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(Dated: July 13, 2021)

We derive spin-orbital Hamiltonians for cubic double perovskite A2MM′O6 Mott insulators with
5d1 or 5d2 magnetic M′ ions and non-magnetic M ions. We find that strong spin-orbit coupling,
exchange and inter-site Coulomb repulsion lead to orbital order at a temperature To higher than
the magnetic Tc. Orbital order produces a T -dependent moment below To and stabilizes canted
ferromagnetic (FM) and non-collinear antiferromagnetic (AFM) states below Tc. We explain many
experimental puzzles including loss of entropy above Tc, deviations from a Curie-Weiss susceptibility,
a negative Curie-Weiss intercept for FM systems, and why FM order is common in cubic 5d1

materials but all 5d2 systems are AFM.

Introduction: The interplay between spin-orbit coupling
(SOC) and strong correlations has provided a new plat-
form to study exotic phases of matter, including quantum
spin liquids and topological semimetals.1,2 It is thus im-
portant to better understand the nature of orbital and
magnetic interactions and the resulting broken symme-
tries, or lack thereof, in 4d and 5d transition metal oxides,
before understanding their topological properties. While
iridiates with 5d5 configuration have received a great deal
of attention,2 other fillings realized in oxides of Re and
Os are much less studied.

We focus here on cubic double perovskites A2MM′O6,
with magnetic M′ ions in the 5d1 or 5d2 configuration
and non-magnetic M. These materials are Mott insula-
tors as large separation between M′ ions on the FCC
lattice leads to a small bandwidth relative to the on-site
Coulomb repulsion. As we shall see, in the presence of
strong SOC, exchange and inter-site Coulomb repulsion
lead to an unusual orbital ordering onsets at a high tem-
perature, which strongly constrains the magnetic inter-
actions and the nature of the magnetic ordering.

Puzzles: Our work is motivated by the following puzzles:
(1) Why is there a predominance of FM order in cubic 5d1

double perovskites, but no known examples of ferromag-
netism in 5d2 double perovskites? For instance, the 5d2

compounds Ca3OsO6
3, Ba2CaOsO6

4, and Sr2MgOsO6
5,6

all exhibit AFM order. Many 5d1 (undistorted) cu-
bic systems, such as Ba2NaOsO6

7, Ba2ZnReO6
8, and

Ba2MgReO6
8 are FM, with the possible exception of

Ba2LiOsO6
7 which is cubic and AFM.

(2) In 5d1 materials, the single electron in the t2g orbitals
is in a j=3/2 state with 4 degenerate levels. Why then is
the entropy recovered across the magnetic transitions in
cubic compounds, e.g., Ba2NaOsO6

9 and Ba2MgReO6
8,

only R ln 2 and not R ln 4?
(3) There are several puzzling features in the magnetic
susceptibility χ of 5d1 materials above Tc, which are not
understood. First, its high temperature behavior devi-
ates strongly from the Curie-Weiss (CW) form χ(T ) =
µ2

eff/[3kB(T −Θ)] in some materials8. Second, when the
CW form does fit the data over a temperature range,
the extracted Θ < 0, characteristic of AFM interactions,
even though χ(T ) diverges at Tc > 0 below which FM

order develops; e.g. in Ba2NaOsO6
9, Ba2MgReO6

8, and
Ba2ZnReO6

8.
Previous works on 5d1 or 5d2 double perovskites

have used density functional theory (DFT)10–14 and
model Hamiltonian approaches15–19. Our work builds on
refs.15,16 to address the finite temperature issues high-
lighted above that have not been addressed earlier; we
discuss below the differences between our results and ear-
lier works; see also Appendix A.
Main results: We derive an effective spin-orbital Hamilto-
nian for double perovskite systems and based on a mean
field analysis we find the following:
(a) Orbital ordering occurs at To that is always higher
than the magnetic Tc independent of choice of param-
eters. We note that orbital ordering in the L-S basis
is essentially equivalent to quadrupolar order in the J-
basis. While To is determined by both inter-site, orbital-
dependent Coulomb repulsion V and superexchange in-
teractions, only the latter determines the scale of Tc.
(b) The full recovery of entropy R ln 4 does not occur at
the magnetic Tc, but only above the orbital transition To.
(c) The onset of orbital order leads to T -dependent or-
bital occupancies, and thus a T -dependent effective mo-
ment µeff(T ). This is the origin of the strong deviations
from CW behavior in the high T susceptibility.
(d) The orbital order determines the nature of magnetic
interactions that are frustrated on an FCC lattice. This
stabilizes non-collinear magnetic order. For d1 systems,
a canted FM state dominates in the large SOC limit,
though a 4-sublattice AFM state is also possible in a
small parameter regime.
(e) For d2 systems, the occupied-to-occupied AFM su-
perexchange pathways dominate over the occupied-to-
empty FM superexchange, stabilizing AFM phases.

d1 Systems: We focus on the t2g orbitals of the M′ ions.
The Hamiltonian has four terms, the first of which de-
scribes the electronic structure in the t2g manifold:

HTB = −t
∑
α

∑
〈ij〉∈α

∑
σ

c†i,α,σcj,α,σ + h.c.. (1)

Here 〈ij〉 denotes nearest-neighbor (NN) M′ sites, σ la-
bels spin and the orbital index α ∈ {yz, zx, xy} also la-
bels planes in the FCC lattice of M′’s, since electrons in
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FIG. 1. (a) FCC lattice with four sites used in our mean field theory shown by four different colors. (b) Orbital ordering for d1

systems driven by V and JSE. Orbitals with the largest (smaller) occupancy are in solid (lighter) colors; the lowest occupancy
orbital is not shown. Orbital order constrains the orientation (but not the sign) of ±L. The magnetization M = 2S − L is
also shown. (c) The T = 0 phase diagram: The orbital L (solid arrows) and spin S moments (semi-transparent arrows) are
collinear in each plane, but rotated by ' 90◦ between planes, due to the orbital ordering pattern. (d) Orbital occupancies as
a function of temperature for JSE = V = λ/20 for the black and yellow sites. The nyz orbital (red) has the largest occupancy
followed by the xy orbital (blue) and then zx (green). (e) L and S moments in the 4-sublattice AFM state.

xy orbitals hop only in the xy plane, and similarly for
other corresponding planes. Second, the multi-orbital

on-site Coulomb interaction HU =
∑
iH

(i)
U , with

H
(i)
U =(U−3JH) 1

2Ni(Ni−1)+JH
(

5
2Ni − 2S2

i − 1
2L

2
i

)
(2)

where U is the Coulomb repulsion and JH is Hund’s cou-
pling20. Third, the unquenched t2g orbital angular mo-
mentum l = −1 results in SOC: HSO = −λ

∑
iLi · Si.

