on the

lattice or a d-dimensional integral ld

(2π)d

∫
ddk with ld the

system volume for a problem in the continuum.
The goal of our approach is to derive the EOM of the

one-electron Green’s function at zero temperature,1

G(k, ω) = 〈0|ĉkĜ(ω)ĉ†k|0〉 . (2)

For Hamiltonians of the form in Eq. (1), only the retarded
component of G(k, t) contributes,44 and the propagator,
in real frequency, takes the form

Ĝ(ω) =
[
ω − Ĥ + iη

]−1

, (3)

where η = 0+ is an artificial broadening parameter. Re-
peated application of Dyson’s equation,

Ĝ(ω) = Ĝ0(ω) + Ĝ(ω)V̂ Ĝ0(ω), (4)

with Ĥ0 = Ĥ − V̂ yields an infinite hierarchy of
equations,52 which we compute in the basis states |k, n〉 ,
labeling a delocalized state of the carrier with definite
momentum quantum number k in the presence of n
bosons in the system. The first application of Dyson’s
equation yields

G(k, ω) = G0(k, ω)
[
1 + 〈0|ĉkĜ(ω)V̂ ĉ†k|0〉

]
, (5)

and the second gives

〈0|ĉkĜ(ω)V̂ ĉ†k|0〉 = 〈0|ĉkĜ(ω)V̂ Ĝ0(ω)V̂ ĉ†k|0〉 , (6)

where Ĝ0(ω) is the free particle propagator, and

Ĝ0(ω) |k, n〉 = G0(k, ω − n~Ω) |k, n〉 . (7)

Note this expansion can be indexed by the number of
bosons contained in the created states. A coupling V̂ that
is linear in boson operators either creates or annihilates a
boson, thus coupling states with n bosons to states with
n± 1 bosons.

A key development made by Berciu44,53 is to recast the
EOM as a hierarchical “expansion” in orders of the spa-
tial extent of the bosonic cloud, M , rather than treating
it as a direct expansion in the number of bosons. Making
use of the spatial structure of the Green’s functions gen-
erated through repeated application of Dyson’s identity
allows one to derive a scheme in which states correspond-
ing to clouds larger than a certain spatial extent M are
excluded. To illustrate the idea, consider the example
of M = 2. At this level of approximation, only states
with bosons localized on single and first-neighbor sites
are retained in the hierarchy. Note that this imposes no
restriction on the distance between the carrier and the
boson cloud. We can view this approximation as a vari-
ational ansatz in the space of Green’s functions in which
one allows the carrier anywhere in the system, but with
bosons clustered in a cloud of a maximum length M.

Before delving into the details, we provide a brief sum-
mary of the convergence parameter space employed in
our method. As discussed above, M indexes the max-
imum extent (in units of lattice sites) of the bosonic
cloud contained in the set of linear equations generated
through repeated application of Dyson’s identity. Any
equation in the closure must have cloud extent L such
that 0 ≤ L ≤M. The total number of bosons, N, allowed
in any cloud provides a second convergence parameter.
Similarly to M, only equations with a total number of
bosons 0 ≤ nT ≤ N are allowed. An example of the con-
figuration of a single auxiliary Green’s function (AGF),
a Green’s function describing the overlap between the
single carrier and a configuration of the single carrier +
some boson distribution, is given in Fig. 1. Converging
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FIG. 1. Cartoon of a L = 4, n = [2, 0, 0, 3] boson cloud
(blue), such that nT = 5, contained within a variational space
specified by a maximum cloud extent M = 5 and maximum
number of bosons N = 6. In this example, the constraint
M = 5 spans sites i− 1 to i+ 4 so that bosons can be created
only on these sites (e.g., green circles), and are not allowed
outside of the M -site cloud (e.g., red circle). N = 6 implies
that states with two more bosons that those depicted in the
figure (blue circles) are omitted from the variational space.
Note that the carrier (not shown) is allowed to be anywhere
on the chain.

M and N in numerical calculations allows us to approach
the infinite Hilbert space limit.

Below, we detail the approach we use to construct and
solve the linear system of equations in the EOM. Specif-
ically, in Subsection II.A we derive a generalized expres-
sion for G(k, ω) for arbitrary models. Then, in Subsec-
tion II.B, we explain how to systematically generate and
solve the system of equations in computer simulations.
Finally, in Subsection II.C, we discuss the relation of the
GGCE to other methods.

II.A. A Generalized Equation of Motion

We now specialize our construction to the case of one-
dimensional (1D) lattice models described by Hamiltoni-
ans of the form

Ĥ = −t
∑
〈ij〉

ĉ†i ĉj + Ω
∑
i

b̂†i b̂i + V̂ , (8)

where 〈ij〉 denotes nearest neighbors, for which numerical
results are available, t is the hopping amplitude and Ω is
the frequency of dispersionless Einstein phonons. This
1D Hamiltonian allows us to both benchmark GGCE
against exact numerics and to tackle regimes that are
typically difficult to study or inaccessible by related tech-
niques even in the well-studied 1D limit. In what follows
we set ~ = 1 and the lattice constant a = 1.

