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We examine pinning and dynamics of Abrikosov vortices interacting with pinning centers placed
in a moiré pattern for varied moiré lattice angles. We find a series of locking angles at which the
critical current shows a pronounced dip corresponding to lattices in which the vortices can flow
along quasi-one-dimensional channels. At these locking angles, the vortices move with a finite Hall
angle. Additionally, for some lattice angles there are peaks in the critical current produced when
the substrate has a quasiperiodic character that strongly reduces the vortex channeling. Our results
should be general to a broad class of particle-like assemblies moving on moiré patterns.

I. INTRODUCTION

Moiré patterns are produced by the interference effects
that occur when two identical lattices are placed on top
of each other and then one of the lattices is shifted or
rotated1,2. In condensed matter systems, such patterns
can appear in a double layer system when one layer is
rotated with respect to the other. For certain rotation
angles, large scale superlattice ordering occurs that can
strongly affect the electronic properties, as found in bi-
layer graphene3–5. Here we present a study of the pin-
ning and dynamics of assemblies of particles interacting
with moiré pinning patterns. We find that, as the moiré
pattern is varied, qualitatively new transport patterns
emerge for certain locking twist angles, giving rise to en-
hanced longitudinal and transverse (Hall) particle cur-
rents.

One of the most ideal systems for studying pinning
and sliding dynamics on different types of pattered sub-
strates is vortices in type-II superconductors. In this
system, a variety of nanostructuring techniques can
be used to realize different pinning array geometries
including square6–12, triangular8,11,13, rectangular14–16,
diluted17,18, quasicrystalline19,20, frustrated21–23, confor-
mal crystal24,25, and other structures26. The pinning
and dynamics can be measured by examining the crit-
ical current and transport curves or by direct imaging
of the vortex configurations or trajectories. Many of
the results found for vortex pinning and motion can
also be generalized to other particle like systems in-
teracting with ordered substrates, such as vortices in
Bose-Einstein condensates27, colloidal assemblies28–31,
skyrmions32, and frictional systems33.

A variety of bilayer materials exist that can support
superconducting vortices which interact with what is ef-
fectively a moiré substrate. It would be interesting to
understand if such a system can exhibit a spontaneous
Hall angle for the vortex motion, the nature of the vortex
movement, and how the critical current might differ for
different driving directions. Several recent works have

examined skyrmions on moiré patterns34–36 and these
systems could exhibit depinning under a drive. Since
skyrmions and vortices have many similarities, their be-
havior on a moiré pinning array may also show similari-
ties.

Moiré substrates are of interest since they permit the
coexistence of multiple length scales even though the in-
dividual pinning sites in each layer have only a single
length scale. A variety of novel sliding states could arise
due to the multiple symmetry directions, making it pos-
sible for superconducting vortices to flow in the direc-
tion of driving or along one of the symmetry directions
of the moiré lattice. Similar effects could occur for any
type of particle-based system driven over a moiré sub-
strate. It should be possible to create a variety of differ-
ent moiré patterns in superconductors using currently ex-
isting nanostructuring techniques that have already been
employed to generate conformal, periodic, and quasiperi-
odic pinning arrays. For the latter pinning geometries,
predictions from simulations and theory were confirmed
in multiple experiments.

In a superconducting vortex system, the pinning prop-
erties are typically examined as a function of the mag-
netic field by varying the number of vortices on a fixed
number of pinning sites. For vortices interacting with a
moiré pinning array, an additional parameter is impor-
tant beyond the vortex and pinning density: the angle
θ between the two lattices that make up the moiré pat-
tern. Here we examine vortex pinning and motion in a
system with moiré pinning composed from two triangu-
lar pinning lattices rotated by an angle θ with respect to
each other. As a function of θ, we observe a rich variety
of pinning and vortex dynamics that are associated with
dips and peaks in the critical current. At commensurate
angles where an ordered interference pattern appears, the
critical current exhibits a series of dips, and the vortices
flow in ordered quasi-one-dimensional channels. At in-
commensurate angles, these flow channels break apart.
Along the commensurate angles, the vortices develop a
finite Hall angle due to the guidance or locking of the vor-
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tex motion to the moiré pattern. We also find that for
other angles, peaks in the critical current appear when
a quasicrystalline structure forms in the pinning lattice
which strongly suppresses easy flow channeling of the vor-
tices. As a greater number of van der Waals type systems
are studied, a number of cases could arise in which de-
pinning, friction, flow, and pinning on a moiré substrate
could arise. Our results are of interest for understanding
the flow of vortices, colloidal particles, skyrmions, and
Wigner crystals on such moiré substrates.