Fourth, the large spatial extent of 5d orbitals leads to
inter-site Coulomb repulsion

HV =V
∑
α

∑
〈ij〉∈α

[
9
4n

α
i n

α
j − 4

3 (nβi − n
γ
i )(nβj − n

γ
j )
]
, (3)

in the electric quadrupole approximation15. Here the or-

bital occupation nαi =
∑
σ c
†
i,α,σci,α,σ. The interaction

depends on the relative directionality between neighbor-
ing orbitals, e.g., a pair of xy orbitals in the xy-plane
repel each other more than an xy and yz orbital.

Using parameter estimates9,10 of the the hopping (be-
tween NN M′ sites in A2MM′O6) t ' 50− 100 meV and
the Coulomb interaction U ' 3 eV, we see that we are in
a Mott regime (U � t). A strong coupling expansion of
HTB +HU leads to the superexchange (SE) Hamiltonian

HSE = −JSE

4

∑
α

∑
〈ij〉∈α

{
r1( 3

4 + Si · Sj)(nαi − nαj )2

+( 1
4 − Si · Sj)

[
r2(nαi + nαj )2 + 4

3 (r3 − r2)nαi n
α
j

]} (4)

where JSE = 4t2/U and the strength of Hund’s coupling
is characterized by r1 = (1 − 3η)−1, r2 = (1 − η)−1,
r3 = (1 + 2η)−1 with21 η = JH/U . The first line of
Eq. (4) describes FM spin interactions when one of the
two orbitals is occupied while the other is unoccupied.
The second line of (4) describes an AFM spin interac-
tion that is maximized when both orbitals are singly oc-
cupied. JH/U determines the relative strength of these
two interactions. Additionally, there is an effective or-
bital repulsion nαi n

α
j for JH 6=0.

The low-energy effective Hamiltonian is Heff = HSO +
HV + HSE, whose largest energy scales is the SOC λ∼
0.4 eV for 5d oxides22,23 The SE JSE ∼ 10 meV using
t∼100 meV and U∼3 eV. JH/U is known24 to be ' 0.2.
The inter-site repulsion V is not known reliably but could
be comparable to or larger than SE.25

We find it is useful to work in the L-S basis, rather
than projecting down to the j=3/2 subspace. This gives
a more transparent understanding of the orbital order-
ing (symmetry equivalent to quadupolar ordering15; See
Appendix A).The j = 3/2-1/2 mixing will also allow to
us to understand the T -dependent effective moment and
the unusual high temperature susceptibility.

We analyze Heff using a four-site mean field theory
(MFT); see Fig. 1(a). At each site i there are 15 mean
fields 〈Si〉, 〈nαi 〉 and 〈Sinαi 〉, and 4 constraints

∑
α〈nαi 〉=

1 and
∑
α〈Sinαi 〉= 〈Si〉. We solve for 4 × (15−4) = 44

variables to find the lowest energy solution of the MFT
equations; see Appendix B.



3

Orbital Ordering: At high temperatures nyz = nzx =
nxy = 1/3. There is an onset of orbital ordering, with
preferential orbital occupancy (see Figure 1(d)), at tem-
perature To determined by both V and JSE. Moreover,
we find that V and JSE, individually and together, lead to
the same orbital ordering pattern. Magnetic order devel-
ops at a Tc determined by JSE, with Tc < To independent
of parameters26; see Appendix D.

Figure 1(b) shows the orbital ordering pattern. On
each site we only show the two orbitals with significant
occupancy, with the lowest occupancy orbital omitted.
For the two sites in the lower plane, these are the yz and
xy orbitals; while for the two sites in the upper plane the
roles of yz and zx orbitals are reversed.

We now discuss how orbital ordering explains the puz-
zles highlighted in the Introduction.
(a) Entropy: L and S add up to j = 3/2 with a high
temperature entropy of R ln 4. Below To, orbital ordering
splits the j = 3/2 quartet into two Kramers doublets,
leading to an R ln 2 entropy. The remaining spin entropy
is released at Tc, consistent with experiments8,9.
(b) Local Moments: Naively, the local magnetic mo-

ment vanishes in d1 systems. The t2g orbital has effective
L=−1 and S=1/2 leading to M = 2S −L = 0. Equiv-
alently, the projection of M to the j = 3/2 subspace is
zero. The observed non-zero moment arises from a com-
bination of the reduction13,14 of the orbital moment due
to (a) covalency with oxygen; (b) dynamical Jahn-Teller
effects, and (c) orbital ordering. As we show here, (c)
also explains the strong T -dependence of the local mo-
ment not easily understood in terms of (a) and (b).

Note that full orbital polarization (nαi = 1 for some α
and zero for others) is time-reversal invariant and does
not generate an L. However, SOC creates a superposition
of orbitals instead of the occupancy being concentrated
in a single orbital. The resulting partial occupancy of
at least two orbitals as in Fig. 1(d) then allows for the
development of L, pointing along the intersection of the
two occupied planes with direction (e.g., ±x) selected by
the spin interactions characterized both by JH/U and
the magnitude of the orbital order parameter.

One of our key results is that orbital order results in
j = 3/2-1/2 the mixing, leading to a T -dependent mo-
ment, even in the absence of covalency with oxygen,
which has not been recognized so far. To understand this
general result, it is useful to look at the limit JSE = 0,
with Tc=0 and orbital order driven by V , where we can
find analytical results; see Appendix E. We find that the
orbital ordering shown in Fig. 1(b) leads to a local mo-
ment µeff(T ) = 172V |δnx(T )|µB/9λ. The orbital order
parameter δnx(T ) = 〈nyz〉 − 1

3 (for the most occupied
orbital) leads to the T -dependence of µeff(T ).
(c) Magnetic Susceptibility: We find that orbital order

impacts the susceptibility χ(T ) in two ways. First, the
reduced symmetry leads to an anisotropic response, so
that χ is enhanced in the ordering planes but reduced in
the perpendicular direction. Second, χ(T ) deviates from
CW behavior due to the T -dependence of the effective

moment µeff , and has a negative Θ as shown in Fig. 2.

without

hybridization

with

hybridization

1 2 3 4
0

1

2

3

4

5

kBT / V

χ

To

1 2 3 4
0

2

4

6

8

10

kBT / V

χ

To

1 2 3 4
0

0.2

0.4

0.6

0.8

1

kBT / V

χ
-
1

To

1 2 3 4
0.