Beginning with Eq. (5), we derive a generalized EOM
(GEOM). Here the free particle Green’s function is given
by

G0(k, ω) = [ω − εk + iη]
−1
, (9)

with free particle dispersion εk = −2t cos k.
Consider a generalized representation of V̂ for mod-

els that describe coupling between a carrier and a single

bosonic mode,

V̂ =
∑

(g,ψ,φ,ξ)

g
∑
i

ĉ†i ĉi+ψ b̂
ξ
i+φ. (10)

Here g is the coupling constant, ψ, φ ∈ Z encode the
spatial dependence of the coupling, and ξ = {−,+} la-
bels bosonic operators as either annihilation (b− ≡ b) or
creation (b+ ≡ b†). Specifically, ψ is an integer that in-
dexes the structure of the carrier hopping in the coupling
term, and φ is an integer that determines at which site
relative to i (the site the fermion hops to) a phonon is
created. This generalized notation completely specifies
V̂ for a given arbitary finite-ranged model. We present
examples of such models in Appendix B. For clarity, let
us specialize to the Holstein model as an example:

V̂H = α
∑
i

ĉ†i ĉi(b̂
†
i + b̂i) (11)

can be represented in this notation as follows

V̂H = α
∑
i

ĉ†i ĉib̂
†
i + α

∑
i

ĉ†i ĉib̂i

↔ {(α, 0, 0,+), (α, 0, 0,−)}.
(12)

We allow for an arbitrary but finite number of interaction
terms, which need not be equal and can thus be used to
model, for example, a long-ranged coupling of a carrier
to a bosonic mode.

Using Eq. (5), we arrive at the GEOM for G(k, ω),

f0(0) = G0(k, ω)

1 +
∑

(g,ψ,φ,ξ)

geikRψ−φf1(φ)

 . (13)

Here, we have defined an AGF44,54 given by

fn(δ) = N−1/2
∑
i

eikRi 〈0|ĉkĜ(ω)ĉ†i−δ b̂
†n
i |0〉 , (14)

where N is the number of lattice sites, Rm ≡ m and
fn(δ) ≡ fn(k, δ, ω). The AGFs can be thought of as
higher-order propagators of an electron in a spatial cloud
composed of multiple bosonic excitations. Further, we
note the identity f0(δ) = eikRδG(k, ω), c.f. Eq. (14).

It is now necessary to introduce additional notation
for describing how AGFs with greater than zero phonons
couple. Since bosons can in general be created anywhere
on the lattice, we define an occupation number vector
n, which labels the number of boson excitations start-
ing from site i on a cloud embedded within the infinite
lattice,

n ≡ [n(i), n(i+1), ..., n(i+L−1)], (15)

where L ≤ M is the length of n. This vector serves as a
device for labeling the bosonic Hilbert space in the follow-

ing way: n↔ B†i,n |0〉 , where B†i,n ≡ b̂†n0

i b̂†n1

i+1 · · · b̂
†nL−1

i+L−1.
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This allows us to write a generalized version of Eq. (14),
where n becomes a vector,

fn(δ) = N−1/2
∑
i

eikRi 〈0|ĉkĜ(ω)ĉ†i−δB̂
†
i,n|0〉 . (16)

Upon Fourier transforming to reciprocal space and sub-
stituting Dyson’s equation, we obtain

fn(δ) = N−1
∑
i

eikRi
∑
q

e−iqRi−δG0(q, ω − nTΩ)

× 〈0|ĉkĜ(ω)V̂ ĉ†qB̂
†
i,n|0〉 , (17)

where nT is the total number of bosons in the config-
uration labeled by n. Here we used the fact that when

nT > 0, 〈0|ĉkĜ0(ω)ĉ†qB̂
†
i,n|0〉 = 0. Defining ω̃ ≡ ω− nTΩ

and adopting a combined real/momentum-space repre-
sentation, we have

fn(δ) = N−3/2
∑
i

eikRi
∑
q

e−iqRi−δG0(q, ω̃)

×
∑
m

eiqRm 〈0|ĉkĜ(ω)V̂ ĉ†mB̂
†
i,n|0〉 . (18)

The goal of the procedure is to extract a relationship
between AGFs with nT and nT ± 1 bosons. This de-
pends on the specific form of V̂ . It is thus advantageous
to express V̂ as defined in Eq. (10) to obtain

V̂ ĉ†mB̂
†
i,n |0〉 =

∑
(g,ψ,φ,ξ)

g
∑
j

ĉ†j b̂
ξ
j+φB̂

†
i,n |0〉 δm,j+ψ. (19)

Consider the case when ξ = −, implying the boson op-
erator removes a boson from site j + φ. Such a pro-
cess can only have a non-zero contribution when a bo-
son is removed from an occupied site, and the domain

of sites where b̂j+φ can act in general is j + φ − i ∈
Γ−L = {0, 1, ..., L − 1}. In this case, an extra prefac-
tor appears due to the boson commutation relations,

b̂j b̂
†m
i = b̂†mi b̂j +mδij b̂

†m−1
i .