II. SIMULATION

We model a system of Nv vortices interacting with a
moiré pattern of pinning sites. The equation of motion
for vortex i is given by

η
dR

dt
= Fvv

i + Fp
i + Fd + FT

i . (1)

Here η = 1 is the damping coefficient and the time step
is set to dt = 0.008. The repulsive vortex-vortex interac-
tion force has the form Fvv

i =
∑
F0K1(Rij/λ)R̂ij , where

K1 is the modified Bessel function, Rij is the distance be-
tween vortex i and vortex j, F0 = φ20/2πµ0λ

3 = 8.0/λ3,
and λ is the penetration depth which we set equal to
λ = 1.8. We consider a system of size L×L with L = 20λ
and with periodic boundary conditions in the x and y di-
rections. The vortex density is nv = Nv/L

2. The pinning

force is given by F p
i = −

∑Np

k=1 FpRik exp(−R2
ik/r

2
p)R̂ij

where we fix rp = 0.6. The pinning sites are arranged
in two identical triangular lattices with a lattice con-
stant of 1.8, and the lattices are rotated with respect
to each other by an angle θ. We consider θ = 0 to
θ = 30◦ in increments of δθ = 0.1◦. In Fig. 1 we il-
lustrate some representative moiré pinning structures for
varied angles θ = 5.0◦, 9.4◦, 13.2◦, and 21.8◦ between
the two lattices, which are colored blue and orange. The
pinning sites form a superlattice with a superlattice con-
stant that decreases as θ increases. The thermal forces
arise from Langevin kicks with the following properties:
〈FT

i (t)〉 = 0.0 and 〈FT
i (t)FT

j (t′)〉 = 2ηkBTδijδ(t − t′).
The initial vortex configurations are obtained by starting
from a high temperature liquid state and cooling down to
0K in 80 intervals, where we wait 104 time steps during
each interval. After annealing we apply a drive in the
form of a Lorentz force FD = (J × ẑ)φ0d which produces
vortex motion along the x direction.

We obtain the critical current by measuring the total
vortex velocity Vx = N−1t

∑
t

∑
i x̂ · vi, where Nt is the

total number of time steps and vi is the vortex velocity.
When Vx exceeds a threshold where non-trivial steady
state vortex motion occurs, the system is defined as be-
ing depinned. We obtain the depinning force using a
binary search technique. The simulations are performed
using a parallelized code, and we typically consider 3000
configurations for each of 300 different values of θ and 10
different vortex densities. Some representative annealed

FIG. 1. The pinning array structures for two triangular lat-
tices where the blue lattice is kept fixed and the orange lattice
is rotated by an angle θ of (a) 5.0◦, (b) 9.4◦, (c) 13.2◦ and
(d) 21.8◦.

FIG. 2. Vortex configurations after annealing for a system
with 100 vortices (density nv = 0.25) for θ = (a) 5◦, (b) 15◦,
and (c) 25◦. Blue dots: pinning site centers for a hexagonal
lattice. Orange dots: a second hexagonal lattice rotated by
θ. Large dots: vortices.

vortex configurations for varied vortex density and θ ap-
pear in Fig. 2 for a sample with 100 vortices at nv = 0.25,
in Fig. 3 for a sample with 300 vortices at nv = 0.75, and
in Fig. 4 for a sample with 1000 vortices at nv = 2.5.

III. RESULTS

In Fig. 5(a) we plot the critical current Fc versus θ for
the system in Fig. 1 at vortex densities of nv = 0.25 to
2.5 in increments of 0.25. Here the overall critical current
decreases with increasing vortex density and there are a
series of dips at specific angles. The initial peak in Fc at
θ = 0.0◦ appears when the pinning sites form a triangular
lattice. We have also tested these results for different
system sizes and we find that the angles at which the
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FIG. 3. Vortex configurations after annealing for a system
with 300 vortices (nv = 0.75) for θ = (a) 5◦, (b) 15◦, and (c)
25◦. Blue dots: pinning site centers for a hexagonal lattice.
Orange dots: a second hexagonal lattice rotated by θ. Large
dots: vortices.

