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Motivated by experimental observations, Samajdar et al. [Nature Physics 15, 1290 (2019)] have
proposed that the insulating Néel state in the parent compounds of the cuprates is proximate to a
quantum phase transition to a state in which Néel order coexists with semion topological order. We
study the manner in which proximity to this transition can make the phonons chiral, by inducing a
significant phonon Hall viscosity. We describe the spinon-phonon coupling in a lattice spinon model
coupled to a strain field, and also using a general continuum theory constrained only by symmetry.
We find a nonanalytic Hall viscosity across the transition, with a divergent second derivative at zero
temperature.

I. INTRODUCTION

Quantum spin liquids (QSLs) are exotic phases of mat-
ter arising from highly correlated spins with frustrated in-
teractions, in which zero-point fluctuations are so strong
that spin ordering is prevented even down to zero tem-
perature [1, 2]. QSLs often host a wide variety of col-
lective phenomena, including topological degeneracy and
long-range entanglement [3–6] that make them ideal for
theoretical study. Most remarkably, QSLs are charac-
terized by nonlocal fractionalized excitations [7], such as
charge-neutral “spinons” coupled to emergent gauge fields
[8]. The spinons can be either gapped or gapless and may
be bosons or fermions, depending on the scenario [9, 10].

While there have been extensive experimental efforts
towards detection of QSLs, unambiguous evidence re-
mains elusive [11]. The measurement of topological prop-
erties of QSLs is difficult since unlike conventional quasi-
particles, spinons are invisible to local probes. One cur-
rent line of thinking therefore aims to study QSLs by
looking for signatures of fractionalization through the in-
teractions of spinons with other degrees of freedom in the
system.

In this article, we will study the coupling of spinons
to lattice excitations. Specifically, we will be interested
in a response coefficient called the Hall viscosity [12, 13].
Similar to the Hall conductance, the phonon Hall viscos-
ity can appear for phonons coupled to a gapped electronic
system that breaks time-reversal symmetry. The Hall vis-
cosity tensor ηijkl characterizes the system’s viscoelastic
response to a strain deformation as〈

∂H

∂εij

〉
= λijklεkl + ηijklε̇kl, (1)

where εij ≡ (∂iuj+∂jui)/2 is the symmetrized strain ten-
sor, and the time derivative is represented by the dot. In
the presence of C4 symmetry in 2D, there is only one in-
dependent component of the Hall viscosity tensor, ηxxxy
[14]. Contrary to a viscosity that is dissipative, the Hall
viscosity is antisymmetric with respect to the pairs of

indices (ij) and (kl) and hence, nondissipative [15].
The Hall viscosity was first studied in the context of

the quantum Hall effect, in which it was shown to be
proportional to the square of the electron filling density
for integer quantum Hall fluids [13, 16–25]. In these sys-
tems, the Hall viscosity can be calculated as the response
of an appropriate continuum field theory to a variation of
the underlying geometry or spatial metric, gij . This Hall
viscosity, which acts as a Chern-Simons-like term for the
frame field, was termed the gravitational Hall viscosity
in Ref. 20. Instead, our focus will be on the response
of systems of phonons and the resulting phonon Hall vis-
cosity. While the Hall viscosity originates from the chiral
spinons, we use the term phonon Hall viscosity to indi-
cate that the stress tensor is coupled to the lattice acous-
tic phonons instead of a background spatial metric. This
is appropriate because the resulting equations of motion
for the phonons have a corresponding Hall viscosity term.

Theoretically, the phonon Hall viscosity has been
studied for electronic systems and topological insulators
[19, 20, 26–28]. For lattice systems, such as discrete tight-
binding models, there are a priori many different ways
to model the viscoelastic response, including coupling to
a lattice frame field [26] or using momentum polarization
methods [29, 30]. We will adopt a more physical “geo-
metric bond stretching” approach, realizing the strain as
a modification to the tight-binding overlap integrals orig-
inating from the lattice sites being displaced from their
equilibrium positions. This coincides with the approach
of viewing the phonon Hall viscosity as the adiabatic re-
sponse of a system to acoustic phonons [20], analogous
to the Hall conductance. Using the Kubo formula, the
Hall viscosity can also be recognized as a type of Berry
curvature of the ground-state wavefunction.

While a measurement of the Hall viscosity would pro-
vide valuable information for identifying phases with
topological order, it has been difficult to do so in practice.
Nevertheless, it is possible to experimentally detect the
phonon Hall viscosity through other physical quantities
that share the broken symmetries. For example, one such
quantity is the phonon thermal Hall conductivity, which
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can be nonzero only with broken time-reversal and (in-
plane) mirror symmetries. In fact, recent experiments by
Grissonnanche et al. [31] and Boulanger et al. [32] suggest
that chiral phonons are responsible for the large thermal
Hall conductivities measured in the insulating phase of
several cuprate superconductors. A nonzero phonon Hall
viscosity could be a mechanism for intrinsic phonon chi-
rality in these systems. The phonon Hall viscosity leads
to both intrinsic and extrinsic contributions to the ther-
mal Hall conductivity: the intrinsic contribution is dis-
cussed in Section VI, while the extrinsic contribution is
discussed in Ref. 33.

We will study the phonon Hall viscosity induced by lat-
tice strain couplings to a chiral spin liquid on the square
lattice. In particular, we are interested in a spin-liquid
ansatz in which the orbital coupling of the applied mag-
netic field drives the conventional confining Néel insu-
lator to a state with semion topological order [34, 35].
Recent optical experiments by de la Torre et al. [36] in-
dicate the presence of mirror-plane-symmetry breaking
which is compatible with this scenario. In our article,
we will analyze the behavior of the Hall viscosity in both
the lattice tight-binding model and the continuum Dirac
field theory. We find that the above mentioned quantum
phase transition (QPT) in the spinon sector is reflected
by a divergence in the second derivative of the phonon
Hall viscosity.

The rest of the article is organized as follows. We
begin in Sec. II by reviewing the general definition of
the phonon Hall viscosity and linear response theory.
Sec. III introduces the mean-field chiral spin liquid model
on the square lattice. We study the spinon-phonon
interactions in two settings. On the lattice, we con-
sider phonon-fermion coupling by “bond stretching” in
Sec. IV, whereas for the continuum field theory, we cou-
ple phonons and spinons based on symmetry consider-
ations in Sec. V. After commenting on some physical
consequences in Sec. VI, we summarize and discuss our
results in Sec. VII.

II. PHONON HALL VISCOSITY

A. Phonon effective action with broken
time-reversal symmetry

For gapped fermionic systems, the low-energy dynam-
ics of acoustic phonons is captured by an effective action
for u(r), describing the displacement of an atom from
its original location. The effective action obtained by
integrating out the fermionic degrees of freedom is

Z =

∫
Dψ̄DψDu e−S(u,ψ̄,ψ) =

∫
Du e−Seff(u). (2)

In the long-wavelength limit, the phonon effective action
is determined by the mass density ρ and the elastic mod-

uli tensor λijkl,

Seff =
1

2

∫
ddx dt

(
ρu̇j u̇j − λijkl∂iuj∂kul

)
. (3)

For gapless states such as metals, the phonon action
will generally be nonlocal and thus cannot be written
as above.

When time-reversal symmetry is broken, there is an
allowed, nondissipative Hall viscosity term [12, 13, 20]

δS =
1

2

∫
ddx dt ηijkl∂iuj∂ku̇l, (4)

with ηijkl = −ηklij antisymmetric under the exchange of
pairs of indices. The number of independent components
of ηijkl can, in general, be determined using symmetry.
For example, one can show that ηijkl will always van-
ish for a three-dimensional isotropic system. As we are
concerned with phonons in a spin-liquid background, we
will restrict ourselves to d = 2 in the subsequent analysis.
For simplicity, we will also assume C4-rotation symmetry,
though this requirement can easily be relaxed.

Following Ref. 20, we can knead the Hall viscosity in
Eq. (4) into a more convenient form by defining the strain
tensor εij and the vorticity (also called rotation) tensor
θij according to

εij ≡
1

2
(∂iuj + ∂jui), θij ≡

1

2
(∂iuj − ∂jui). (5)

Dropping boundary terms, Eq. (4) can then be rewritten
as

δS = 2

∫
d2x dt

[
ηH
(
εxx − εyy

)
ε̇xy + ηM

(
εxx + εyy

)
θ̇xy

]
.

(6)

Here, we have defined ηH = (ηxxxy + ηxxyx)/2 and ηM =
(ηxxxy − ηxxyx)/2. While boundary terms can modify
surface phonon dispersions for topological insulators and
generate interesting effects such as phonon Faraday ro-
tation [26, 37], we will ignore these phenomena in our
discussion. Finally, it can also be useful to rewrite the
action δS in Eq. (6) directly in terms of the deformation
field u. In that case, there ends up being one effective
Hall viscosity coefficient η ≡ ηxxxy = ηH + ηM ,

δS =

∫
d2x dt

[−η
2

(
∇2uxu̇y −∇2uyu̇x

)]
. (7)

In the calculations hereafter, however, we will follow
Eq. (6) and discuss ηH and ηM separately.

B. Definition as a response function

We can also view the Hall viscosity as a response func-
tion. To begin, we make the adiabatic assumption that
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the time scale of the lattice motion is infinitely slower
than that of the fermions’ motion, so that the electronic
configuration is always in its instantaneous ground state
with respect to its lattice configuration. This implies that
the electronic quasiparticles only couple to phonons that
are well below their energy gap. The lattice deformation
fields u then act to modify the effective hopping terms
in the tight-binding Hamiltonian Ht.b. for the electronic
system and can be treated as external parameters.