0.1

0.2

0.3

0.4

0.5

kBT / V

χ
-
1

To

FIG. 2. Temperature dependence of the susceptibility, χ =
1
3
(χxx + χyy + χzz), and 1/χ(T ). Hybridization with sur-

rounding oxygen atoms modifies the g-factor M = 2S − γL.
Left panels: No hybridization (γ = 1), so there are no local
moments above To and moments are formed only as a result
of orbital order (see text). Right panels: with hybridization
γ = 0.536. We have chosen JSE = 0 (so that Tc = 0) to illus-
trate the impact of orbital order below To on χ(T ). Note that
while a single Curie-Weiss (CW) fit cannot span the entire
range below To, the the intercept from high temperatures has
a negative intercept.

Magnetic Order: Orbital ordering impacts the exchange
interactions in (4) and leads to the T =0 phase diagram
in Fig. 1(c) with a canted FM state over much of the pa-
rameter regime, but a 4-sublattice AFM state favored in
a small regime in (JSE/λ, V/λ). We emphasize that while
the Goodenough-Kanamori-Anderson rules27–29 help us
understand the sign of superexchange in Eq. (4) in terms
of orbital occupancy, they are not sufficient to determine
the long-range order. We see that the same underlying
orbital order can give rise to either FM or AFM ground
states due to interplay between various parameters.

From Fig. 1(b) we see that an electron in the highest
occupancy yz (red) orbital in the lower plane, can hop
into an essentially empty yz (red) orbital in the plane
just above or below. This occupied-empty superexchange
leads to a FM interaction in Eq. (4), resulting in a canted
FM ground state, with a net ordered moment, in which
the spins are FM aligned within each plane, but rotated
by 90◦ from one plane to another as dictated by the or-
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FIG. 3. Orbital ordering and magnetic order for 5d2 materials. (a) The canted FM, 4-sublattice AFM and AFM 100 phases
share the same orbital order as in 5d1 systems in Fig. 1, while the FM 100 phase has a different orbital order. In general, the
largest (smaller) occupancy orbitals are shown in solid (lighter) colors, and the smallest occupancy orbital is not shown. The
lower right (yellow) site in the FM 100 state is an exception, where the red orbital almost fully occupied and two other two
about half occupied. (b) T = 0 phase diagrams for JH/U = 0.225 and 0.25. In regimes where the 4-sublattice AFM is lowest
in energy, we find that the AFM 100 state is essentially degenerate with it. Increasing JH stabilizes the canted FM state.

bital ordering; see inset in Fig. 1(c). The 4-sublattice
AFM structure (Fig. 1(c)) is stabilized over a larger pa-
rameter regime for weaker JH/U (see Appendix G). Here
the spins are AFM aligned in each plane, but again ro-
tated by 90◦ from one plane to another.
d2 Systems: In contrast to d1 systems, d2 materials are
mostly AFM. We derive the microscopic d2 Hamiltonian
to understand why adding one extra t2g electron, pro-
duces a sharp change in magnetism. The ground state
of the Coulomb interaction (Eq. 2) for two electrons has
L= 1,S= 1, which splits into J= 0, 1, 2 multiplets, with
J = 2 the lowest in the presence of SOC. We might expect
to recover R ln 5 entropy across the magnetic transition,
however, only 3.7 J/(molK) < R ln 2 = 5.76 J/(molK)
is recovered for Ba2LuReO6

30. The missing entropy hints
once again at a hidden order, which preserves time rever-
sal, above the magnetic transition.

For d2 system, the hopping, on-site Coulomb and
inter-site electric-quadrupole interactions have the same
form as in the d1 case, but the SOC and the su-
perexchange are modified. The SOC projected to the
Li = 1,Si = 1 ground state manifold for d2 system is
HSO = −λ/2

∑
i Li ·Si. We can derive the superexchange

Hamiltonian for d2 system

HSE = −JSE

12

∑
α

∑
〈ij〉∈α

{
r1(2 + Si · Sj)(nαi − nαj )2

+(1− Si · Sj)
[
(nαi + nαj )2 + ( 3

2r3 − 5
2 )nαi n

α
j

]} (5)

where the orbital occupancy nαi is defined in the two-
electron basis, and JSE, r1, r3 are defined below Eq. (4).

A mean field analysis of Heff = HSO +HV +HSE for d2

systems leads to the orbital order and magnetic phases
shown in Fig. 3. A major difference from d1 is the dom-
inance of AFM ordering in the d2 case stabilized by the
occupied-to-occupied AFM superexchange (unless JH is

made very large). See Appendix I for details on the mag-
netic phases and χ(T ) of d2 systems.

Relation to prior work: Our d1 SE Hamiltonian in Eq. (4)
differs in small ways from that of ref. 15, but is identical
to that of ref. 19 (which focuses on 4d systems and ignores
electric quadrupole interactions). Our d2 SE Hamilto-
nian (5) is completely different from ref. 16. Also, our
4-site MFT has greater variational freedom than the 2-
site MFT of ref. 15. Further, refs. 15,16 project down to
the j = 3/2 subspace (infinite λ limit), while we retain
the mixing with j = 1/2 that leads to our T -dependent
effective moment. The orbital order that we describe is,
however, symmetry equivalent to the quadrupolar order
of refs. 15,16. See Appendix A for a detailed discussion.

Discussion: Recent experiments31,32 on Ba2MgReO6

give x-ray evidence for small distortions consistent with
our predicted orbital order; see Appendix H. Their mag-
netic order is also consistent with our canted FM [mo-
ments aligned in each plane but rotated between two
planes (see Figure 1)], though their nomenclature31,32

([001] canted AFM) is different. The significant separa-
tion between To (33K for both Mg and Zn materials) and
Tc (18K for Mg and 11K for Zn)31,32 is consistent with
the need to include V in the analysis. NMR33 found a
broken local point group symmetry in Ba2NaOsO6 above
Tc = 7 K that persists up to 15 K, which could suggest
To ' 15 K. However, this seems inconsistent with the
loss of entropy8,9 persisting up to much higher temper-
atures. Going forward, it would be useful to measure
orbital ordering in d1 and d2 cubic double perovskites
using techniques such as resonant X-ray scattering34.