FIG. 4. Vortex configurations after annealing for a system
with 1000 vortices (nv = 2.5) for θ = (a) 5◦, (b) 15◦, and (c)
25◦. Blue dots: pinning site centers for a hexagonal lattice.
Orange dots: a second hexagonal lattice rotated by θ. Large
dots: vortices.

FIG. 5. (a) The critical current Fc vs θ for the system in Fig. 1
at varied vortex densities of nv = 0.25 to 2.5 in increments
of 0.25. (b) Fc vs θ at nv = 1.25, showing dips at θ = 9.4◦,
13.2◦ and 21.8◦ as well as a peak near 28◦. The letters a, b,
c, and d correspond to the locations of the images in Fig. 7.

FIG. 6. Critical current Fc vs θ in samples of size (a) L = 16λ
and (b) L = 24λ.

dips and peaks occur are insensitive to system size, as
shown in Fig. 6.

Figure 5(b) shows Fc versus θ for the samples with
nv = 1.25, where dips in Fc appear at θ = 9.4◦, 13.2◦,
and 21.8◦. In a moiré pattern formed from two triangular
lattices, ordered or commensurate structures occur at the
following angles5,37:

cos(θ) =
3p2 + 3pq + q2/2

3p2 + 3pq + q2
, (2)

where p and q are integers. The values p = 1 and q = 1
correspond to θ = 21.786◦, p = 2 and q = 1 correspond
to θ = 13.7◦, and p = 3, q = 1 corresponds to θ =
9.4◦. The dips we observe in the critical current match
these commensurate angles. Due to the symmetry of the
system, the features in Fig. 5 repeat in the range θ = 30◦

to θ = 60◦.
In Fig. 5(b), letters highlight the values of θ at which

the vortices are just able to depin, as illustrated in
Fig. 7, where the color code corresponds to different
times. Figure 7(a) shows the trajectories at θ = 9.4◦

and Fd = 1.5, where the vortices flow in a series of quasi-
one-dimensional channels along the edges of the super-
lattice. In Fig. 7(b), at θ = 13.2◦ and Fd = 1.5, a
similar set of trajectories form in which the motion fol-
lows the superlattice edge. Since the superlattice spac-
ing decreases with increasing θ, the number of possible
quasi-one-dimensional channels for motion increases with
increasing θ. In Fig. 7(c), the trajectories at a non-
commensurate angle of θ = 17◦ and Fd = 2.0 are much
more disordered. At θ = 21.8◦ and Fd = 1.5 in Fig. 7(d),
the vortex motion again follows well-defined channels. In
general, the flow at incommensurate angles has reduced
channeling compared to the flow at commensurate an-
gles.
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FIG. 7. The vortex positions (dots) and trajectories (lines)
just above depinning for the system in Fig. 5(b) with nv =
1.25. Different colors indicate the motion of different individ-
ual vortices. (a) θ = 9.4◦ and Fd = 1.5, where quasi-one-
dimensional flow patterns form. (b) θ = 13.2◦ and Fd = 1.5,
with easy flow channeling. (c) θ = 17◦ and Fd = 2.0, an
incommensurate angle showing more disordered channeling.
(d) θ = 21.8◦ and Fd = 1.5, where there is strong channeling.

FIG. 8. (a) The pinning site arrangement for the system in
Fig. 5(b) at θ = 27.9◦ where a peak appears in the critical
current near nv = 1.25. Here the substrate has considerable
five-fold ordering or quasiperiodic type ordering. (b) The vor-
tex flow pattern over the pinning sites at FD = 2.0, showing
a lack of ordered motion. Different colors indicate the motion
of different individual vortices.