In Fourier space, viewing u(q) =
∑
n u(r)eiq·r/

√
L

as parameters in Ht.b., we can first define the two-
component Hall tensor from linear response theory
through the Kubo formula [18, 20]

ηab(q) = lim
ω→0

1

ω

1

Ld

∫
dt eiωt

〈[
∂Ht.b.(t)

∂ua,q
,
∂Ht.b.(0)

∂ub,−q

]〉
,

(8)
where it is clear that the Hall tensor is, by construction,
antisymmetric, i.e., ηab = −ηba. This leads to an effective
action of the form

δS =
1

2

∫
ddq dt

(2π)d
ηab(q)ua(−q, t)u̇b(q, t). (9)

From Eq. (9), we can obtain the Hall viscosity tensor by
taking the appropriate derivatives

ηijkl =
1

2
lim
q→0

∂

∂qi

∂

∂qk
ηjl(q). (10)

III. SPIN LIQUID ANSATZ ON THE SQUARE
LATTICE

Our model of interest, studied in Ref. 34, describes
S = 1/2 antiferromagnets on the square lattice with the
spin Hamiltonian Hspin = H0 +HB , where

H0 =
∑
i<j

JijSi · Sj + · · · , (11a)

HB = Jχ
∑
4

Si · Sj × Sk −
∑
i

BZ · Si. (11b)

H0 describes nearest-neighbor spin interactions and other
possible exchange terms that are invariant under all
spacetime symmetries. HB describes the coupling of the
electrons to an applied magnetic field [38]. The Jχ term
couples to the scalar spin chirality and is induced by the
orbital coupling of the magnetic field to the electrons.
The value of Jχ is proportional to the small magnetic
flux penetrating the square lattice. The second term in
HB is the Zeeman coupling of the magnetic field, with
the electron magnetic moment absorbed in the definition
of BZ . Therefore, the physical magnetic field is included
in our model through both an orbital coupling (Jχ) and
a Zeeman coupling (BZ). While Hspin could, in princi-
ple, also include Dzyaloshinskii-Moriya exchange terms,
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FIG. 1. The mean-field spinon ansatz defined by Eq. (13),
with nearest (t1, black) and second-nearest neighbor (t2, red)
hopping matrix elements. The applied magnetic field in-
duces an orbital coupling it2, and there is a uniform π/2 flux
through each elementary triangle. The inset in the bottom-
right corner illustrates the bottommost red and yellow atoms
with the dx2−y2 orbitals deviating from their equilibrium po-
sitions by u(n) and u(n+x), respectively. The result of this
deviation can be captured by changing the bond length be-
tween the two atoms from the equilibrium length r0 to the
new length r0 + (u(n + x) − u(n)), as discussed further in
Sec. IVA.

we do not consider the effect of spin-orbit interactions
here.

Numerical studies of Hspin on the square [39] and other
lattices [40–46] have found evidence of a chiral spin liquid
phase at small nonzero Jχ, and it was argued in Ref. 34
that near a critical spin liquid, Jχ would be a relevant
perturbation leading to semion topological order. Conse-
quently, one finds an enhanced thermal Hall conductivity
κxy even in the antiferromagnetic Néel state [34] stem-
ming from the discontinuity of the zero-temperature ther-
mal Hall response |∆κxy/T | = (π/6)(k2

B/~) between the
trivial and topological phases [47]. On the other hand,
we will find the phonon Hall viscosity to be continuous
(but nonanalytic) across this QPT.

A. Mean-field theory

We begin our mean-field analysis by considering the
square-lattice Néel state as the confining phase of an
SU(2) gauge theory of fluctuations about a π-flux mean-
field state [35]. Transforming to the parton representa-
tion [48, 49], the spin operator at each site is decomposed
as

Si =
1

2
f†i σfi. (12)

Here, fi ≡ (fi↑, fi↓)
T represents the two-component

fermionic spinon operator while σ denotes the Pauli ma-
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trices. The mapping from the spin-1/2 Hilbert space to
the fermionic one expands the Hilbert space, and we must
impose a single-site occupancy constraint in order to re-
main within the physical Hilbert space. Therefore, the
fermionic band structure of spinons is always constrained
to be at half-filling. Furthermore, Eq. (12) has an SU(2)
gauge redundancy [50, 51] and a full treatment of Hspin

would also require analysis of the SU(2) gauge field asso-
ciated with f [52–54].

In our mean-field treatment, we ignore the SU(2) gauge
fluctuations. Instead, we will be interested in a mean-
field saddle point which breaks this SU(2) gauge symme-
try down to U(1) [3, 55]. Inserting the parton represen-
tation of Si into Hspin and mean-field factorizing while
respecting the spacetime and gauge symmetries, we ob-
tain the spinon Hamiltonian [3, 34, 35, 56, 57]

Ht.b. =−
∑
i<j

(
tijf

†
j fi + t∗ijf

†
i fj

)
− 1

2

∑
i

(BZ + ζiN) · f†i σfi. (13)

Our ansatz for the spinon hopping terms tij is shown
in Fig. 1. The nearest-neighbor hopping terms, t1, arise
from the factorization of the Heisenberg exchange cou-
plings in H0, Eq. (11a). The second nearest-neighbor
hopping terms, ±it2, originate from the scalar spin chi-
rality Jχ in Eq. (11b), and they have the same symmetry
as the orbital coupling of the electrons to an applied mag-
netic field orthogonal to the lattice plane. In particular,
the field-induced couplings t2 break time-reversal and re-
flection symmetries but preserve their composition. We
have also assumed a nonzero Néel orderN , with ζi = ±1
on the two checkerboard sublattices (A/B) of the square
lattice. The Néel order is temperature-dependent in gen-
eral but for simplicity, here, we regard N as fixed. In
order to minimize the energy of the antiferromagnet with
a Zeeman coupling, we take BZ ·N = 0. The Zeeman
coupling along the ẑ-axis originates from the perpendic-
ular applied external field, so N lies in the xy-plane. As
there is no spin-orbit coupling, we will perform a rota-
tion in spin space for convenience, so that BZ ∝ x̂ and
N ∝ ẑ. Eq. (13) can be written in momentum space,
with fk ≡

∑
i e
ik·rifi/

√
L = (fkA↑, fkB↑, fkA↓, fkB↓)

T ,
as

Ht.b. = −
∑
k

f†khkfk, (14)

hk = 2t1 cos(kx)τx − 2t1 sin
(
ky
)
τy

+ 4t2 sin(kx) cos
(
ky
)
τz +

N

2
σzτz +

|BZ |
2

σx, (15)

where the Pauli matrices acting in sublattice and spin
spaces are denoted by (τx, τy, τz) and (σx, σy, σz), re-
spectively.

The mean-field phase diagram for this ansatz is
sketched in Fig. 2. With our choice of a two-site unit

Conventional

Néel order
      Coexisting

Néel and semion

topological order

0.00 0.05 0.10 0.15 0.20
0.0

0.5

1.0

1.5

FIG. 2. The two phases of the spinon mean-field Hamiltonian
Ht.b in Eq. (13) are shown as a function of the second-nearest-
neighbor spinon hopping t2 and the strength of the Zeeman
field |BZ |. Here, we take the Néel order to be N = 0.5ẑ and
measure all energies in units of the nearest-neighbor spinon
hopping t1. As discussed in the main text, both t2 and |BZ |
are assumed to be linear functions of the applied magnetic
field. The red dots show the points for which we plot the
temperature dependence of ηH in Fig. 5(b), and the dashed
green line illustrates the trajectory for which we plot the field
dependence of ηH in Fig. 5(c).

cell, we obtain a total of four spinon bands, which are
half filled. When the net Chern number of the occupied
bands is zero, one obtains a conventional Néel state, and
the theory for the gauge fluctuations will have no Chern-
Simons term, leading to confinement. However, when the
net Chern number of the filled bands is two, we obtain a
state with semion topological order coexisting with the
Néel order. With a fixed Néel order, one can thus move
between the two phases by tuning the orbital (t2) and
Zeeman (BZ) couplings of an applied field. We discuss
this point further in Sec. IVC.

While this specific ansatz may appear to break lattice
symmetries at first sight, the representation Eq. (12) is
invariant under the local gauge transformations

fi → fie
iϑi , tij → tije

i(ϑi−ϑj). (16)

Accordingly, the representation of lattice symmetries can
be supplemented by an appropriate gauge transforma-
tion, and so the spinons f form a projective representa-
tion of the lattice symmetry group, called the projective
symmetry group [3, 55, 58]. With this gauge freedom in
mind, the spinon lattice model Ht.b. in Eq. (13) indeed
preserves all the symmetries of the original spin Hamil-
tonian Hspin, as shown in Ref. 34. We will also consider
the projective symmetries in detail when we analyze the
continuum spinon theory in Sec. V.

In what follows, we consider the total spinon-phonon
action

Stotal = Ssp + Sph + Ssp−ph (17)
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in both the lattice and continuum settings. The first term
in Eq. (17) is obtained from our ansatz Ht.b. in Eq. (13),
while the second term is obtained from the quadratic
phonon action in Eq. (3). On the lattice (Sec. IV) we
deduce the necessary elastic coupling to the fermions,
Ssp−ph, from geometric bond stretching whereas in the
continuum (Sec. V), we will derive the allowed elastic
coupling to the fermions from symmetry considerations.
Our goal will be to integrate out the spinon degrees of
freedom to obtain an effective theory for the acoustic
phonons (see also Fig. 3).

IV. HALL VISCOSITY FROM SPINON
COUPLINGS TO LATTICE STRAIN FIELDS

Given our tight-binding ansatz in Sec. III, we will
model the spinon-phonon coupling through the micro-
scopic deformation of the hopping amplitudes as the
result of lattice strain, i.e, bond stretching. As men-
tioned previously, we assume that the spinons only cou-
ple to low-energy phonons with frequencies well below
the spinon energy gap. There are two equivalent ways
of computing the resulting response to the lattice dis-
tortion by bond stretching. The first is to compute the
one-loop phonon effective action by integrating out the
spinons [shown in Fig. 3(b)]; the second is to use the lin-
ear response formalism and compute the adiabatic Berry
curvature as the result of the variation of the strain field
[20, 26]. We use the first approach here as it more closely
makes contact with our later continuum calculations.