Up until now, this derivation has been exact. We now
impose a limit on the maximum cloud extent, M, re-
stricting the cluster of sites where bosons can be cre-
ated to at most M connected sites, which are occupied
with up to N bosons.55 Thus, when ξ = +, we have
j + φ − i ∈ Γ+

L = {L − M,L − M + 1, ...,M − 1}.
This restriction requires that we replace the sum over
j with a sum over the elements of the aforementioned
set:

∑
j →

∑
γ∈ΓξL

.

To continue the derivation of the EOM, we introduce

the notation: B̂
(ξ,γ)†
i,n |0〉 as the state B̂†i,n |0〉 with an extra

boson created (ξ = +) or destroyed (ξ = −) on site i+ γ
within the permitted variational space specified by the
above restriction. We omit states indexed by n whose
nT > N from the space of AGFs. Fig. 1 demonstrates
the variational space encoded in our notation.

Summing over m and q in Eq. (18) produces the fol-
lowing general form,

fn(δ) =
∑

(g,ψ,φ,ξ)

g
∑
γ∈ΓξL

n(ξ,γ)g0(δ + γ − φ+ ψ, ω̃)

×N−1/2
∑
i

eikRi 〈0|ĉkĜ(ω)ĉ†i+γ−φB̂
(ξ,γ)†
i,n |0〉 , (20)

where n(ξ,γ) is a prefactor associated with applying a
boson creation or annihilation operator: it is equal to 1
if ξ = +, and is equal to the number of bosons on site
i+ γ (before a boson is annihilated) if ξ = −.

Here, the free particle propagator in real space is given
by56

g0(δ, ω) =
1

N
∑
q

eiqRδG0(q, ω)

= −
i
[
−ωη/2t+ i

√
1− (ωη/2t)2

]|δ|
√

4t2 − ω2
η

,

ωη ≡ ω + iη. (21)

Observe that the second line in Eq. (20) is precisely an
AGF with different arguments and with nT → nT ± 1
bosons. Indexing a new AGF in the same manner as
before we have

fn(δ) =
∑

(g,ψ,φ,ξ)

g
∑
γ∈ΓξL

n(ξ,γ)

× g0(δ + γ − φ+ ψ, ω̃)f (ξ,γ)
n (φ− γ). (22)

Finally, we note that in order to abide by our labeling
convention, certain “reduction rules” for the AGFs must
be followed in order to produce a valid closure. When re-

moving or adding bosons, as in the case fn → f
(ξ,γ)
n , addi-

tional phase prefactors may appear. The details of these
rules are summarized in Appendix A (see also Ref. 54 for
a specific example).

II.B. Implementation

Together, Eqs. (13) and (22), along with the rules in
Appendix A, contain all information necessary to solve
for G(k, ω) for some chosen values of M,N. In this sec-
tion, we describe the computational approach for repre-
senting these equations and solving them numerically.

Every possible combination of 1 ≤ n ≤ N bosons on
1 ≤ L ≤ M sites will contribute to the calculation of
G(k, ω). In the first step, we systematically generate all
combinations, noting the only requirement that the first
and last sites for some cloud extent L must be at least
singly occupied. This amounts to symbolically construct-
ing and storing representations of these objects, e.g.

G = {f[0](δ), f[1](δ), f[1,1](δ), f[1,0,2](δ), ...}, (23)
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such that all possible AGFs corresponding to a given con-
figuration are generated. This can be thought of precisely
as the classic combinatorics problem of N indistinguish-
able balls in M distinguishable bins, with the added con-
straint of requiring at least one boson on each end of the
cloud. In this way, the total number of equations gen-
erated at this step (the total number of elements in G,
defined as |G|) has a straightforward representation,

|G| = 1 +

M∑
L=1

N∑
n=1

{
1 if L = 1 or n = 2(
L+n−3
n−2

)
otherwise

, (24)

where the one extra term reflects the first equation in the
set of equations (for G(k, ω)).

The second step consists of finding the values for δ
each function fn requires. Observing that the only δ-
dependence on the RHS of Eq. (22) is contained in g0

(and importantly not in fn), we obtain the full closure
of equations by finding, for every fn, the values of δ pre-
scribed by the indices φ − γ on the RHS. This set is
informally denoted as S, e.g.,

S = {f[0](−1), f[0](0), f[1](−1), ...}. (25)

The terms contained in S are determined by a nontrivial
function of M,N and depend on the model type. Every
term in S is simply a specific case of the LHS of Eq. (22).
To further clarify, the generalized equations in the set G
leave δ unfixed. The equations in the set S fix the allowed
values of δ based on the indices φ− γ. We note this does
not constitute an approximation to the EOM since the
conditions that fix S arise naturally within the hierarchy.