Acknowledgements We thank P.M. Woodward, J. Xiong,
P. Tran, A. Paramekanti and R. Arita for useful discus-
sions. We acknowledge support from NSF Materials Re-
search Science and Engineering Center (MRSEC) Grants
DMR-1420451 and DMR-2011876.
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Appendix A: Comparison With Earlier Theoretical
Works

Our work builds on the pioneering papers of Chen,
Periera and Balents [15] on d1 double perovskites, and
Chen and Balents [16] on d2 materials. Before going into
details, we begin this appendix by summarizing the ways
in which our paper differs from – and improves upon –
refs. 15 and 16.

(a) The Hamiltonians differ in detail as described be-
low. The differences are more significant for the d2 case
than d1.
(b) Our mean field analysis uses four inequivalent sites
per unit cell, as opposed to two sites in the earlier pa-
pers, and thus has greater variational freedom. (a) and
(b) account for the differences in the phase diagrams.
(c) We use the (L, S)-basis while they use of the J ba-
sis, which allows us to retain the mixing of J = 3/2
with J = 1/2 (ignored in earlier papers) and leads to the
T -dependent effective moments in the orbitally ordered
state.
(d) Our orbital ordering is equivalent to the quadropolar
ordering of ref. 15 as discussed below.
(e) Finally, our focus is somewhat different from previous
works. In addition to the ground state magnetic phase
diagram, we focus on finite temperature properties such
as the loss of entropy and the non-Curie-Weiss form of
the susceptibility, both of which we attribute to orbital
ordering.

Hamiltonians: For the d1 case, the superexchange
Hamiltonian HSE in eq. (4) of our paper is simi-
lar to eqs. (13) and (18) of ref. [15] however, there are
small differences. Ref. [15] treats the AFM and FM
couplings as independent parameters, while the superex-
change scale JSE and Hund’s coupling JH/U determine
our AFM and FM couplings. From this perspective,
we may say that our eq. (4) includes a term missing
in ref. [15]. Rewriting the second line in eq. (4) as
+JSE(SiSj − 1/4)[r2/4(nαi −nαj )2 + (2r2 + r3)/3(nαi n

α
j )]

we can see that the r2/4(nαi − nαj )2 piece is effectively
absent in ref. [15].

The difference in the d2 case is more severe. The d2

Hamiltonian used in ref. [16] had the same form as the
d1 Hamiltonian of ref. [15], except for replacing the spin
and orbital operators by operators appropriate for the
d2 case. This differs from our superexchange Hamilto-
nian in eq. (5), which we derived using a strong coupling
expansion for the d2 case. It is evident that our d2 Hamil-
tonian in eq. (5) does not have the same form as our d1

Hamiltonian in eq. (4).
A recent work [19], focused on the spin-dimer phase

in 4d1 materials. They used the same d1 superexchange
Hamiltonian as our eq. (4), however they did not take into
account the electric quadrupole-quadrupole interaction
term of eq. (3), which may be justified for 4d materials
since the spatial extent of the orbitals is smaller than
in the 5d case of interest that we focus on. We also
note that the dimer phase found in ref. [19] is stabilized

for parameter values (small η = JH/U and intermediate
SOC) relevant for the 4d1 materials.

2 site vs 4 site mean field theory: Ref. [15] considered

a two-site ansatz in their d1 mean field theory (MFT),
while we analyze a more general MFT that allows for four
inequivalent sites, which impacts phase diagram. For
instance, using a four-site MFT enables us to find an
AFM 4-sub lattice ground state, as compared to AFM
100 phase in ref. [15] (which is not a stable solution in our
MFT). Our canted FM ground state is similar to the FM
110 phase in [15]; both are in fact two sublattice struc-
tures. Details of the MFT are described in Appendix
B.
J = 3/2, 1/2 mixing: We choose to work in the full

t2g ⊗ σ basis or L⊗S basis, which is equivalent to work-
ing in the J-basis used in refs. [15,16]. The equivalence
is detailed below for convenience, and this also shows the
equivalence between orbital ordering in the LS basis and
quadrupolar ordering in the J basis.

The key difference difference is that the authors of
refs. [15,16] project into the total angular momentum
J = 3/2 states, effectively taking the SOC λ→∞, while
we do not take this limit. It is important to ask why we
need to retain the mixing between the J = 3/2 and 1/2
states, separated by an energy of 3λ/2, or equivalently
keep keep the full t2g⊗σ manifold, for 5d materials where
SOC is large? As shown in the main text, and elaborated
on here this mixing is responsible for the effectively T -
dependent magnetic moment below the orbital ordering
temperature, and the resulting non-Curie Weiss form of
the magnetic susceptibility.

As already noted in the main paper, there is no mag-
netic moment for transition metal ion with one electron
in the t2g sector M = 2S−L = 0, in the limit where we
ignore the hybridization of the TM d-orbitals with the
p orbitals of neighboring oxygen ligands. Including the
later effect (see, e.g., eqs. (8-12) in ref. [15]) leads to a
small non-zero magnetic moment, but cannot explain the
observed non-Curie Weiss behavior of the susceptibility
χ(T ) above the magnetic ordering temperature.

Our analysis, explains this behavior of χ(T ) by relat-
ing the effective local moment to the T -dependent or-
bital occupancy below the orbital ordering temperature.
As detailed in Appendix E, this involves the mixing be-
tween the low-energy J = 3/2 manifold (L parallel to
S) and J = 1/2 subspace (L anti-parallel to S). Physi-
cally, this mixing leads to a small misalignment between
the spin and orbital angular momenta, which contributes
to a non-zero magnetic moment (see Fig. 1). This re-
veals how T -dependent non-zero magnetic moments can
arise, even in the limit where we ignore the hybridization-
led (T -independent) contribution to the moment. In the
main text, we show in Fig. 2 the susceptibilities includ-
ing both the contribution of the T -dependent moments
arising from orbital order and that of the hybridization
with oxygen.

LS and J-basis operators: Here we summarize, for con-
venience, the relationship between the spin and or-
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bital occupancy operators that we use, and the dipole
J, quadrupole O and octupole T operators used in
refs. [15,16].