A. Geometric coupling through bond stretching

To introduce the method of geometric bond stretching,
we will consider a generic tight-binding model

Ht.b. =
∑
ij

tijc
†
jci, (18)

where the hopping amplitude tij represents the overlap
integral between the orbitals at site i and site j with bond
length (spatial separation) |r0|. In models with multiple
orbitals with nontrivial symmetry properties, the change
of hopping amplitudes can also have an angular depen-
dence. In our case here, however, Eq. (13) is a model
with only one type of orbital (dx2−y2) on each site of the
square lattice, so, to leading order, the hopping ampli-
tude only depends on the distance between the two sites.
Following the approach of Ref. 26, suppose now that the
bond length becomes a variable r so that we can intro-
duce a bond stretching of δr = r − r0, illustrated in the
inset of Fig. 1. Assuming that tij is a smooth function
of such small deformations, the hopping amplitude then

(a)

γµν,k µν,q,Ωm

k + q, ωn + Ωm

k, ωn

(b)

γµν,k

µν,q,Ωm ησ,−q,−Ωm

γησ,k+q
k, ωn

k + q, ωn + Ωm

FIG. 3. (a) Spinon-phonon interaction vertex, as defined by
Eq. (22). (b) The Feynman diagram representing the phonon
self-energy, which contributes to the one-loop effective action
and determines the phonon Hall Viscosity. Note that we work
in the q = 0 limit when computing the Hall viscosity on the
lattice. For our calculations in the continuum, we also evalu-
ate the same diagram though the precise notations differ.

becomes

t(r) ≡ tri,rj
' t(r0) + δr · ∇t(r)

∣∣∣∣
r0

+O
(
δr2
)
. (19)

For example, the nearest-neighbor (horizontal) hopping
amplitude from site n to n + x is tn,n+x = t(x) where
x = ax̂. Letting ux(n) and ux(n + x) be the defor-
mations along the x̂-axis of the two sites, the hopping
amplitude is approximated as

tn,n+x ' t(x) +
∂t

∂r

∣∣∣∣
x

(
ux(n+ x)− ux(n)

)
+O

(
δr2
)
,

= t(x) + a
∂t

∂r

∣∣∣∣
x

(
∂xux

)
, (20)

where, on the second line, we have assumed that the
lattice distortion is a smooth function on the lattice
scale. This is consistent with our assumption of con-
sidering only adiabatic spinon-phonon interactions. Car-
rying through this procedure with our mean-field ansatz
defined in Eq. (13), we obtain the modified hopping am-
plitudes as

|tn,n±x| ' t1 + λ1εxx, (21a)

|tn,n±y| ' t1 + λ1εyy, (21b)

|tn,n±(x+y)| ' t2 + λ2(εxx + εyy + 2εxy), (21c)

|tn,n±(x−y)| ' t2 + λ2(εxx + εyy − 2εxy) , (21d)

expressed in terms of the strain tensor εij in Eq. (5).
The coupling constants λj are formally given by λ1 ≡
a (dt1/dr)|a and λ2 ≡ (a/

√
2)(dt2/dr)|√2a in the bond-

stretching picture. Since λj has the same symmetry as
tj , we will take the two to be linearly related; their di-
mensionless ratio, λj/tj will be treated as an unknown,
phenomenological parameter.

Replacing the fixed hopping amplitudes in Eq. (13)
by their strain-dependent generalizations in Eq. (21),
one can systematically derive all spinon-phonon coupling
terms; for example, the term in Eq. (21a) leads to a cou-
pling term of the schematic form f†(λ1εxx)(cos(kx)τx)f ,
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FIG. 4. Spinon ansatz with 4th-nearest-neighbour (4NN)
hopping amplitude t4 allowed by projective symmetry.

where the cos(kx)τx piece in sublattice space originates
from Eq. (15).

Before listing the precise structures of all of these
couplings, we comment on further-neighbor couplings.
While we only include terms involving up to second
nearest-neighbors (2NN) in our spinon ansatz, higher-
neighbor terms are still allowed by symmetry. Usually,
these couplings are not necessary as they are expected
to be weak in magnitude and can often effectively be
taken into account by renormalizing the NN or 2NN
terms. However, it turns out that additional fourth-
nearest-neighbour (4NN) terms are crucial for our anal-
ysis: while their coupling strengths may be numerically
small, their induced phonon coupling alters the diver-
gent behavior of ηH at the critical point, as we will see
below and also consistently reproduce later in the con-

tinuum analysis of Sec. V. To include their effects, we
use the projective symmetry of Eq. (13) to find allowed
4NN terms with hopping strength t4, as shown in Fig. 4.
Following the bond-stretching procedure, we define an
analogous parameter λ4 ≡ (a/

√
5)(dt4/dr)|√5a. As the

t4 coupling will not modify the critical behavior of the
spinon Hamiltonian, we will take t4 → 0 so that it only
enters through the spinon-phonon coupling Hamiltonian.

Moreover, while it is formally possible to consider time-
dependent deformations u̇, we will not include them in
our analysis since these terms will be suppressed by the
ratio of the sound velocity to the Fermi velocity (∼ t1).
We comment on potential interesting effects from these
terms in Appendix B. Lastly, we note that couplings sim-
ilar to the ones induced by λ4 can also arise from bond
stretching in a multiorbital model; for coupling between
s−p and d−p orbitals, Eq. (20) would include terms that
take into account the relative rotation between sites.

Summarizing all the relevant bond stretching cou-
pling terms, we can write the spinon-phonon coupling as
Kk,Ω = γµν,kεµν(Ω), which couples the spinon operators:

Ssp−ph =
1

L2β2

∑
ω,Ω,k

f†k,ω+ΩKk,Ωfk,ω. (22)

This interaction vertex is displayed in Fig. 3(a), but we
will take the limit in which the strain field, ε, carries
no momentum, as terms dependent on the phonon mo-
mentum will lead to higher order, anharmonic viscosity
terms in the phonon effective action. The interaction
vertex γµν,k then reads:

γµν,k ≡
∑
i

γiµν,kτ
i =


−2λ1 cos(kx)τx − 4λ2 sin(kx) cos

(
ky
)
τz, µν = xx

−2λ1 sin
(
ky
)
τy − 4λ2 sin(kx) cos

(
ky
)
τz, µν = yy

−8λ2 cos(kx) sin
(
ky
)
τz − 16λ4(cos

(
ky
)

sin(2kx)τy + sin
(
2ky
)

sin(kx)τx), µν = xy

(23)

where γiµν,k defines the coefficient multiplying the Pauli
matrix τ i in γµν,k.

B. Evaluation of the phonon self-energy

Given the couplings from the previous section, we will
now integrate out the spinons (ψ) from the total partition
function [20, 59, 60],

Z =

∫
Dψ̄DψDu e−(Sph(u)+Ssp(ψ̄,ψ)+Ssp−ph(ψ̄,ψ,u)),

=

∫
Du e−Seff(u). (24)

This is equivalent to evaluating the phonon self-energy
to lowest-order in the interaction couplings and leads to
a term in the phonon effective action:

δSeff =− 1

2L2β2

∑
ωn,Ωm,k

Tr
[
Kk,iΩm

G(k, iωn)

× Kk,−iΩm
G(k, iωn + iΩm)

]
(25)

which can be represented by the Feynman diagram in
Fig. 3(b) with the external momenta q = 0. In the ab-
sence of the Zeeman field (BZ = 0), the two spin sec-
tors are decoupled so we write the block-diagonal spinon
Green’s function for the spin up (+) and spin down (−)
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sectors as

G±(k, iωn) =
iωmI + H±,k · τ
(iωm)2 −H2

±,k
, (26)

in which H is defined from the momentum space Hamil-
tonian in Eq. (15),

H±,k ≡ (−2t1 cos kx, 2t1 sin ky,−4t2 sin kx cos ky ∓
N

2
).

(27)

Leaving the details of the derivation to Appendix A,
Eq. (25) leads to a Hall viscosity

ηH = − 1

L2

∑
k,±

(
(1− 2nF (|H±|) + 2|H±|n′F (|H±|))

4|H±|3

)
×
[
Hy
±γ

z
xxγ

x
xy + Hz

±γ
x
xxγ

y
xy −Hx

±γ
z
xxγ

y
xy −Hy

±γ
x
xxγ

z
xy

]
,

(28)

where nF (E) = 1/(1 + eE/T ) denotes the Fermi distri-
bution function with chemical potential at 0, and n′F (E)
denotes its first derivative with respect to E. We have
also suppressed the momentum indices of H±,k and γiµν,k
for ease of notation. The terms multiplying the thermal
factor in Eq. (28) should be thought of as an effective
Berry curvature for the phonon Hall viscosity, with the
summation being over occupied spinon states.

The phonon Hall viscosity is shown in Fig. 5(a)–(e).
Let us first concentrate on the zero Zeeman field limit
BZ = 0 described by Eq. (28). Figures 5(a,b) show the
Hall viscosity for λ4 =−0.1 while Figs. 5(c,d) display the
viscosity for λ4 = 0.1. Recall, as mentioned previously,
that we take λ1 ∝ t1 and λ2 ∝ t2. We first observe that
ηH is an odd function of t2: this property arises from the
second line of Eq. (28) via either the Green’s function
component Hz or the interaction vertex γixy. The vis-
cosity vanishes when t2 = 0 in consistency with the fact
that it can only be nonzero when time-reversal and mir-
ror symmetries are broken. The viscosity also monotoni-
cally increases with increasing t2 across the critical points
N = ±8t2. As discussed in Sec. III, t2 originates from the
orbital coupling of the magnetic field, so tuning t2 should
be understood as tuning the magnetic flux threading the
square lattice. Furthermore, from Figs. 5(a) and 5(c),
we notice that although the viscosity is continuous, it
exhibits a kink at zero temperature at the quantum crit-
ical point, signaling a discontinuous first derivative. The
exact difference in the slope of ηH on either side of the
critical point is nonuniversal and depends on the choice
of couplings. In our ansatz, we see that a negative (pos-
itive) λ4 leads to a smaller (larger) slope for ηH in the
topological phase.

The behavior of ηH as a function of temperature is
also of experimental relevance. Figures 5(b) and 5(d) il-
lustrate the temperature dependence of ηH for different

values of t2 (while keeping BZ = 0), which are indicated
by the red dots in the phase diagram of Fig. 2. We ob-
serve, in both cases, a plateau of ηH at small T , which
scales with the distance of t2 from the critical point (here,
t2,c = N/8 = 0.0625). From the plots, the extent of the
plateau can be seen to be the smallest for t2 = 0.06 and
increases with changing t2 in either direction away from
the critical value. The plateau originates from the spinon
energy gap, whose scale is set by |t2 − t2,c|. At temper-
atures below this gap, thermal excitations fail to excite
higher spinon bands so we expect ηH to retain its zero-
temperature behavior.