In the final step, we formulate this as a inhomogenous
linear system of equations and aim to find the solution
for all fn(δ) for some values of k, ω,M,N,

Af = b. (26)

Above, A is a matrix of coefficients which can be read
from the aforementioned equations, and b is propor-
tional to the unit vector and inherits the inhomogene-
ity of Eq. (13). This matrix equation can be solved in
one of two ways. The solution for f can be obtained
in a single step, which amounts to applying some direct
solver to the |S| × |S| matrix A. However, this approach
is either inefficient (using a sparse solver) or intractable
using a dense solver due to the large size of A in cases
such as the extreme adiabatic limit. Alternatively, we
find that a continued fraction approach using dense linear
algebra provides the optimal middle ground. Formally,
the continued fractions (here we suppress the M and N
dependence) Vn = An(k, ω)Vn−1 + Bn(k, ω)Vn+1, where
An(k, ω) and Bn(k, ω), are sparse matrices read off di-
rectly from the EOM, and Vn is a vector of AGF’s with
n ≤ N bosons.53,54 The matrix inversions required are
much smaller in this approach, although there are Θ(N)
of them. We note that using this more efficient approach,
the calculations become challenging in our current imple-
mentation only around (M,N) ∼ (10, 7), which produces

∼60k equations. Adding one more boson balloons the
calculation to ∼150k equations, which are in principle
within reach on large supercomputer architectures with
sufficient memory capacity.

To approach the infinite phonon Hilbert space limit
using the continued fraction approach, we set VN+1 = 0,
solving the set of equations until we obtain G(k, ω),
which corresponds to V0. In the N →∞ limit, this repre-
sents a sensible boundary condition because it becomes
energetically expensive to generate clouds with larger
than N bosons. In practice we treat N as a convergence
parameter. All results shown in this work appear to be
converged with respect to N to desirable accuracy, unless
otherwise stated.

II.C. Comparison to Other Methods

1. Comparison to related methods: Momentum Averge
(MA) and Limited Phonon Basis Exact Diagonalization

(LPBED) methods

The GGCE method combines advantages from the
MA and Limited Phonon Basis Exact Diagonalization30

(LPBED) methods. In the MA approach, one makes an
educated guess of the value of M needed to obtain ac-
curate results, in essence employing a variational ansatz
to the EOM. One then derives the EOM in MA(M) an-
alytically “by hand” and solves for G(k, ω) numerically.
LPBED is a more general ED analog of MA, and in prin-
ciple also relies on a variational ansatz, albeit one dif-
ferent from that of MA. Another successful version of
LPBED57 discussed in the literature included clouds of
size M = 5 whilst allowing for two extra bosons any-
where on the lattice even away from the cloud, but with
a more restricted total number of bosons.58

We can roughly view MA and LPBED methods as spe-
cific variational cases of the GGCE, which benefits from
allowing an arbitrary systematic choice of maximal cloud
extent, M, in the N →∞ limit. The GGCE thus serves
as a systematically exact method which allows one to
tailor resources based on the underlying physics of the
problem, and is limited only by computational resources.
This provides the potential to access regimes that are dif-
ficult to quantitatively describe by other approaches, as
we show below.

2. Comparison to Variational Exact Diagonalization
(VED) methods

Variational Exact Diagonalization (VED)27 represents
another class of successful approaches to the polaron
problem. In VED, a variational Hilbert space is iter-
atively generated by applying the off-diagonal parts of
the Hamiltonian to a reference state taken to be a Bloch
state of an electron and zero bosons in an infinite system.
After Nh iterations, one diagonalizes the Hamiltonian in
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the generated basis using standard Lanczos techniques.
Convergence with respect to Nh, when possible, guaran-
tees access to the exact ground state and a small manifold
of low-lying excited states.28 There are at least two main
differences between GGCE and VED.

First, VED naturally imposes a restriction on the dis-
tance between the electron and phonon configurations,
which can be at most ∼ Nh sites (the precise value de-
pends on the coupling), while GGCE (and MA54) in-
cludes states with the electron arbitrarily far away from
the phonon clouds with no restriction (this can be seen

from the application of Ĝ0(ω) in the EOM on states in
AGFs with both an electron and phonons, which moves
the electron arbitrarily in the system without regard to
the location of the bosonic cloud, c.f. Eq. (20)). We note
that VED is capable of describing the ground and low-
lying excited states in the weak- and lower-intermediate
regimes of coupling in the adiabatic limit.27 We suspect
that the restriction on the distance between the electron
and the phonons in VED prohibits access to very strong
couplings in the adiabatic regime and to continuum states
since these are generally delocalized states (see discussion
below). In contrast, as we show below, GGCE can tackle
strong coupling in the adiabatic regime.

Second, GGCE is formulated as an expansion in terms
of cloud sizes, and the computation must be converged
with respect to the cloud size, while VED imposes no
restriction on cloud sizes (a cloud in VED can extend
over, at most, ∼ Nh sites). For example, Nh = 11 im-
plies clouds extended over ∼ 10-11 sites (the exact num-
ber depends on the specific model of the electron-boson
coupling). Such a value of Nh represents a rough lower
bound within what is typically used in VED in the inter-
mediate adiabatic limit. These values imply clouds with
sizes that are much larger than those used in GGCE in
the current work. This suggests that GGCE may benefit
in terms of efficiency by employing a smaller number of
states resulting from smaller clouds without compromis-
ing accuracy. We believe this is a direct result of using an
EOM formulation of propagators, which ensures we keep
only those states generated in the dynamics and nothing
further. Comparing, empirically, to Ref. 27, we note that
the number of states needed in GGCE appears to be two
orders of magnitude smaller than those in VED in order
to achieve convergence in similar parameter regimes.