In addition to dips at the commensurate angles, we
also find peaks in Fc in Fig. 5. The most prominent peak
of this type occurs near θ = 27.9◦ for vortex densities
near nv = 1.25. In Fig. 8(a) we illustrate the pinning
site configurations at this angle, where we find features
such as five-fold ordering similar to those observed in qua-

FIG. 9. The transverse velocity 〈Vy〉 vs θ for the system in
Fig. 5(b) at Fd = 1.5, 2.0, 2.5, and 3.0, from bottom to top.
There are strong transverse velocities at the commensurate
angles, which correspond to the dips in the critical current.

sicrystals. Figure 8(b) shows that the vortex trajectories
over this substrate just above depinning have strongly
reduced channeling. For triangular moiré patterns, the
most incommensurate angle corresponds to θ = 30◦5.
In our system we generally find a small dip in the crit-
ical current when θ = 30◦, while the peak in Fc falls
at θ = 27.9◦ The downward shift of the peak location
could be a result of the finite size of the pinning sites
or of the vortex-vortex interactions which can produce a
collectively moving state.

When vortex channeling occurs, we find a finite Hall
effect or transverse motion due to the fact that the easy
flow channels are at an angle to the driving direction, as
shown in Fig. 7. In Fig. 9 we plot 〈Vy〉 versus θ for the
system in Fig. 5(b) at Fd = 1.5, 2.0, 2.5, and 3.0. Peaks
in the Hall velocity appear at θ = 21.8◦ and 13.7◦, with
a weaker channeling effect at θ = 9.4◦. There is also an
extended region from 12◦ < θ < 23◦ in which some bi-
ased flow in the y direction occurs as Fd increases. The
vortex flow is generally more ordered for θ < 12◦ even
at incommensurate angles since the vortices follow large
scale zig-zag patterns, as is shown for θ = 6.6◦ in Fig. 10.
Experimentally it is possible to measure transverse vor-
tex motion with various techniques38,39. Although we
find strong variations in the critical current as a function
of the angle θ, we do not observe pronounced features
as a function of field. Instead, Fc generally decreases
smoothly with increasing nv except for a jump down
when the number of vortices crosses from less to more
than the number of pinning sites, as shown in Fig. 11.

The presence of anisotropy and Hall transport is a
direct consequence of the geometrical moiré pattern,
emerging from the two rotated triangular lattices, which
allows certain easy flow directions to arise that do not
necessary align with the direction of drive. This effect
can also occur for systems with only a single periodic sub-
strate lattice, such a triangular lattice where the motion
can follow the easy flow directions of 30◦ or 60◦40,41. In
the case of the moiré substrate, the locking angles serve
as easy flow directions for vortex motion. Directional
locking can also be observed by rotating the direction of
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FIG. 10. Vortex trajectories at θ = 6.6◦, nv = 1.25, and
Fd = 3.0.

FIG. 11. Critical current Fc vs magnetic field nv for θ = 9.4◦,
13.2◦, and 21.8◦. There is a drop in Fc when Nv/Np > 2.0.

drive and observing the enhanced locking flow when the
drive matches these locking angles. Some experimental
geometries that could be used to measure the transverse
voltage include cross-shaped contacts of the type used for
studying vortex flow over periodic pinning38,42,43. It is
also possible that at high drives, the driving force would
overwhelm the substrate energy and the transverse re-
sponse would drop as the vortices begin to move along
the driving direction instead of along the locking angles.

Our results could be tested using vortices on nanopat-

terned arrays or for pinning sites created using multiple
Bitter decorations44. They could also be applied to col-
loids interacting with optical traps, where it would be
possible to change θ as a function of time. Additionally,
there are proposals that the insulating state in some bi-
layer systems consists of a Wigner crystal that could un-
dergo depinning transitions in which the threshold could
exhibit dips at the commensurate angles45,46.

IV. SUMMARY

We have examined the pinning and dynamics of vor-
tices interacting with a moiré pattern consisting of two
triangular pinning lattices that are rotated with respect
to each other. We find a series of dips in the critical
current corresponding to commensurate locking angles
where the system forms an ordered superlattice and the
vortices follow easy flow quasi-one-dimensional channels.
We also find that for some incommensurate angles, the
substrate has a quasicrystalline structure and there is a
peak in the critical current due to the suppression of vor-
tex channeling. Dips in the critical current are correlated
with the appearance of a finite Hall angle for the vortex
motion when the channeling motion occurs at an angle
with respect to the driving direction. Our results could
be tested for vortices or colloids on moiré substrates.
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