An interesting feature of the temperature dependence
sketched in Figs. 5(b) and 5(d) is that at intermediate
temperatures above the energy gap, there is a peak in the
viscosity for λ4 = 0.1 but not for λ4 =−0.1. This peak is
nonuniversal, being dependent on our choice of parame-
ters, but its behavior can actually be understood from the
behavior of the kink in ηH across the QPT. Intuitively,
this can be seen as follows. In passing through the QPT,
the effective Berry curvature is exchanged between the
highest occupied and lowest unoccupied bands when the
spinon gap closes. This is similar in essence to the process
of changing temperature, which also involves accessing
the effective Berry curvature of the lowest-energy unoc-
cupied spinon bands as ηH gains (loses) Berry curvature
from the unoccupied (occupied) bands due to thermal
excitations. For the case of λ4 = −0.1, the slope of ηH
with respect to t2 decreases across the QPT. At the QPT,
Berry curvature is exchanged between the occupied and
unoccupied bands, so at a fixed t2, a similar redistribu-
tion of the Berry curvature between the occupied and un-
occupied bands should decrease ηH . This is exactly what
occurs at intermediate temperatures because of thermal
excitations, and geometrically, this Berry curvature ex-
change deforms the viscosity towards the secant through
the kink, as illustrated in Fig. 5(a). Therefore, it is ex-
pected that ηH decreases with increasing temperature.
A similar analysis for λ4 = 0.1 with the kink in Fig. 5(c)
predicts that ηH will increase to a local maximum at in-
termediate temperatures as thermal excitations capture
larger Berry curvature contributions from the lowest un-
occupied bands. Regardless of our choice of couplings,
however, the Hall viscosity will eventually decay to zero
at high temperatures because the Berry curvatures from
states at all energies will then contribute, and the net
curvature from all spinon bands is necessarily zero.

Under a nonzero Zeeman coupling, we expect the lo-
cation of the critical points to be renormalized without
any qualitative changes in the nature of the QPT [34]. In
Fig. 5(e), we turn on the Zeeman coupling BZ . As dis-
cussed below Eq. (11a), Jχ and BZ are proportional to
an externally applied, perpendicular field. Since t2 arises
from Jχ, for simplicity, we take t2 and BZ to be linear
functions of the applied out-of-plane magnetic field B,
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with B = |BZ | = 7t2 as shown by the dashed trajectory
in Fig. 2. We find that ηH scales linearly with B at small
field strengths.

C. Hall viscosity near the spinon critical point

Compared to the quantized thermal Hall conductivity
or the ordinary Hall conductance, the Hall viscosity plot-
ted in Fig. 5 is continuous and, at first sight, does not
seem to encode any signatures of a QPT. However, as
seen in Fig. 5(a), it is possible for the derivatives of the
Hall viscosity to have a discontinuity or divergence at the
critical point.

In the mean-field ansatz given in Eq. (13), by choos-
ing appropriate mean-field orbital coupling parameters t2
and Néel order N =N ẑ, one can tune across the topo-
logical phase transition. In particular, at BZ = 0, the
critical points at N =±8t2 describe the transition be-
tween a confining Néel state and a state where the Néel
order coexists with a chiral spin liquid. At both critical
points, the spectra have pairs of Dirac cones at ±Q where
Q = (π/2, 0). For example, when N = 8t2, fermions in
the spin-down (−) sector have a Dirac cone at Q so that
|H−,Q| = 0; a similar statement follows for the spin-up
(+) sector. To examine ηH near the QPT, we expand
the spinon momentum around −Q as k = −Q + q for
small momentum q. Then, we find—to leading order in
q—for ηH at T = 0:

λ4

(t2 − N
8

)
q2
xλ1 − t1λ2q

2

8
∣∣∣q2 + 4

(
t2 − N

8

)2∣∣∣3/2 +

(
t2 + N

8

)
q2
xλ1 − t1λ2q

2

64
∣∣t2 + N

8

∣∣3
.

(29)

As mentioned earlier, we observe that the nonvanishing
leading terms above arise from the 4NN spinon-phonon
couplings in Eq. (23). The second term in Eq. (29) van-
ishes as we approach −Q. The first term appears diver-
gent but is actually finite when we take into account the
summation over momentum, which comes with measure
|q|d|q|.

While ηH seems well-behaved, its derivatives with re-
spect to the time-reversal-breaking t2 can have singular-
ities and signal a QPT of the spinons. It is convenient to
rewrite our expression as a function of the Dirac masses
m1,2 = 2t2 ∓ N

4 , which vanish at the critical points. For
instance, taking the second derivative of ηH with respect
to m1 at the critical point m1 = 0 (and k ' −Q + q)
leads to a δ-function divergence

∂2ηH

∂m2
1

∝∼ λ4m2

∑
q

∂2

∂m2
1

q2∣∣∣H+,k

∣∣∣3 ∼ m2∂
2
m1
|m1| −−−−→

m1→0
∞,

(30)

where we have written λ2 ∝ t2 ∝ m1 + m2. As pre-
viously noted, the second derivative’s divergence man-
ifests as a kink in ηH at the QPT. Note that without
a nonzero λ4, the singularity in ηH would only show
up in its fourth derivative. The divergent behavior of
ηH is present only at zero temperature, as illustrated in
Fig. 5(f). In the limit of N → 0, the two Dirac masses
coincide (m1 = m2), and ηH is better behaved, with the
divergence appearing in the third derivative. This is ac-
tually the behavior seen in previous works [25, 26] that
explored the case of two-orbital Chern insulators on the
square lattice; we discuss this point further in Sec. VD.

V. HALL VISCOSITY FROM SPINON
COUPLINGS TO CONTINUUM STRAIN FIELDS

In previous sections, we studied how phonon chiral-
ity could emerge from an underlying chiral spin liquid
on the square lattice. The calculation of the continuum
phonon Hall viscosity is qualitatively the same as that
for the lattice phonon Hall viscosity: we begin by defin-
ing the spinon Hamiltonian Hsp and symmetry consid-
erations constrain the allowed spinon-phonon couplings.
However, instead of taking into account lattice displace-
ments through the strain dependence of tight-binding pa-
rameters, we will see how phonon couplings emerge from
a projective symmetry analysis of the underlying spin
liquid. In particular, the lattice space group can have
significant effects on the topological quantization of the
phonon Hall viscosity. Our representation-theoretic ap-
proach follows Ref. 59. We also note that the symmetry-
based approach to electron-phonon interactions has been
well studied in the case of graphene [61–66].

A. Continuum low-energy theory

To define our continuum theory, we begin with our
original square-lattice Néel stateN = N ẑ, given by Ht.b.

in Eq. (13). We will also work in the regime of no Zeeman
coupling, BZ = 0. While the low-energy theory and pro-
jective symmetry group of Ht.b. was already studied in
Ref. 34, we will find it convenient to first perform a local
U(1) gauge transformation in order to match the π-flux
ansatz considered in Ref. 59. Our new ansatz, which is
nevertheless gauge equivalent to Eq. (13), will have differ-
ent couplings. The resulting projective symmetries [67]
realized on the low-energy continuum fields will dictate
the allowed spinon-phonon interactions. First, we con-
sider a position-dependent gauge transformation of Ht.b.

in Eq. (13),

fn → eiπn1/2fn for n2 even, (31a)

fn → eiπ/2eiπn1/2fn for n2 odd, (31b)
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FIG. 5. Hall viscosity as functions of t2, T,B and its derivative with respect to m1. We set N = 0.5, λ1 = t1 and λ2 = 0.5t2.
In (a,b) and (e,f), we choose λ4/t1 = −0.1. In (c,d), we choose λ4/t1 = 0.1 for comparison. (a) Hall viscosity as a function of
t2 for temperatures T/t1 = 0, 0.1 and BZ = 0. The dashed lines indicate critical points at N = ±8t2. The inset shows the kink
at T = 0 after zooming in, signaling a QPT as discussed in the main text. (b) Hall viscosity ηH as a function of temperature
for different orbital coupling t2 and BZ = 0, shown by the red dots in phase diagram Fig. 2. (c, d) The same as in (a) and (b),
respectively, but with the opposite sign of λ4. (e) Field dependence of ηH for different T . As discussed in the main text, the
orbital and Zeeman couplings scale linearly with the applied external field, and here, we take B = |BZ | = 7t2, which is shown
by the dashed trajectory in phase diagram Fig. 2. (f) The divergence in the second derivative of ηH with respect to mass m1

near the critical point. The blue curve shows that the mass derivative of the Hall viscosity d2ηH/dm2
1 evaluated at m1 = 0

diverges at T = 0; the yellow curve demonstrates that d2ηH/dm2
1 has no true divergence at finite T .
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FIG. 6. The nearest- (t1, black) and second-nearest-neighbor
(t2, red) hopping matrix elements for the ansatz in Sec. V. It
is gauge equivalent to the mean-field ansatz in Fig. 1 using
the transformations outlined in Eqs. (31a, 31b).

where n ≡ n1x+ n2y. As a result, our nearest-neighbor
spinon hopping terms are given by

tn,n+x = i, tn,n+y = (−1)n1i, (32)

with second-nearest-neighbor chiral couplings

tn,n±x±y = it2 for n1 even, (33a)

tn,n±x±y = −it2 for n1 odd. (33b)

Now, we relabel our unit cell with four sites as in Fig. 6.
The resulting Bravais lattice vector is r = r1a1 + r2a2,
with r1, r2 ∈ Z labeling the unit cell, and a1 = 2x,
a2 = 2y. The full form of the Hamiltonian is given in
Appendix C.