Finally, we note that other variants of VED with ex-
tra restrictions on the variational space have been used
with great success.28,59,60 These, however, are either not
formulated in a general enough manner to be applied
to a generic form of electron-boson coupling59 or in-
volve further constraints that, while variational, are not
completely motivated physically especially at strong cou-
plings. In contrast, GGCE in its current form follows nat-
urally from the EOM and has no restrictions beyond the
cloud size, which is taken to the infinite limit sequentially
and in an efficient manner. In principle further restric-
tions of this type can be imposed in our GGCE, but we
do not explore this direction in the current manuscript.

The preliminary analysis presented here suggests that
GGCE may perform more favorably than related ap-
proaches, at least in some parameter regimes and for
some quantities. Future work must be devoted to ad-
dress these issues and compare the range of variational
restricted-basis approaches over the full range of param-
eter space for both ground-state energies and spectral
functions to fully access the utility and efficiency of each
approach.

III. RESULTS

In this section, we show results for a variety of 1D
lattice models described by the Hamiltonian defined by
Eqs. (8) and (10). This allows us to both benchmark
GGCE against exact numerics, and to tackle regimes typ-
ically inaccessible even in the well-studied 1D limit. In
what follows, we characterize the interaction strength via
the dimensionless coupling constant

λ = EGS(t = 0)/EGS(α = 0), (27)

which is the ratio of the ground state (GS) energy in the
atomic limit to that in the free particle limit, and the
adiabaticity ratio

Λ = Ω/W, (28)

where W = 4t is the carrier’s bandwidth.
While DMC and other quantum Monte Carlo methods

may access the GS in the adiabatic limit, dynamics are
generally difficult to obtain due to uncertainties associ-
ated with analytical continuation to the real-frequency
axis. We showcase the ability of the GGCE to simulate
dynamics in the low-energy regime for the Holstein9,10

(H) and Peierls (P) (also known as the Su-Schrieffer-
Heeger47) models. Finally, we study an experimentally
motivated mixed Holstein+Peierls (HP) model in which
the carrier couples to two different boson modes, one de-
scribes a Holstein coupling and the other a Peierls cou-
pling.

III.A. Holstein Model

We first consider the prototypical Holstein model9,10

for which

V̂ = α
∑
i

ĉ†i ĉi(b̂
†
i + b̂i), λH ≡ α2/2Ωt. (29)

In Fig. 2, we compute the GS energy of a Holstein po-
laron for Λ ∈ [0.0025, 2.5]. For Ω/t = 0.1 and 0.5, we
compare our results to those obtained via Diagrammatic
Monte Carlo (DMC).61 Not only does GGCE converge
to the exact result for λ ∈ [0, 1.2], but it also yields
slightly lower GS energies than DMC in the strong-
coupling regime λ & 1, although the differences are likely
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FIG. 2. Ground state energy EGS/t as a function of coupling
strength λ = α2/2Ωt for the Holstein model in adiabatic-
ity limits extending from anti- (Λ � 1) to extreme-adiabatic
(Λ � 1). Values for Ω/t are shown in grey, and GGCE results
for Ω/t = 0.1 and 0.5 are compared to DMC data (symbols)
obtained from Ref. 61. Ground state peak locations are con-
verged with respect to N, and generally require ≈ 10 bosons
at small couplings, but up to ≈ 30 at large couplings.

due to statistical errors in DMC.62 Importantly, we are
able to converge our results to the exact limit even at
extremely small Ω/t ∈ [0.01, 0.1] for intermediate cou-
pling strengths λ & 0.5, overcoming previous limitations
of momentum average methods. Beyond demonstrating
GGCE’s ability to simulate the adiabatic limit of mas-
sive bosons, our results show a trend at intermediate cou-
plings of the polaron binding energy |EGS(λ) − EGS(0)|
that monotonically decreases with Ω.

To demonstrate the ability of the GGCE method to
converge spectral functions and probe a broad range of
physical regimes, we present an array of spectral func-
tions in Fig. 3. These results cover all combinations of
Ω/t ∈ {0.1, 0.5}, k ∈ {0, π/2, π} and λ ∈ {0.2, 0.5, 0.8}
and highlight the potential of the method. For example,
in both cases treated in Fig. 3, we find excellent conver-
gence of the ground state peak location and structure.
The first excited state, which for the values of λ consid-
ered, lies in the polaron + one boson continuum, proves
more difficult to converge. Nonetheless, we show reason-
able convergence of this second peak for a wide range of
parameters. However, convergence becomes more chal-
lenging for Ω/t = 0.5 at λ = 0.5, as seen in the second
column of Fig. 3(a), even when using extremely large
cloud sizes (M = 10), and as a result this peak is not
sufficiently converged. Difficulty in resolving excitations
above EGS +Ω is not surprising, since the nature of these
continuum states involves scattering between a delocal-
ized electronic state and an extended cloud of phonons
that is generally not small. As such, a sufficiently large
cloud and therefore a bigger variational space is needed
for convergence. Thus, with increasing computational
resources, convergence of the spectral function proceeds
naturally from low to high energy. This implies that one

can readily achieve convergence of lower-energy states
with much ease.