The transformation process involves two steps: (i) a
unitary transformation from the L⊗ S basis to the total
angular momentum J basis, and (ii) projecting out the
high energy J = 1/2 suspace, and focusing on the J =
3/2 manifold. We find

~S → 1

3
~J, ~L→ 2

3
~J. (A.1)

To write down the orbital occupancies in terms of the
Ji’s, we need to define quadrupole operators

O3z2−r2 = J2
z −

1

2
(J2
x + J2

y )

Ox2−y2 =

√
3

2
(J2
x − J2

y )

(A.2)

Using these definitions, one can write

nyz/zx → 1

3
+

1

9
Oz2 ∓

1

3
√

3
Ox2−y2

nxy → 1

3
− 2

9
Oz2

(A.3)

From here we see clearly that the orbital order that we
discuss in the main text is equivalent to “quadrupolar
order”, which does not break time-reversal invariance.

Finally, to write the operators Sanα, we need to define
the octupole operators

Tαx = J3
x −

1

2
(JxJ2

y + J2
zJx)

T βx =

√
15

6
(JxJ2

y − J2
zJx)

(A.4)

where we use the over-bar to denote symmetrization of
the operators: AB2 = ABB + BAB + BBA. We can
then write

Sxnyz → 1

15
Jx −

2

15
Tαx

Sxnzx → 2

15
Jx +

1

15
Tαx −

1

3
√

15
T βx

Sxnxy → 2

15
Jx +

1

15
Tαx +

1

3
√

15
T βx

(A.5)

Appendix B: Mean Field Theory

We solve the low-energy Hamiltonian Heff = HSE +
HV + HSO (defined in the main text) within mean field
theory. We choose a conventional unit cell of the FCC lat-
tice with 4 transition metal (TM) ion sites, each with 12
nearest neighbors (NN). The inter-site interactions sepa-
rate into three inequivalent groups depending on whether
the NN sites lie on yz, zx or xy planes. These terms
are factorized as ÔiÔj ≈ 〈Ôi〉 Ôj + Ôi 〈Ôj〉 − 〈Ôi〉 〈Ôj〉,

where the expectation values 〈Oi〉 are the “mean fields”.
Specifically, we factorize the superexchange HSE and
quadrupole interactions HV using

Sai S
a
j n

α
i n

α
j ≈ Sai nαi 〈Saj nαj 〉+ 〈Sai nαi 〉Saj nαj
− 〈Sai nαi 〉 〈Saj nαj 〉

Sai S
a
j n

α
i ≈ Sai nαi 〈Saj 〉+ 〈Sai nαi 〉Saj − 〈Sai nαi 〉 〈Saj 〉

(B.1)

nαi n
β
j ≈ n

α
i 〈n

β
j 〉+ 〈nαi 〉n

β
j − 〈n

α
i 〉 〈n

β
j 〉

The spin-orbit interaction HSO contains only on-site
terms and does not need mean field decomposition.

At each site, we have a total of 15 mean fields: 3 〈Sai 〉
(a = x, y, z), 3 〈nαi 〉 (α = xy, yz, zx) and 9 〈Sai nαi 〉. There
are four constraints at each site

∑
α n

α
i = 1 (for the d1

case and 2 for d1) and
∑
α S

a
i n

α
i = Sai . Hence there are

(15 − 4) = 11 independent variables at each site and a
total of (11 × 4) = 44 “mean fields” in our 4-site unit
cell.

The resulting mean-field Hamiltonian is a sum of
single-site terms which depend on the mean fields 〈Oi〉
that need to be determined self-consistently. We use an
iterative, numerical procedure to solve this problem self-
consistently. Starting with an initial guess for the (input)
mean fields, we solve for the the eigenvalues and eigen-
vectors of the single site Hamiltonian, using which we
compute the expectation values that define the (output)
mean fields. The procedure is iterated until the input
and output mean fields converge. To improve the rate
of convergence, we find it useful to mix the output val-
ues with some fraction of the inputs from the previous
iteration. We ground state magnetic phase diagram is de-
termined by finding the lowest energy solution for each
set of couplings JH , JSE , V, λ.

Appendix C: Parameter Estimates

The parameters of the multi-orbital Hamiltonian for
double perovskites are: hopping t between orbitals on
nearest neighbor sites, the on-site Coulomb repulsion U ,
the spin-orbit coupling λ, the Hund’s coupling JH and
the nearest neighbor electric quadrupole-quadrupole in-
teraction V .

Ref. [9] estimates the hopping parameter t ≈ 50 −
100meV based on the overlap integral between two sites
and U = 3.3eV from the Coulomb integrals of the ef-
fective charge distribution on a site. Further, Ref. [10]
obtains the electronic structure using DFT (within the
GGA approximation and including SOC and U) and pro-
vide an estimate for the t2g bandwidth W ≈ 1eV and
U ≈ 3eV. Since the bandwidth W = 2zt, where z = 12
is the number of the neighbors, we obtain the estimate
t ≈ 42meV which is consistent with Ref. [9]. In our cal-
culations we use t ≈ 50meV and U = 3eV and using
these values we estimate the superexchange energy scale
JSE = 4t2/U ≈ 3.3meV.
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The analysis in Refs. [24,35] based on RPA, estimates
the Hund’s coupling to be JH ≈ 0.5eV. More recently,
the values of JH and spin orbit coupling λ have been
deduced from resonant inelastic x-ray scattering22,23. JH
depends on the d-count and the row transition metal ion
is in. For 5d transition metal compounds, JH ≈ 0.23 −
0.275eV and λ ≈ 0.34− 0.425eV.

Finally we turn to V , the strength of the electric
quadrupole-quadrupole interaction, which is the least
known of the parameters entering our Hamiltononian. R.
Arita (private communication) has estimated it to be 10
meV from DFT which is comparable to superexchange.
We give here a very crude estimate that gives some phys-
ical insight, but given the uncertainty in its value we
discuss in Appendix D the extent to which our results
depend on the value of V relative to the superexchange.

The t2g orbitals carry quadrupole moments and their
inter–site repulsion can be large because of the large spa-
tial extent of the 5d orbitals15. The traceless electric
quadrupole tensors for xy, yz, zx orbitals (superscripts)
in the Cartesian basis with subscripts i and j taking val-
ues {x, y, z} are given by:

Q
(xy)
ij =

Q 0 0
0 Q 0
0 0 −2Q

 ,
Q

(yz)
ij =

−2Q 0 0
0 Q 0
0 0 Q

 , (C.1)

Q
(zx)
ij =

Q 0 0
0 −2Q 0
0 0 Q

 ,
The magnitude of the quadrupole moment

Q =

∫
|ψ(xy)(~r)|2(3x2 − r2)d3~r

=

∫
|ψ(xy)(~r)|2(3y2 − r2)d3~r

= − 1
2

∫
|ψ(xy)(~r)|2(3z2 − r2)d3~r (C.2)

is obtained from the charge distribution of the 5d ionic
wave function.