Within the Brillouin zone kx, ky ∈ [−π/2, π/2), our
new (but gauge-equivalent) Hamiltonian has degener-
ate Dirac points at Γ = (0, 0). Near Γ, the dispersion
can be described by four two-component (s= 1, 2) Dirac
fermions ψsασ. The four “flavors” (α, σ) are associated
with the two spin polarizations, σ= ↑, ↓, and an addi-
tional valley index α= 1, 2. In the following, we will sup-
press the (sublattice) spinor index s of ψsασ. We can
perform an expansion of the momentum-space Hamilto-
nian [see Eq. (C2)] around Γ using the continuum spinor
fields ψασ:

ψ1σ(k) ∼ 1√
2

(
ifk2σ + fk4σ

−ifk1σ − fk3σ

)
, (34a)

ψ2σ(k) ∼ 1√
2

(
ifk3σ + fk1σ

−ifk4σ − fk2σ

)
, (34b)

from which the resulting Dirac Hamiltonian is

HDirac =

∫
d2k

(2π)2
ψ†ασ

[
vF
(
kxτ

x + kyτ
y
)

(35)

−2t2(kxµ
xτx + kyµ

yτy) + 2

(
2t2τ

z − N

4
σzµzτz

)]
ψασ,

where we have labeled vF = 2t1. We have defined the
Pauli matrices τ to act on the spinor (sublattice) indices,
µ to act on the valley indices α, and σ to act on the spin
indices. The continuous fields also realize a projective
representation of our lattice symmetries, the details of
which are summarized in Appendix C. Away from the
critical points, the Dirac fermions ψασ are gapped with
a mass m1,2 = 2t2 ∓N/4 given by a combination of the
orbital current t2 and the Néel order, as in Sec. IVC.
Therefore, when t2 ' N/8 close to the critical point, we
can safely integrate out the two higher-energy bands to
obtain the effective spinon Hamiltonian

Hsp = 2

∫
d2k

(2π)2
Ψ†a
(
kxτ

x + kyτ
y +mτz

)
Ψa, (36)

where we have set t1 = 1 and defined

m ≡ m1 = 2t2−N/4, Ψa(k) =

{
ψ1↑(k) a = 1,

ψ2↓(k) a = 2,
(37)

and, as previously mentioned, the Pauli τ matrices only
act on the spinor indices. From here on, we will also
denote the higher-energy Dirac mass asM ≡ m2 = 2t2 +
N/4. Interestingly, the effects of the orbital current t2
and Néel order N counteract each other in the low-energy
theory [34], so that even though Hsp explicitly breaks
time-reversal symmetry, it re-emerges in the low energy
theory.

B. Spinon-phonon coupling vertex

In this section, we will describe a general framework
for deriving the spinon-phonon interaction Hamiltonian
from symmetry considerations and then apply it to our
model, Eq. (36). Approaches based on symmetry have
also been used to find the phonon couplings in graphene
[62, 66], but the main difference in our spin-liquid system
is that the analysis needs to account for the projective
symmetry group of our ansatz. A universal procedure
that does exactly this is provided by Serbyn and Lee
[59], and we will reproduce their method here to provide
background.

We begin by specifying the form of the spinon-phonon
interaction Hamiltonian,

Hsp−ph =

∫
d2k d2q

(2π)4
Ψ†a(k + q)hsp−ph(k, q)Ψa(k).

(38)
Expanding k around the Dirac points at Γ, we allow the
presence of terms of zeroth order, h(0)

sp−ph(q), and linear

order, h(1)
sp−ph(k, q), in the spinon momentum k so that
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the total interaction Hamiltonian can be written as

hsp−ph(k, q) = h
(0)
sp−ph(q) + h

(1)
sp−ph(k, q). (39)

Often, only the zeroth-order contribution h
(0)
sp−ph(q)

needs to be considered, but as we will find for the nonchi-
ral π-flux state, h(0)

sp−ph(q) = 0 by symmetry. In the case
of nonzero t2, there is a single symmetry-allowed zeroth-
order phonon coupling. Either way, to obtain a nonzero
ηH , it will be necessary to also take h(1)

sp−ph(k, q) into

account. The h(1)
sp−ph term can be understood as a de-

formation of the spinon band structure near the Dirac
points at Γ by acoustic phonons.

Acoustic phonons can only couple to the spinons
through spatial derivatives of the phonon field, so they
enter into hsp−ph(k, q) through the q Fourier component
of u(r). As in the previous section, we expect couplings
to the time derivative of u to be suppressed by the ra-
tio of the sound and Fermi velocities, so we will ignore
them in our analysis. Since both the phonon fields and
the phonon momenta transform under the vector repre-
sentation E1 of C4v, we can decompose the set of terms
∂iuj(r) ∼ −iqiuj(q) into irreducible representations as

Eph
1 ⊗ Eph

1 = ⊕jDph
j , (40)

where Dph
j labels irreducible representations of C4v. As

spinons are fermionic while phonons are bosonic, the
leading order coupling of phonons must be to bilinears
of the continuum spinon fields ψ. Even though ψ realizes
a projective representation of the lattice symmetry group
C ′4v, the space of local spinon bilinears,

Gψ†ψ =
{
ψ†Iψ, ψ†τ iψ, ψ†µiψ, ψ†(µiτ j)ψ

}
, (41)

realizes regular representations in our Abelian U(1) spin
liquid because the U(1) gauge factors cancel. For non-
Abelian SU(2) spin liquids, as studied in Refs. 67–69,
we must restrict ourselves to spin singlet bilinears to ob-
tain regular representations. We omit the spin degrees
of freedom since we assume that the phonons couple to
both ψ↑ and ψ↓ bilinears equally. In similar fashion to
the phonons, we can decompose the representation of all
bilinears into irreducible representations,

Gψ†ψ = ⊕jDψ†ψ
j . (42)

As h(1)
sp−ph includes terms that couple spinon momenta k

(transforming in the vector representation) and bilinears,
we must also consider

Esp
1 ⊗Gψ†ψ = ⊕jDk,ψ†ψ

j . (43)

We observe that Hsp−ph, which could possibly contain
terms like∑

ij

(
Dph
i ⊗Dψ†ψ

j +Dph
i ⊗Dk,ψ†ψ

j

)
(44)

must be invariant under all symmetries. This is only pos-
sible if the representations are equal; that is,Dph

i = Dψ†ψ
j

or Dph
i = Dk,ψ†ψ

j . Therefore, pairing together basis func-
tions of equivalent irreducible representations between
Eq. (40) and Eqs. (42,43) will give us all possible cou-
plings in hsp−ph. Furthermore, the additional SU(2)
symmetries of time-reversal and charge conjugation will
impose further constraints on allowed couplings, as the
phonon strain field ∂iuj is invariant under both symme-
tries.

Applying this formalism to our lattice symmetry group
C4v, the underlying symmetry group of the phonons, we
have

⊕j Dph
j = A1 ⊕A2 ⊕B1 ⊕B2, (45)

in Eq. (40), with basis elements ∂xux + ∂yuy, ∂xuy −
∂yux, ∂xux − ∂yuy, and ∂xuy + ∂yux respectively. For
the spinon sector, we can decompose the bilinears into
representations of C ′4v

Gψ†ψ = A1 ⊕A2 ⊕ · · · , (46)

Esp
1 ⊗Gψ†ψ = A1 ⊕A2 ⊕B1 ⊕B2 ⊕ · · · , (47)

where the (· · · ) stands for irreducible representations of
C ′4v that transform nontrivially under lattice transla-
tions; these cannot be coupled to the phonons, which
transform trivially under translations. The full results
and explicit basis elements are tabulated in Section III
of Ref. 59.

The ostensibly allowed couplings between the (A1, A2)

components in Gψ†ψ and Eph
1 ⊗ Eph

1 turn out to be for-
bidden by time-reversal symmetry, as the (A1, A2) com-
ponents in Gψ†ψ,

Dψ†ψ
A1

=
{
ψ†Iψ

}
, Dψ†ψ

A2
=
{
ψ†τzψ

}
, (48)

are both time-reversal odd. However, there is an allowed
coupling to the A2 channel through the orbital current
t2. Since the orbital current t2 also transforms as A2, by
coupling t2 ∝ (m + M) and Dψ†ψ

A2
together, we obtain

a term that transforms trivially (as A1). This term is
permitted because Dψ†ψ

A2
, like t2, is time-reversal odd, so

the product t2 ·Dψ†ψ
A2

can couple to the phonon density
fluctuations. Therefore, we find

h
(0)
sp−ph(q) = ig0(m+M)τz

(
qxux + qyuy

)
, (49)

with g0 labeling some phenomenological coupling coeffi-
cient. Note that we cannot couple mτz to phonons as
m itself is not an irreducible representation (it includes
the Néel order), but the combination m + M = t2 is
irreducible.

The bilinears in Eq. (47) suffer no such restriction as
they are all time-reversal and charge-conjugation invari-
ant. The basis elements for the irreducible representa-
tions in Eq. (47) are analogous to those in Eq. (45), with
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the replacement ui → τ i. Now, we can couple each of
the first four irreducible representations in Eq. (47) to its
partner in Eq. (45). For example, the A1 spinor-bilinear
component is of the form

Dkψ†ψ
A2

=
{
ψ†(kxτ

x + kyτ
y)ψ
}
, (50)

so that the A1-A1 coupling contribution to hsp−ph will
be of the form igA1(qxux + qyuy)(kxτ

x + kyτ
y) for some

coupling constant gA1 . After some simplification, the end
result is

h
(1)
sp−ph(k, q) =i(g1qxkxτ

x + g2qykyτ
x + g3qykxτ

y

+g4qxkyτ
y)ux + (x↔ y), (51)

for phenomenological couplings gi. The gi label combina-
tions of irreducible representations, with g1,4 = gA1

±gB1

and g2,3 = gB2
± gA2

.