III.B. Peierls Model

In Fig. 4, we present exact spectral functions of a po-
laron in the Peierls model47,49,50,63 defined by

V̂ = α
∑
〈ij〉

(ĉ†i ĉj + h.c.)(b̂†i + b̂i − b̂†j − b̂j),

λP = 2α2/Ωt, (30)

for a variety of different dimensionless couplings. Al-
though in principle no more difficult than for the case
of the Holstein model, we reserve exploring the extreme-
adiabatic limit (Ω/t� 1) to future work and show results
only for Ω/t = 1.

The Peierls model exhibits distinct polaron physics
when compared with the Holstein model. A Peierls
polaron exhibits a sharp transition from a state with
kGS = 0 to one with kGS 6= 0 for λ > λc(Ω/t),64 while
a Peierls bipolaron exhibits a significantly smaller mass
than its Holstein counterpart65 and can exhibit transi-
tions under certain conditions.66 We observe the transi-
tion to a band minimum at a finite wave vector in Fig. 4
as λ changes from λ = 0.8 to λ = 1, consistent with
Ref. 64. Importantly, we are able to resolve the spec-
trum above the ground state within sufficient accuracy.
The excited states of this model play an important role in
presence of other perturbations, as will become apparent
next.

III.C. Mixed-Boson Mode Holstein + Peierls
Model

We now consider a realistic model applicable to organic
crystals, molecular complexes, etc., in which the charge
carrier couples to both Holstein and Peierls phonon
modes, each with its own frequency.51,67–69 The Hamil-
tonian is given by

Ĥ =− t
∑
〈ij〉

ĉ†i ĉj + ΩH

∑
i

ĥ†i ĥi + ΩP

∑
i

p̂†i p̂i

+ αH

∑
i

ĉ†i ĉi(ĥ
†
i + ĥi)

+ αP

∑
〈ij〉

(ĉ†i ĉj + h.c.)(p̂†i + p̂i − p̂†j − p̂j),

(31)

where ĥi ≡ b̂Hi , p̂i ≡ b̂Pi and the Holstein and Peierls bo-
son operators act on different boson Hilbert spaces. We
note that the combinatorics of multi-phonon models re-
quire vastly more resources than single mode cases. Here,
λH = α2

H/2ΩHt and λP = 2α2
P/ΩPt, as before.

First, we detail the differences between this HP model
and that presented in Ref. 70. The latter model rep-
resents a toy model of a carrier coupled to one boson
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FIG. 3. Spectral function A(k, ω) at k = 0, π/2 and π for the Holstein model in (a) the mildly adiatabic (Ω/t = 0.5) and (b)
adiabatic limits (Ω/t = 0.1), for dimensionless couplings λ = 0.2, 0.5 and 0.8. In this figure we use η = 0.005. Various values of
(M,N) are shown in the legend. Specifically, the gradient from red to black shows convergence with respect to M for fixed N.
We demonstrate convergence with respect to N via the blue line, which shows results that use the largest used M, but with
one less boson than the largest-used N. The onset of the continuum is shown in shaded gray, and is defined as EGS + Ω, where
EGS is the polaron ground-state energy.

type, with two coupling contributions: diagonal (Hol-
stein) and off-diagonal (Peierls). Computations for this
type of model possess the same scaling complexity as
that for H or P models, making it much easier to con-
verge. However, a realistic calculation requires modeling
couplings to multiple phonon modes, typically of vastly
different energies, characteristic of experimental systems.

A straightforward generalization of our implementation
allows us to treat the boson modes as explicitly distin-
guishable, even when ΩP = ΩH. We simply introduce
two types of bosonic clouds, one for Holstein bosons with
MH and one for Peierls bosons with MP. These can over-
lap, and we thus need an extra variational parameter to
constraint the absolute extent, A, over which the com-
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FIG. 4. Spectral function A(k, ω) (scaled to a maximum of 1) of the Peierls model for Ω/t = 1, η = 0.05 and various values of
the dimensionless coupling strength, λ. M = 5 and N = 10 used here are sufficient for convergence of the bands on the scale
of the plot. It is worth noting that fine structure in states above the lowest energy band can be resolved on a finer grid and
smaller value of η, although the intensity of these states is at most roughly an order of magnitude smaller than that of the
lowest energy band.