To estimate the electric quadrupole moment Q,
we model the t2g “ionic” wave function ψ(xy)(~r) as
the product of an “angular” wave function Yxy =√

60/16π(xy/r2) with the n = 5, l = 2 radial wave func-
tion in a Coulomb potential −Zeffe

2/r. We thus ob-
tain Q = βea2

0/Z
2
eff with β = 385.7 and Bohr radius

a0 = 5.3× 10−11m.
Next we find V using the electrostatic energy15 V =

ke9
√

2Q2/a5, where a is the lattice constant of the dou-

ble perovskite FCC lattice. Note a =
√

2`, where ` is
the distance between neighboring B′ atoms. For the 5d
BaNaOsO6 compound ` = 5.8Å. We use the dielectric
constant ke = 1

4πε0
= 14.4eV Å/e2; since this is “short

distance physics” we do not use the macroscopic ε. Us-
ing quadrupole moment Q derived above we find that
V ' 60/Z4

eff eV.
An equivalent way to understand this estimate of the

electric quadrupole interaction is to say that, on dimen-
sional grounds, Q = eR2 where the length scale R = γa0

with γ a dimensionless parameter of order unity. Again,
using V = ke9

√
2Q2/a5, we find that V ' 0.4γ4meV .

This shows that small errors in estimating the “size” of
the orbital wave-function γ will lead to a large error in
the estimate of V .

Appendix D: Orbital Ordering To And Spin
Ordering Tc: Role Of V And Jse

We saw in Appendix C that the electric quadrupole
interaction energy scale V could well be comparable to
the superexchange scale Jse. However, given the uncer-
tainty in the estimation of V we would like to make sure
about aspects of our results that are independent of the
strength of V relative to Jse.

We show here that the orbital ordering To is always
larger than the spin ordering Tc independent of V , though
the separation between the two phase transitions does
depend of V . In Fig. 4 we plot To and Tc as a function
of Jse at a fixed η = JH/U = 0.2. The left panel in
the figure shows results for small V = 0.001λ ' 0.4 meV
while the right panel for larger V = 0.025λ ' 10 meV
(where we use λ ∼ 0.4eV for 5d transition metal ions).
Our results show that both V and Jse act in concert to
lead to the same orbital order while only Jse leads to
magnetic order.

Referring back to the phase diagram in Fig. 1(c) we
should also note that the very small V = 0.001λ regime
is “fine tuned” in so far as magnetism is concerned, with a
4-sublattice AFM state, while over most of the parameter
regime the canted FM is stabilized.

Appendix E: Orbital Order, To And µeff(T ) For d1

Model

.
Our goal in this appendix is to gain insight into the

onset and nature of orbital ordering, and how it leads
to a mixing between j = 3/2 and 1/2 resulting in a T -
dependent local moment. In order to make analytical
progress on these questions, we analyze a special limit:
we set the superexchange Jse = 0 in this appendix so
that the magnetic Tc vanishes; this allows us to focus on
orbital ordering.

We solve the mean field equations for HV +HSO ana-
lytically. The relevant mean field parameters for the four
sites from Fig. 1(b) are given by

〈nxy1 〉 = 〈nxy2 〉 = 〈nxy3 〉 = 〈nxy4 〉 = 1
3 + δnz (E.1)
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FIG. 4. Tc and To as a function Jse for small V = 0.001λ (ground state is AFM 4-sublattice) and V = 0.025λ (ground state is
canted FM).

〈nyz1 〉 = 〈nyz2 〉 = 〈nzx3 〉 = 〈nzx4 〉 = 1
3 + δnx (E.2)

with the condition
∑
α n

α
i = 1 determining the other

four parameters. We obtain the single site mean field
Hamiltonian for V .

H ′V = −V
[
( 86

3 δnx + 43
3 δnz)n

yz + ( 43
3 δnx + 53

3 δnz)n
xy
]

(E.3)
In the absence of magnetism, the mean field Hamilto-

nian H ′MF = H ′V +HSO is time reversal invariant, and we
rotate into the basis of total angular momentum j which
factors into two 3×3 blocks of doublets. The upper block
may be chosen to be of the form

3λ
2 − 43V (2δnx+δnz)

3
√

6
− 7V δnz√

2

− 43V (2δnx+δnz)

3
√

6
7V δnz

2
43V (2δnx+δnz)

6
√

3

− 7V δnz√
2

43V (2δnx+δnz)

6
√

3
− 7V δnz

2


(E.4)

where the upper block basis |j,mj〉 is given by
{|1/2,+1/2〉, |3/2,−3/2〉, |3/2,+1/2〉} (in this order).
The lower block is the time reversal partner of the upper
block.

We rotate the (upper block) Hamiltonian so that it
is diagonalized in the j = 3/2 subspace {|3/2,−3/2〉,
|3/2,+1/2〉})  3λ

2 x y
x ∆ 0
y 0 −∆

 . (E.5)

Here

∆ = V

√
1849δnx(δnx + δnz) + 793δn2

z

3
√

3
(E.6)

and

x = −V
43
√

3(2δnx + δnz) cos θ2 + 63δnz sin θ
2

9
√

2
(E.7)

with θ = arctan 43
√

3 (2δnx + δnz) /63δnz. The expres-
sion for y is given by changing sin(θ/2) → cos(θ/2) and
cos(θ/2)→ − sin(θ/2) in x.