C. Evaluation of phonon polarization and Hall
viscosity

As in Eqs. (24) and (25), we will now integrate out the
fermion fields to obtain the Hall viscosity for the phonon
fields. From Eq. (49) and Eq. (51) we can define our
spinon-phonon coupling vertices to be (rewriting in terms
of the low-energy Dirac fields Ψ)

Hsp−ph =

∫
d2k d2q

(2π)4
Ψ†a(k + q)λik,quiΨa(k), (52a)

λxk,q = i(g1qxkxτ
x + g2qykyτ

x + g3qykxτ
y + g4qxkyτ

y + g0qx(m+M)τz), (52b)

λyk,q = i(g1qykyτ
y + g2qxkxτ

y + g3qxkyτ
x + g4qykxτ

x + g0qy(m+M)τz). (52c)

The last term coming from the coupling of the orbital current t2 = m + M in λx,yk,q has no dependence on spinon
momentum k. We can write the phonon self-energy, as in Fig. 3(b), in Matsubara frequency space as

Πxy(q, iΩm) = −1

2

∫
k,ωn

2 · Tr
[
λyk,qG(k, iωn)λxk+q,−qG(k + q, iωn + iΩm)

]
, (53)

where G(k, iωn) denotes the Dirac fermion Green’s func-
tion,

G(k, ω) =
ωI + Hk · τ
ω2 −H2

k

, Hk ≡ (kx, ky,m). (54)

In Eq. (53), we define
∫
k,ωn
≡T∑ωn

∫
d2k/(2π)2, and

we have also included a factor of 2 to account for the
two species of Dirac fermions. The Hall viscosity origi-
nates from the off-diagonal, antisymmetric component of
Πxy. In real frequency, Eq. (53) contributes a term to
the phonon effective action of the form

δSeff =

∫
q,Ω

Πµν(q,Ω)uµ(−q,−Ω)uν(q,Ω) (55)

from which we can extract

ηH = lim
q→0

lim
Ω→0
− 1

ΩLd
∂2
qIm [Πxy(q,Ω)] (56)

In our continuum model, we did not consider any cou-
pling to the rotational strain field, so ηM = 0. Other
terms in the phonon self-energy, such as the diagonal and
symmetric components, will renormalize the real part of
the phonon propagator. This is a small effect that does
not contribute to phonon chirality, so we will not consider
it here. As we are only interested in the leading-order
contributions of q and Ω, we use

λµk+q,−q = λµk,−q +O(q2) (57)

and neglect the anharmonic contributions. Relegating
the details of the computation to Appendix D, we find
that

Πxy(q, iΩm) = q2(g1g2 − g3g4)
mΩ

8π
(Λ− 2|m|) + q2g0(g2 − g3)(m+M)

Ω

8π
(Λ− 2|m|) ,
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where Λ is a UV cutoff near the Dirac points. Then, Eq. (56) gives us

ηH =
1

4πL2
[(g1g2 − g3g4)m+ g0(g2 − g3)(m+M)] (Λ− 2|m|), (58)

after analytic continuation to real Ω. To compare the
continuum result to the lattice, we need to extract the
leading nonanalytic contribution:

ηH ∼ −[g0(g2 − g3)(m+M)] |m| ∼M |m|; (59)

we see that the second derivative ∂2ηH/∂2m∝ δ(m) is
divergent in the limit m→ 0, in agreement with what we
found in Eq. (30) on the lattice.

From Eq. (58), we notice that the Hall viscosity ηH

scales with the two effective couplings g1g2 − g3g4 and
g0(g2−g3). This can be understood in the representation
theory framework presented earlier, as both g1g2 − g3g4

and g0(g2−g3) transform in the A2 channel of C4v, which
descends to the A1 channel of C4 as reflection symmetry
is broken in our ansatz. Further discussions on this point
are included at the end of Appendix D.

D. Discussion and comparison to the lattice results

Our analysis highlights that the lattice symmetries
strongly constrain the allowed spinon-phonon couplings.
Therefore, though most spin-liquid phases of interest
have similar Dirac excitations and effective theories in
the continuum, the allowed spinon-phonon interactions
and resulting Hall viscosity ηH in the continuum are sen-
sitive to microscopic information about the phase.

We contrast our result with the quantized Hall viscos-
ity found in Refs. 60 and 70 for Majorana fermions in
the gapless B phase of the Kitaev honeycomb model [71].
This is a special feature of the lattice symmetry group
C6v, as in addition to a trivial density fluctuation cou-
pling, the zero-flux phase [59, 62] on a honeycomb lattice
allows a spinon-phonon interaction in the E2 channel of
the form

h
(0)
sp−ph(q) ∼

[
(qxux − qyuy)τx − (qxuy + qyux)τy

]
µz

(60)
to zeroth order in the spinon momentum k near the Dirac
point, where q is the phonon momentum. This addi-
tional coupling, in which the spinon momentum k does
not appear, should be understood as a consequence of the
special symmetries of the honeycomb lattice. Integrating
out the spinons on the honeycomb lattice then leads to a
discontinuous Hall viscosity [60, 70],

ηH ∼ sign(m), (61)

that depends only on the sign of the Dirac massm. More-
over, it was found in Ref. 60 that for the Kitaev spin liq-

uid, ηH decreased as the magnitude of the time-reversal-
symmetry-breaking perturbation increased.

In our analysis for the square lattice, we see that the
nonanalytic behavior of the continuum ηH agrees with
the lattice result, Eq. (28), at low energies and near the
Dirac point. However, it should be noted that the con-
tinuum viscosity is in general regularization-dependent,
and only the difference in ηH between two phases is uni-
versal [24, 25]. With this in mind, we observe that the
difference in ηH across the QPT scales, at leading order,
linearly with the Dirac mass m = 2t2 −N/4 in both the
lattice and continuum formulations. This differs from the
Hall viscosity obtained for the Dirac Chern insulator on
a square lattice [26] in which case, the Hall viscosity of
the tight-binding Hamiltonian scales quadratically with
the Dirac mass. For the continuum Dirac field theory
of the Chern insulator, introducing suitable Pauli-Villars
regulators and counterterms eliminates the dependence
of the viscosity on the UV cutoff Λ and also leads to a
quadratic dependence of ηH on m [25].

In our chiral spin liquid ansatz in Eq. (13), the phonons
are coupled directly to the orbital current t2 but not the
effective Dirac massm = 2t2−N/4. This is caused by the
presence of Néel order, which does not couple to lattice
distortions as it is purely an on-site term [see Eq. (13)].
In the limit N → 0, the two Dirac masses coincide and
for our calculation on the lattice, ηH ∼ M |m| = m|m|,
as in the case of the Chern insulator. In the continuum,
we reproduce the field theory of the Chern insulator as
in Refs. 24 and 25, and with further regularization, the
same scaling is obtained for the Hall viscosity. In both
the lattice and the continuum, the divergence in ηH is
then only visible in its third derivative with respect to
m.

Finally, our analysis can be extended to include the
finite-temperature result [see Eq. (D18) in Appendix D],

ηH = (F1M + F2m)·
[
DΛ(T,m)

− 4T log(2 cosh(|m|/2T ))
]
, (62)

for some function D dependent on m, T , and a UV cutoff
Λ. The constants F1 and F2 are combinations of the
spinon-phonon couplings. In the limit that Λ � m,T ,
we have

ηH = (F1M + F2m)·
[
4T log (2 cosh(Λ/2T )) (63)

− Λ− 4T log(2 cosh(|m|/2T ))
]
.

As the hyperbolic cosine is an even and positive func-
tion, we find that the viscosity is smooth at finite T—this
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FIG. 7. Finite-temperature scaling of the continuum phonon
Hall viscosity from Eq. (62), with F1 = 2F2 = 2 and M =
Λ = 5. The inset shows the low-temperature plateaus of ηH

with a scale set by m.

is expected because the Matsubara summation, at finite
temperatures, does not introduce any nonanalyticities.
In the limit of M�m, we see that the Λ-independent
part of ηH/(MT ) is only a function of the ratio |m|/T .
The temperature and m dependence of ηH arising from
Eq. (62) is illustrated in Fig. 7. The zero-temperature
value of ηH depends on the momentum cutoff Λ. We ob-
serve, in particular, that ηH decays at high temperature
and plateaus near zero temperature, with the size of the
plateau dependent on the mass gap m. These universal
features were also present in our lattice calculation, in
Figs. 5(b) and 5(d).

VI. PHYSICAL CONSEQUENCES

For acoustic phonons, the dispersion is assumed to be
ωph ∝ |q| + O(q2), so, according to Eq. (4), the Hall
viscosity’s contribution to the phonon effective action is
of order ∂u∂u̇ ∼ |q|3u2. This is more relevant than the
leading anharmonic correction, which is of order q4. Note
that the other possible O(q3) contribution to the phonon
action ∫

d2x dt Dijklm∂i∂juk∂lum (64)

vanishes in the presence of inversion symmetry. In two-
dimensional isotropic systems, it was found that the Hall
viscosity mixes the longitudinal and transverse modes
and renormalizes the phonon spectrum [20, 60],

∆ωph ∼ η2q3. (65)

However, the exact numerical prefactor of the correc-
tion, estimated to be very small by Barkeshli et al. [20],

requires knowledge of the energies associated with the
appropriate spin-lattice couplings, and the phonon spec-
trum cannot distinguish the sign of the Hall viscosity.
Another consequence of a Hall viscosity is phonon Fara-
day rotation, which describes the rotation of the linear
polarization vector of transverse acoustic phonons due to
splitting in the circularly-polarized velocities [26, 72, 73].

Recently, the thermal Hall effect has emerged as a
powerful probe of neutral excitations such as spinons,
prompting extensive experimental and theoretical stud-
ies in a variety of correlated quantum materials, including
the cuprate superconductors [31, 34, 74–79] and Kitaev
materials like α-RuCl3 [70, 80–89]. Here, we observe that
a phonon Hall viscosity, in general, implies a nonzero
phonon thermal Hall conductivity by imparting a Berry
curvature to the phonon energy bands. Moreover, their
relative signs can be determined given the coupling con-
stants. As previously studied, a phonon thermal Hall
response can arise from a coupling of phonons to the mag-
netization of the system [90]. More recently, in ferroelec-
tric insulators [78], the flexoelectric coupling of acoustic
phonons to the dipole density was shown to lead to a
thermal Hall response. In our case, the Hall viscosity ap-
pears in the phonon effective action as a term analogous
to those flexoelectric couplings. For example, consider
isotropic phonons in two dimensions,

Sph =
1

2

∫
d2x dt ρu̇2 + µ1∇u2 + µ2(∇ · u)2, (66)

with mass density ρ and elastic constants µi. Assuming
the Hall viscosity in Eq. (7), the thermal Hall conductiv-
ity [91], in the low-temperature limit, reads

κ2d
xy(T ) = −η 3ζ(3)k3

B

π~2

[
g1√
µ1
− g2√

µ1 + µ2

]
T 2, (67)

g1 ≡
4µ1 + µ2

2
√
µ1µ2

; g2 ≡
4µ1 + 3µ2

2µ2
√
µ1 + µ2

.