bined clouds extend. We detail this construction in Ap-
pendix C. This approach allows us to explore this more
experimentally relevant model. As previously mentioned,
this comes with the downside of increased computational
complexity. However, as we show below, we are able
to semi-quantitatively converge the lowest-energy band
for reasonably large couplings, and, with modest com-
putational resources, we resolve the spectrum in the ex-
perimentally relevant regime (see Fig. 5), ΩP < ΩH, as
well as in a hypothetical scenario with the frequencies
reversed. This requires modest choices of MH, MP and
A. In Fig. 5), in the more experimentally relevant case,
with ΩH/t = 2.5 and ΩP/t = 0.5, we see a non-negligible
bandwidth and thus significant P-like character, an im-
portant observation for experiment. In our simulations
of this model, we also find interesting behavior in the
second peak in the spectrum involving a minimum away
from k = 0 (not shown), which we leave to a future de-
tailed analysis.

We quantify the ground state convergence as a func-
tion of the individual maximum cloud extents MH,MP,
the absolute cloud extent A, and maximum number of
bosons in the variational space, NH, NP in Fig. 6. This
analysis suggests that an increase of computational re-
sources, within reach on large computers, will permit
complete convergence.

IV. CONCLUSIONS

We have presented an exact, general approach to solv-
ing the EOM of a Green’s function of a particle dressed
by bosons, suitable for treating difficult regimes such as
the adiabatic limit, and have demonstrated the power
of the approach by calculating the polaron ground state
and spectral functions in coupling regimes ranging from
weak to strong, and adiabaticity limits ranging from ex-

FIG. 5. Spectral function A(k,w) (scaled to a maximum of 1)
of the mixed-boson mode Holstein+Peierls model for various
values of ΩH and ΩP, λH = λP = 1, t = 1 and η = 0.05. For
these calculations, we use MH = MP = 3, and a maximum to-
tal cloud length, or absolute extent, A = 3 (see Appendix C),
and NH = NP = 5, for which semi-quantitive convergence is
achieved.

FIG. 6. Convergence of the energy of the ground-state po-
laron band, EP(k), for parameters shown in Fig. 5 against
combinations of MH,MP, A,NH and NP.
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treme anti-adiabatic to extreme adiabatic. We note that
at large couplings, the GGCE achieves ground state en-
ergies in agreement with DMC (Fig. 2), without the in-
troduction of stochastic error. Exact simulated spectra
for Λ� 1 are, in general, difficult to achieve with Monte
Carlo methods due to the reliance on analytic contin-
uation, and inaccessible to most Exact Diagonalization
methods due to the large basis size needed for conver-
gence.

We emphasize the success achieved by the MA method
in characterizing polarons and bipolarons in various sys-
tems under different physical conditions of experimen-
tal relevance. In most of these cases, verification of the
accuracy of the method against an exact approach was
needed to justify a posteriori its utility and potential
in limits where exact numerics are difficult to obtain,
e.g., in higher dimensional systems. The GGCE method
systematically makes use of the MA hierarchy, result-
ing in an exact yet efficient approach, and a new physi-
cally motivated expansion in orders of the boson cluster
size, thus expanding the horizon of possibilities in char-
acterizing dressed quasiparticles in previously challeng-
ing regimes. Finally, the GGCE computational frame-
work is well-suited for future practical extensions, includ-
ing higher-dimensional systems, finite-temperature stud-
ies, the computation of observables connected to higher-
order Green’s functions, such as optical spectra and po-
laron mobilities,,71 as well as studies of the dynamics of
bipolarons,72 and in other contexts we plan to address in
future work.
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Appendix A: Reduction Rules for AGFs

In this Appendix, we detail the reduction rules the
AGFs follow in order to produce a valid EOM.

Annihilating or creating a boson to the right of the last
occupied site does not come with any additional rule for
re-indexing:

f[n,n′,...,n′′,0,...,0,1](δ)
b̂→ f[n,n′,...,n′′,0,...,0](δ)

= f[n,n′,...,n′′](δ), (A1)

f[n,n′,...,n′′](δ)
b̂†→ f[n,n′,...,n′′,0,...,0,1](δ)

= f[n,n′,...,n′′,0,...,0,1](δ), (A2)

where here n, n′′ > 0.
However, when creating or annihilating a boson to the

left of the first occupied site on the chain, we must re-
index the state such that the label i always references the
first occupied site:

f[1,0,...,0,n,n′,...,n′′](δ)
b̂→ f[0,...,0,n,n′,...,n′′](δ)

→ e−ikRzf[n,n′,...,n′′](δ + z), (A3)

f[n,n′,...,n′′](δ)
b̂†→ f[1,0,...,0,n,n′,...,n′′](δ)

→ eikRzf[1,0,...,0,n,n′,...,n′′](δ − z), (A4)

where z is the number of shifted sites i→ i±1→ i±2, ...
in the phase incurred.

Appendix B: Examples of the Generalized Notation
Used in Eq. (10)

In this work, we considered H, P and HP models,
each of which have different carrier-boson couplings, V̂ .
Within the framework of the GGCE, these differences
amount to a simple change in input parameters. The
fully expanded coupling terms V̂ , and their representa-
tion in terms of the notation defined in Eq. (10), are
shown here. We present the three models used and ref-
erence the derivation as performed in Section II. First,
recall that the vectors which represent the coupling are
notated as (g, ψ, φ, ξ).