Next we derive the mean field equation for the orbital
order parameter. In the large λ limit, δnz is very small
(see Appendix F and Fig. 2) at all T and we can simply
set θ = π/2. The orbital order parameter is the expec-
tation value of the operator, δnx → nyz − 1

3 , whose into
the 2× 2 subspace of energies −∆ and ∆ is given by

δn̂x →

(
− 1

2
√

3
− 1

6

− 1
6

1
2
√

3

)
(E.8)

The self-consistent mean equation for δnx is

δnx = 〈δn̂x〉 =
1

2
√

3
tanhβ∆ (E.9)

where ∆ ≈ 43V
3
√

3
δnx . The orbital ordering transition tem-

perature To is the temperature below which ∆ becomes
nonzero. Linearizing the MF equation we get

kBT0 = 43V /18 (E.10)

Next, we look at effective magnetic moment. We
project the magnetization operator M = 2S−L onto the
low-energy subspace. Nominally g = 0 for the j = 3/2
states, and the first non-zero correction to the wavefunc-
tion comes from mixing of the j = 3/2 and j = 1/2
states. This mixing is described by the lowest doublet
with energy −∆:(
ψu

ψd

)
=

(
− 2x

3λ |
1
2 ,+

1
2 〉+ cos θ2 |

3
2 ,−

3
2 〉+ sin θ

2 |
3
2 ,+

1
2 〉

+ 2x
3λ |

1
2 ,−

1
2 〉+ cos θ2 |

3
2 ,+

3
2 〉+ sin θ

2 |
3
2 ,−

1
2 〉

)
.

(E.11)

We start with the M operator in |LzSz〉 basis and apply
the same set of transformations above as that in H ′MF to
obtain M ′. Then the projected matrix elements of the
magnetization operator can be extracted via 〈α|M ′ |α′〉
with α, α′ ∈ {ψu, ψd}, keeping only terms of order V

λ .
From the projection, we obtain the g factors for this
doublet in all three directions (ie. Mx = gx

µB

2 σx, etc)
and compute the average g factor obtained in a pow-
der susceptibility measurement g2 = 1

3

(
g2
x + g2

y + g2
z

)
to

obtain the powder average effective moment for the dou-
blet. For simplicity, we continue to work in the approx-
imation where δnz = 0. The g factor is then given by
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FIG. 5. Left panel: magnetic structures and order parameters at JSE = V = λ/40, JH/U = 0.2 (typical parameter values used
in our paper). The ground state is found to be canted FM and L and S though correlated are not perfectly aligned. Right
panel: magnetic structures and order parameters at JSE = V = λ/240, JH/U = 0.2 (to make contact with the very large
lambda limit). The corresponding ground state is found to be the 4–sublattice AFM. L and S are almost perfectly aligned and
nxy ≈ 1/3. The different magnetic ground states in the two cases can be understood in terms of phase diagram of Fig. 1(c) in
the main paper.

g = 344V |δnx|/9
√

3λ, so that the moment is

µeff = 172V |δnx|µB/9λ. (E.12)

This shows how orbital order leads to the development
of a T -dependent magnetic moment below To.

Appendix F: Comparison Of Finite λ And Very
Large λ Results

In this appendix we compare the dependence of the
orbital order parameters and magnetic structures on the
SOC strength λ. (A) The left panels in Fig. 5 show the
results for a “finite” λ with JSE = V = λ/40, which is
the parameter set used in main text. (B) These are to be
contrasted with the right panels in Fig. 5 where we have
chosen λ with JSE = V = λ/240 to mimic the “infinite”
λ limit (similar to Ref. 15).

We note three main differences between case (A) and
(B) in Fig. 5. First, the orbital order parameters are
simpler in the large λ limit with nxy = 1/3, or in the
notation of Appendix E δnz ≡ 0 for all T . Second, the
magnetic order stabilized in the ground state is different
in the two cases as indicated in Fig. 5. This can be easily
understood in terms of T = 0 phase diagram of Fig. 1(c)
in the main paper, from which we see that the parameters
in case (A) lead to a canted FM while that in case (B)
to a AFM (4-sublattice) ground state. Third, the angle
between L and S decreases with increasing SOC. At large
λ, we have perfect alignment of L and S, which leads to
a vanishing M = 2S−L for Tc < T < To (in the absence
of hybridization with oxygen).

Using an approach similar to Appendix E , we can can
solve for the mean field orbital ordering, which in the
infinite SOClimit is exactly the same as the quadropolar
ordering of Ref. 15. A mean field analysis of HV +HSE

projected into the j = 3/2 subspace (infinite SOC limit)
leads to an orbital ordering temperature

To =
43

18
V +

JSE
4
r1 −

JSE
18

(r3 + r2/2). (F.1)

This essentially matches the result in Ref. 15, except for
minor difference due to the missing piece of the AFM
superexchange interaction discussed in Appendix A.

Appendix G: Phase Diagram With Varying JH/U
For 5d1 Systems

We next consider the dependence of the T = 0
magnetic phase diagram on Hund’s coupling η =
JH/U . We show in Fig. 6 how phase diagram in
the superexchange-electric quadrupole interaction plane
(JSE/λ, V/λ) evolves with Hund’s coupling η = JH/U .
As expected, the canted FM phase dominates over the
AFM phase with increasing η.

Appendix H: Orbital Ordering And Distortions

In this appendix, we give a qualitative discussion of
how orbital ordering in 5d1 system distorts the oxygen
octahedra and its averaged effect over a unit cell of the
FCC lattice.
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FIG. 6. Phase diagram as a function of the inter-site quadroplar repulsion V and the superexchange scale JSE measured in
units of the spin-orbit coupling scale λ for different values of the Hund’s coupling (measured in units of the onsite Coulomb
repulsion U) with JH/U ranging from 0.1 to 0.225. As we increase η = JH/U , the canted FM phase dominates over the AFM
4-sublattice phase for large JSE/λ. Phase diagram for JH > 0.25 is filled with canted FM for almost all relevant parameters
JSE and V .

FIG. 7. Distortion of oxygenb octahdra due to the onset of orbital ordering.