Hence, given that η plateaus at low temperature from our
analyses in Secs. IVB and VD, we see that κ2d

xy/T ∝ T

as T → 0 (note that we expect that κ3d
xy/T ∝ T 2 at low

temperature [91]). While we are unable to make quanti-
tative estimates of the strength of this response, we have
demonstrated that this effect generically exists for both
the conventional Néel phase and the Néel state coexist-
ing with semion topological order in Fig. 2, providing an
intrinsic source of phonon chirality. With an eye towards
recent experiments on the phonon thermal Hall response
in cuprates [31, 32], our proposal lays the foundation for
work on possible enhancement of heat transport due to
extrinsic mechanisms in these topological systems [33].

VII. CONCLUSION AND OUTLOOK

In this article, we have analyzed the phonon Hall vis-
cosity arising from the coupling to spin degrees of free-
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dom on the square lattice in a magnetic field.
We employed a fermionic spinon formulation and ob-

tained a low-energy effective action for the phonon fields
by integrating out the spinons. Two complementary ap-
proaches were studied: first, starting from the lattice
spinon model of Ref. 34, we introduced the coupling
to lattice vibrations using the physical model of bond
stretching (or equivalently, adiabatic response). In the
second approach, only the relevant low-energy spinon de-
grees of freedom were retained, and the resulting contin-
uum Dirac theory was coupled to lattice vibrations purely
by symmetry considerations.

Even in the continuum limit, microscopic details about
the lattice symmetry were shown to have drastic effects
on the critical behavior of ηH : as opposed to the disconti-
nuity of ηH when changing the sign of the effective Dirac
mass m at the transition on the honeycomb lattice, we
demonstrated that the symmetries of the square lattice
lead to a Hall viscosity that varies linearly with the effec-
tive Dirac massm—in both the continuum and the lattice
theory. We also calculated ηH at finite temperature and
determined a scaling form for the ratio ηH/(TM).

The Hall viscosity is a measure of time-reversal sym-
metry breaking in the spinon sector, and its nonanalytici-
ties can serve as signatures of the field-driven topological
quantum phase transition. We found that the second
derivative of the Hall viscosity with respect to the mass,
∂2
mη

H , diverges at the transition (m = 0) between the
two phases in Fig. 2 at zero temperature. This leads to
a kink in the field dependence of ηH [see Fig. 5(a) and
(c)]. We showed that this enhanced singular behavior—
as compared to the square-lattice Chern insulator where
∂3
mη

H diverges [26]—can be traced back to the presence
of Néel order.

In addition to previous studies which have proposed
measuring the Hall viscosity through various phononic
properties of the material, we have shown how the Hall
viscosity also leads to an intrinsic thermal Hall response.

This response can potentially be enhanced by extrinsic
scattering mechanisms and may be detectable in exper-
iments which indicate that phonons are the dominant
contribution to heat transport. As more and more ex-
periments probe the exotic nature of topological phases
and possible spin liquid candidates, we believe that the
phonon Hall viscosity can be a powerful tool for detecting
fractionalization and quantum critical phenomena.

Finally, we note that our computations were carried
out in the setting of a spinon mean-field theory. Gauge
fluctuations can potentially change the spinon phase dia-
gram as well as renormalize the spinon-phonon couplings
[79]. However, we expect the nonanalytic signature of a
quantum phase transition to persist. The exact effects
of gauge-field fluctuations on phonon dynamics remain
an open question, and their consequences are avenues for
further study.
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Appendix A: Hall viscosity in the absence of a
Zeeman field

To evaluate the effective action, we have to compute
(using Tr

[
τατβτ δ

]
= 2iεαβδ, ε being the Levi-Civita ten-

sor) the trace

Tr
[
τβG(k, iωn)ταG(k, i(ωn + Ωm))

]
=
∑
±

2εαβδΩmHδ
±,k

(H2
±,k + ω2

n)(H2
±,k + (ωn + Ωm)2)

=
∑
±

2εαβδΩmHδ
±,k

(H2
±,k + ω2

n)2
+O(Ω2

m), (A1)

where we have only kept the terms antisymmetric and linear in Ω since these are the only ones that will contribute
to the Hall viscosity. This approximation is valid because we are only extracting the first-order (in Ω) contribution
to the effective action. The Matsubara summation yields

T
∑
ωn

1

(H2
±,k + ω2

n)2
=

1− 2nF (
∣∣∣H±,k∣∣∣) + 2

∣∣∣H±,k∣∣∣n′F (
∣∣∣H±,k∣∣∣)

4
∣∣∣H±,k∣∣∣3 . (A2)

Therefore, we can extract from

Seff = − 1

2L2β2

∑
ωn,Ωm,k

Tr
[
Kk,iΩm

G(k, iωn)Kk,−iΩm
G(k, i(ωn + Ωm))

]
(A3)
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the Hall viscosity

ηH = − 1

L2

∑
αβδ

∑
k,±

εαβδγαxxγ
β
xyH

δ
±,k ·

1− 2nF (
∣∣∣H±,k∣∣∣) + 2

∣∣∣H±,k∣∣∣n′F (
∣∣∣H±,k∣∣∣)

4
∣∣∣H±,k∣∣∣3 . (A4)

Writing out the summation over α, β, δ explicitly leads to Eq. (28) of the main text.

Appendix B: Rotational strain field coupling

The rotational strain field θij = (∂iuj − ∂jui)/2, repre-
senting a vorticity, is ordinarily not considered in geomet-
ric treatments of phonon interactions. However, given
the symmetries of our ansatz, we can couple the time
derivative of ∂θij/∂t to the orbital current t2 [38, 57]:

|tn,n±(x+y)| = |tn,n±(x−y)| ' t2 + λ3

∂θxy
∂t

. (B1)

Since the rotational strain field has only one polarization
θxy, this gives an additional interaction term in Eq. (23)
that couples to θ̇xy,

γ̃zµν(Ω)τz = 4Ωλ3 sin(kx) cos
(
ky
)
τz, µν = xy. (B2)

This additional coupling is interesting to consider since
it can, in principle, lead to a finite Hall viscosity. Follow-
ing the same procedure for calculating ηH , we state the
analytic answer for ηM below:

ηM =
1

L2

∑
k,±

γ̃zxy

[
2Hx
±,kH

z
±,kγ

x
xx +

(
−(Hx

±,k)2 − (Hy
±,k)2 + (Hz

±,k)2
)
γzxx

4
∣∣∣H±,k∣∣∣3

[
1− 2nF (

∣∣H±,k∣∣) + 2H±,kn
′
F (
∣∣H±,k∣∣)]

+
γzxx

4
∣∣∣H±,k∣∣∣

[
−1 + 2nF (

∣∣H±,k∣∣) + 2
∣∣H±,k∣∣n′F (

∣∣H±,k∣∣)]
]
. (B3)

This expression simplifies at T = 0 to ηM =

1

L2

∑
k,±

2γ̃zxy

Hx
±,kH

z
±,kγ

x
xx −

(
(Hx
±,k)2 + (Hy

±,k)2
)
γzxx∣∣∣H±,k∣∣∣3 .

(B4)

At the critical point, where m1 = 0, expanding for mo-
menta q near the Dirac point at Q =

(
π
2 , 0
)
, we have

ηM
∣∣∣∣
m1=0

∼
∑
q

m2
2

|q| . (B5)

Although the above term seems to have a singularity, it
is remedied by the integration measure d2q ∼ |q|d|q|.
Therefore, ηM goes to a finite value as q → 0. Just as
for ηH , we can analyze ηM near the critical point. As
we tune towards the QPT, the second derivative of ηM
is δ-function divergent,

∂2ηM

∂m2
1

∣∣∣∣
m1=0

∼
∑
q

∂2

∂m2
1

q2∣∣∣H+,k

∣∣∣3 ∼ ∂2
m1
|m1| −−−−→

m1→0
∞,

(B6)

with essentially the same behavior as ηH .

Appendix C: Hamiltonian and projective symmetry
of the chiral π-flux state

From the couplings given by Eqs. (32, 33a, 33b), we
obtain the Hamiltonian for the gauge-transformed ansatz
in momentum space as (labeling the sublattices by indices
m,n)

Ht.b. = −
∑
k,σ

f†kmσhmn(k, σ)fknσ, (C1)

where the 4× 4 matrix h is given by

h(k, σ) = it1


0 −1 +K∗1 0 −1 +K∗2

1−K1 0 −1−K∗2 0
0 −1 +K2 0 1−K1

1−K2 0 −1 +K∗1 0



+it2


0 0 K̃A 0

0 0 0 K̃B

−K̃∗A 0 0 0

0 −K̃∗B 0 0

+
Nσ

2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 .

(C2)

For the equations above, we have defined

K1,2 ≡ eik·a1,2 , (C3)
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K̃A ≡ −1−K∗1 −K∗2 −K∗1K∗2 , (C4)

K̃B ≡ 1 +K1 +K∗2 +K1K
∗
2 . (C5)

Expanding the Hamiltonian Ht.b. around the Dirac
points at Γ then leads to the effective Dirac Hamiltonian
given in Eq. (35).