In the H model, this notation translates to

V̂H = α
∑
i

ĉ†i ĉib̂
†
i︸ ︷︷ ︸

(α,0,0,+)

+α
∑
i

ĉ†i ĉib̂i︸ ︷︷ ︸
(α,0,0,−)

. (B1)
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In the P model, we have

V̂P = α
∑
i

ĉ†i ĉi+1b̂
†
i︸ ︷︷ ︸

(α,1,0,+)

+α
∑
i

ĉ†i ĉi+1b̂i︸ ︷︷ ︸
(α,1,0,−)

−α
∑
i

ĉ†i ĉi+1b̂
†
i+1︸ ︷︷ ︸

(−α,1,1,+)

−α
∑
i

ĉ†i ĉi+1b̂i+1︸ ︷︷ ︸
(−α,1,1,−)

+ α
∑
i

ĉ†i ĉi−1b̂
†
i−1︸ ︷︷ ︸

(α,−1,−1,+)

+α
∑
i

ĉ†i ĉi−1b̂i−1︸ ︷︷ ︸
(α,−1,−1,−)

−α
∑
i

ĉ†i ĉi−1b̂
†
i︸ ︷︷ ︸

(−α,−1,0,+)

−α
∑
i

ĉ†i ĉi−1b̂i︸ ︷︷ ︸
(−α,−1,0,−)

.

(B2)

The case of the HP model is a bit more elaborate, since

the model involves different boson operators: ĥi ≡ b̂
(ΩH)
i

and p̂i ≡ b̂(ΩP)
i . Thus, we have

V̂HP = αH

∑
i

ĉ†i ĉiĥ
†
i︸ ︷︷ ︸

(αH,0,0,+)

+αH

∑
i

ĉ†i ĉiĥi︸ ︷︷ ︸
(αH,0,0,−)

+ αP

∑
i

ĉ†i ĉi+1p̂
†
i︸ ︷︷ ︸

(αP,1,0,+)

+αP

∑
i

ĉ†i ĉi+1p̂i︸ ︷︷ ︸
(αP,1,0,−)

−αP

∑
i

ĉ†i ĉi+1p̂
†
i+1︸ ︷︷ ︸

(−αP,1,1,+)

−αP

∑
i

ĉ†i ĉi+1p̂i+1︸ ︷︷ ︸
(−αP,1,1,−)

+ αP

∑
i

ĉ†i ĉi−1p̂
†
i−1︸ ︷︷ ︸

(αP,−1,−1,+)

+αP

∑
i

ĉ†i ĉi−1p̂i−1︸ ︷︷ ︸
(αP,−1,−1,−)

−αP

∑
i

ĉ†i ĉi−1p̂
†
i︸ ︷︷ ︸

(−αP,−1,0,+)

−αP

∑
i

ĉ†i ĉi−1p̂i︸ ︷︷ ︸
(−αP,−1,0,−)

.

(B3)

Appendix C: Additional Notation for Mixed-Boson
Mode HP Models

In Subsection III.C, and specifically Fig. 5, we intro-
duced new notation required to define the configuration
space of the HP model. First, the occupation number
vector n is now a two-row matrix, n, where as usual the
columns index the site index starting with i, and the
two rows correspond to the occupation numbers of the
Holstein and Peierls bosons. For clarity, we label the
first row nH and the second nP. The logic presented in
Section II still applies in for the HP model: V̂ can still
create or destroy only a single boson at a time, B̂i,n and
corresponding objects now reference both sets of boson
occupation numbers (and boson operators now carry a

boson-type index), ω̃ ≡ ω − ΩH

∑
j n

(j)
H − ΩP

∑
j n

(j)
P ,

etc. As before, the left-most occupied site is still the an-
chor for the entire cloud, and thus the same reduction
rules in Appendix A apply.

In terms of the configuration space, we now limit the
maximum number of Holstein and Peierls bosons individ-
ually, using NH and NP, respectively, and the extent of
the clouds individually, using MH and MP, respectively.
Given there are now two “overlapping” clouds of bosons
which live in different Hilbert spaces, we must define yet
another configuration space parameter, which we call the
absolute extent, A. This is the maximum extent of the
cloud measured from the site index of the left-most boson
to the site index of the right-most boson, regardless of bo-
son type. Note that we converged results in Fig. 5 with
respect to A as well as the other four convergence pa-
rameters. We present an exemplary configuration space
in Fig. 7 to further highlight the aforementioned defini-
tions.

FIG. 7. Example of a configuration of HP bosons corre-
sponding to nH = [1, 0, 2, 1, 0] and nP = [0, 0, 1, 3, 1]. Similar

to the single boson models, we require that
∑

j n
(j)
H ≤ NH,∑

j n
(j)
P ≤ NP, LH ≤MH, LP ≤MP and L ≤ A.
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