To specify the projective symmetry of the continuous
spinor fields ψασ defined in Eq. (34), we need to know
how the spinons transform under the relevant symme-
try group generators. Following closely the analyses of
Ref. 59, we begin by specifying the projective action of
the symmetry operations on the lattice fermions. The
symmetries of the π-flux ansatz, as in Sec. V, are gener-
ated by translation by ax̂, Tx : r → Txr = (rx + a, ry);
reflection about the x̂-axis, Rx : r→Rxr= (−rx, ry); and
rotation by π/2, C4 : r→C4r= (ry,−rx); together, these
make up the symmetry group C ′4v. Furthermore, there
are two additional SU(2) symmetries of our ansatz, given
(in momentum space) by time-reversal T : fkiσ → f†kiσ
and charge-conjugation symmetry, C : fkiσ → f†−ki−σ.
Note that T is also accompanied by complex conjugation.
While T flips the spin operator Si = 1

2f
†
i σfi, C leaves

it invariant. To leave the Hamiltonian invariant under
these symmetry operations, we may need to supplement
the symmetries with additional gauge transformations;
hence, the symmetry is implemented projectively. For a
U(1)-symmetric ansatz, the gauge factors can be conve-
niently chosen to be ±1. For example, Tx is implemented
as

Tx : fr,1 → −fT−1
x r,2

, fr,4 → f
T−1
x r,3

fr,2 → −fTxr,1, fr,3 → fTxr,4 (C6)

and the other transformations can be found similarly:

Rx : fr,1,3 → fRxr,2,4, fr,2,4 → −fRxr,1,3 (C7a)

C4 : fr,1 → −fC4r,2, fr,2,3,4 → fC4r,3,4,1 (C7b)

T : fk1,3 → f†k1,3, fk2,4 → f†k2,4 (C7c)

C : fkn↑ → f†−kn↓, fkn↓ → −f†−kn↑ (C7d)

From the form of Eq. (34), we can now deduce the action
of a symmetry generators on the continuous fields:

Tx = µy, (C8a)
Rx = iµzτy, (C8b)

C4 =
1

2
(µx + µy)(1 + iτz). (C8c)

For example, under Tx, we have ψ → Txψ. Likewise,
for time-reversal and charge-conjugation symmetries, we
find

T : ψ → −µzτz(ψ†)T , (C9a)

C : ψ → σyµxτx(ψ†)T . (C9b)
With the symmetries now defined, we can determine how
the fermion bilinnears split into irreducible representa-
tions. Further details, including background on repre-
sentation theory and the structure of C ′4v, can be found
in Ref. 59.

Appendix D: Continuum phonon self-energy

In order to find

Πxy(q, iΩm) = −1

2

∫
k,ωn

2 · Tr
[
λyk,qG(k, iωn)λxk+q,−qG(k + q, iωn + iΩm)

]
= −1

2

∫
k,ωn

2 · Tr
[
λyk,qG(k, iωn)λxk,−qG(k + q, iωn + iΩm)

]
+O(q3), (D1)

it will be convenient to first define

Π̃αβ
γδ···(q, iΩm) =

∫
k,ωn

Tr
[
(kγkδ · · · )ταG(k, iωn)τβG(k + q, iωn + iΩm)

]
(D2)

because Πxy(q, iΩm) is a linear combination of terms of the form q2Π̃. As with the vertex in Eq. (57), we can make
simplifications based on the fact that we are working in the linear-response regime. We only consider terms of order
Ωm and q2 in Πxy for the Hall viscosity, so we just have to keep terms of order O(Ω1

m), O(q0) in Π̃. We can also
observe that of the 25 possible contractions of terms between λy and λx, most will not contribute to the Hall viscosity,
either because they will be symmetric or because they contain spinon momentum terms like kxky, which vanish after
integrating over k. The end result is that

Πxy(q, iΩm) = q2(g1g2 − g3g4)Π̃21
xx − q2g0(g2 − g3)(m+M)Π̃31

y . (D3)
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Here, we used Π̃αβ
xx = Π̃αβ

yy and Tr
[
τατβτγ

]
= 2iεαβγ to simplify the result. Including only the antisymmetric terms

(under 2↔ 1) and terms of order O(Ω1
mq

0), we can evaluate Π̃21
xx as

Π̃21
xx(q, iΩm) =

∫
k,ωn

2mΩmk
2
x

(ω2
n + k2 +m2)((ωn + Ωm)2 + (k + q)2 +m2)

(D4)

=

∫ 1

0

du

∫
k,ωn

2mΩmk
2
x

[u(ωn + Ωm)2 + (1− u)ω2
n + k2 + u(1− u)q2 +m2]2

+O(q2), (D5)

where we have introduced Feynman parameters in the second line and shifted k → k − uq. Due to the Pauli matrix
contractions, we have

Π̃31
y (q, iΩm) = −

∫ 1

0

du

∫
k,ωn

2Ωmk
2
y

[u(ωn + Ωm)2 + (1− u)ω2
n + k2 + u(1− u)q2 +m2]2

= − Π̃21
xx(q, iΩm)

m
. (D6)

Continuing, we define ∆(u) = u(ωn + Ωm)2 + (1− u)ω2
n + u(1− u)q2 +m2, so that

Π̃21
xx(q, iΩm) = 2mΩm

∫ 1

0

du

∫
ωn

dkxdky
4π2

k2
x

[k2 + ∆]2
. (D7)

Imposing a UV cutoff Λ and taking the limit T → 0, we obtain

Π̃21
xx(q, iΩm) =

mΩm
8π

∫ 1

0

du
(

Λ− 2
√
u(1− u)q2 +m2

)
+O(Ω2

m). (D8)

Now taking the q → 0 limit, we get

Π̃21
xx(q, iΩm) =

mΩm
8π

(Λ− 2|m|) (D9)

so that, using Eq. (56),

Πxy(q, iΩm) = q2(g1g2 − g3g4)
mΩm

8π
(Λ− 2|m|) + q2g0(g2 − g3)(m+M)

Ωm
8π

(Λ− 2|m|) (D10)

=⇒ ηH =
1

4πL2
[(g1g2 − g3g4)m+ g0(g2 − g3)(m+M)] (Λ− 2|m|). (D11)

Now, to obtain the finite-temperature result, we go back to Eq. (D7) to calculate

Π̃21
xx(q, iΩm) = 2mΩm

∫ 1

0

du

∫
ωn

dkxdky
4π2

k2
x

[k2 + ∆]2
(D12)

= 2mΩm

∫ 1

0

du

∫
dkxdky

4π2

k2
x

4ξ3
k

· (1− 2nF (ξk) + 2ξkn
′
F (ξk)) +O(q,Ω2

m), (D13)

where we have evaluated the Matsubara sum—which is of the same form as for the lattice calculation—and defined
ξk ≡

√
k2 +m2. Proceeding with the integral over u, we arrive at

Π̃21
xx(q, iΩm) = mΩm

∫ Λ

0

dk · 2πk
16π2

k2

ξ3
k

· (1− 2nF (ξk) + 2ξkn
′
F (ξk)) (D14)

=
mΩm

4π

(
−|m| − 2T log

(
1 + e−|m|/T

))
+
mΩm

8π
DΛ(m,T ), (D15)

where we have defined the function

DΛ(m,T ) ≡
Λ2

(
2

e

√
Λ2+m2

T +1

− 3

)
− 2m2

√
Λ2 +m2

+ 4T log

(
e

√
Λ2+m2

T + 1

)
. (D16)
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This brings us to

Πxy(q, iΩm) = q2 [(g1g2 − g3g4)m+ g0(g2 − g3)(m+M)]
Ωm
8π
·
(
DΛ(m,T )− 2|m| − 4T log

(
1 + e−|m|/T

))
(D17)

=⇒ ηH =
1

4πL2
[(g1g2 − g3g4)m+ g0(g2 − g3)(m+M)] ·

(
DΛ(m,T )− 2|m| − 4T log

(
1 + e−|m|/T

))
. (D18)

In the limit m,T � Λ, we have DΛ(m,T ) → Λ + 4T log
(
1 + e−Λ/T

)
, and we can write the expression for ηH in the

continuum, at finite temperature, as

ηH =
1

4πL2
[(g1g2 − g3g4)m+ g0(g2 − g3)(m+M)] ·

(
Λ + 4T log

(
1 + e−Λ/T

)
− 2|m| − 4T log

(
1 + e−|m|/T

))
,

(D19)

the zero-temperature limit of which is in agreement with
Eq. (D11). The finite-temperature continuum result al-
lows us to rewrite the cutoff independent part of ηH as

ηH ∼ |m|+ 2T log
(

1 + e−|m|/T
)

= |m|+ 2T log
(

2e−|m|/2T cosh(|m|/2T )
)

= 2T log(2 cosh(|m|/2T )), (D20)

which leads to Eq. (63). We observe that ηH is analytic
at all T > 0 as cosh is an analytic and even function.

From Eq. (D18) above, we see that ηH scales with the
effective couplings g1g2 − g3g4 and g0(g2 − g3). This can
be understood in the representation-theoretic framework.
Writing out the gis in terms of irreducible representations
as defined at the end of Sec. VB, we find that both com-
binations

g1g2 − g3g4 ∝ gA1
gA2

+ gB1
gB2

, (D21a)
g0(g2 − g3) ∝ gA1

gA2
, (D21b)

transform under the A1 ⊗A2 = B1 ⊗B2 = A2 represen-
tation of C4v. Now, we expect ηH to transform trivially
under all symmetries (under A1) as the phonon effec-
tive action must be invariant under all symmetries. This
still holds true because ηH can only exist in the pres-
ence of broken reflection symmetry, in which case, the

symmetry of the phonon action is reduced C4v → C4,
and the A2 of C4v descends to the trivial A1 of C4. As
a result, ηH has only one independent component with
C4 symmetry. More precisely, as the four-indexed Hall
viscosity tensor is antisymmetric upon exchanging pairs
of indices (phonon modes) while it is symmetric for ex-
change within each pair, we know that it has to trans-
form under the antisymmetric A1 tensor representation,
which we denote Aa1 . Since the phonon field transforms
under the vector representation E1, this means that the
independent component(s) of ηH correspond to the com-
ponent(s) of Aa1 within

∧2
Sym2(E1) (with Sym2 and

∧2

denoting the symmetrized and antisymmetrized tensor
product, respectively). In our ansatz, we can illustrate
this algebraically as∧2

Sym2(E1) =
∧2

(A1 ⊕B1 ⊕B2) = Aa2 ⊕Ba1 ⊕Ba2 ,
(D22)

in C4v, which descends to Aa1 ⊕ 2Ba1 in C4, so the Hall
viscosity has one component. This procedure can also be
carried out for other lattices. For example, as was shown
for phonons with C6v symmetry [60] on the honeycomb
lattice, we have∧2

Sym2(E1) =
∧2

(A1 ⊕ E2) = Aa2 ⊕ Ea2 , (D23)

which descends to Aa1⊕Ea2 in C6, giving one independent
component of ηH . As Aa2 originated from E2 ⊗ E2, we
know that ηH must scale as g2

E2
.
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