Let us recall the orbital order for 5d1 materials sta-
bilized by a combination of the electric quadrupole–
quadrupole interaction V and the superexchange JSE. As
shown in Fig. 1(b) of the main text, the orbital order has

a two sublattice structure with n
(1)
yz > n

(1)
xy > n

(1)
zx on sub-

lattice (1) (on the lower plane) and n
(2)
zx > n

(2)
xy > n

(2)
yz

on sublattice (2) (on the upper plane) As discussed in
Appendix F, the results in the large SOC limit are qual-
itatively similar to those at finite SOC, but lead to a
simpler physical picture. Hence, we focus on the infinite
SOC limit for the following discussion. From Fig. 5 in
Appendix F we see that in this limit, the low-T orbital
occupancies for sublattices 1 and 2 can be approximately
written as

n(1)
yz = 0.67, n(1)

xy = 0.33, n(1)
xz = 0

n(2)
xz = 0.67, n(2)

xy = 0.33, n(2)
yz = 0 (H.1)

Next let us look at the effect of orbital order on the
oxygen cage that surrounds a transition metal (TM) ion
by considering the Coulomb repulsion between electrons
on the ligand and the TM. Let the undistorted distance
between nearest O atom and the TM ion be d. Let ±xi
be the locations of the two O atoms located along the
x–axis about the site i, and similarly ±yi for O atoms

located along y, and ±z1 for O atoms located along z
axis. Then we expect (see Fig. 7) that

y1 − d > 0 (since n(1)
yz + n(1)

xy = 1 > 0.67, the value in

the high T phase with no orbital order)

z1 − d = 0 (since n(1)
yz + n(1)

xz = 0.67) (H.2)

x1 − d < 0 (since n(1)
xy + n(1)

xz = 0.33 < 0.67)

A positive (negative) sign means that the O atoms move
away from (towards) the TM ion. This analysis is over-
simplified. z1 − d is not strictly correct because the dis-
tribution of charges in the orbital ordered state and the
high T state are not exactly the same, but z1 − d will
certainly be much smaller in magnitude than the other
displacements. The same argument around site 2 leads
to y2−d = x1−d < 0, z2−d = 0, and x2−d = y1−d > 0.
Since there an equal number of TM1 and TM2 sites in
the unit cell, the average distortion along the x-direction
is small, with x1 − d < 0 and x2 − d > 0 compensat-
ing each other, and the same for the distortion along
the y-direction. In summary, while symmetry dictates
that system will be tetragonal, the above argument shows
qualitatively why the magnitudes of the distortion may
be very small.
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FIG. 8. Characteristic inverse susceptibility (blue) and orbital occupation (purple) curves are plotted against temperature for
the three phases in Fig. 3: (a) AFM [110], (b) AFM [100], (c) AFM 4-sublattice, (d) canted FM and (e) FM [100]. Susceptibility
is averaged over all three directions before being taken inverse of, χ−1 = 3(χxx + χyy + χzz)−1, and all sites in the tetrahedra.
Dashed blue lines are high temperature linear fit of the inverse susceptibility for extracting the Curie constant: for all AFM
phases, the Curie constants are negative; curie constant for canted FM is found to be positive whereas that of FM 100 phase
is found to be very close to zero. Orbital occupancies are shown for the site circled in each plot.

Appendix I: Magnetic Susceptibility χ(T ) For 5d2

Systems

Figure 8 shows the orbital occupations and inverse
magnetic susceptibility as a function of temperature for
the ground state phases obtained in the phase diagram
(see main Fig. 3 (a)). At high temperature, the orbitals
have uniform occupancy of nyz = nzx = nxy = 2/3.
At the orbital ordering temperature To, the orbitals be-
gin developing unequal occupancies which grows with de-
creasing temperature. In this regime time-reversal sym-
metry is not broken. This is followed by a second transi-
tion at the magnetic ordering temperature Tc where time
reversal symmetry is broken. We next discuss the behav-
ior in the three AFM phases and the two FM phases
below.

AFM [110] phase [Fig. 8(a)]: The two ordering tem-
peratures To and Tc coincide and the electrons are pushed
into the nyz and nxz orbitals to maximize antiferro-
magnetic superexchange. This orbital ordering by itself
would not be favorable as the orbital repulsion is maximal
in such a configuration. However, the transition is en-
tirely driven by antiferromagnetic superexchange which
then forces the orbital ordering shown, which also explain
why To ≈ Tc. Due to the strong orbital repulsion, this
magnetic structure is favored only at small V . Note the
contrast with the orbital ordering in d1 systems (shown
in the main paper Fig. 1 (b)) where the orbital repulsion
is minimized and in this case its the orbital ordering that

drives the magnetic structure. The high T Curie-Weiss
magnetic susceptibility is fit with a negative Curie-Weiss
constant θCW , as expected. We note that the orbital
ordering for AFM110 is compatible with the tetragonal
distortion seen in Sr2MgOsO6

6.

AFM [100], AFM 4-sublattice, Canted FM phases

[Fig. 8(b-d)]: Next, we discuss three magnetic structures
(AFM [100], AFM 4-sublattice, canted FM as shown in
the main paper Fig. 3 (a) middle block) that share the
same orbital ordering, which minimizes the inter-site
orbital repulsion in the presence of spin orbital coupling.
It is interesting to note that while the size of the
moments are different, the magnetic ordering directions
in the AFM 4-sublattice and canted FM phases for d2

are the same as those in d1 systems.

The AFM [100] is a new magnetic structure that
arises only in d2 systems. Even though it shares the
same orbital ordering pattern as the AFM 4-sublattice
and the canted FM, the orbital angular momenta of the
two sites on the upper xy plane are suppressed compared
to the two sites on the lower xy plane due to the dif-
ferent orbital occupancy on those planes. This happens
because the orbital angular momenta are forced to lie
along the [100] direction. We find that while the AFM
[100] is not the ground state in our model, the energy
difference with AFM 4-sublattice (AFM 4-sublattice be-
comes ground state in certain parameter regimes) is neg-
ligible, indicating that AFM [100] could be a competitive
ground state in real materials.
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For all the three magnetic structures, orbital order-
ing happens at a higher temperature than that of the
magnetic phase transition. And yet the evolution of or-
bital occupations for the three magnetic structures ex-
hibits differences: canted FM orbital occupations change
rather more rapidly than those in the AFM phases. In
addition, there is a secondary feature observed at a tem-
perature T ′ < Tc in the orbital occupancies, which shows
a sudden change in behavior, and in the inverse suscepti-
bility, which shows a tiny cusp, indicating effects of frus-
tration between orbital and spin degrees of freedom.

For both AFM [100] and AFM 4-sublattice phases
in Fig. 8(b),(c), χ(T ) follows the Curie-Weiss law with
a negative Curie-Weiss constant above To. Below To the
orbital occupancies are temperature-dependent and the
inverse susceptibility deviates from its high temperature
behavior. Just below To, χ(T ) can be fit to the Curie-
Weiss law with a different negative Curie-Weiss constant
from that used above To. Similarly to the d1 case, the
susceptibility continues to deviate from the Curie-Weiss
law below To, however, the deviations are smaller and
so is the enhancement of the effective magnetic moment
due to mixing of the J = 2 states with higher energy
multiplets. We note that when JSE = 0, the magnetic
susceptibility continues to give a negative Curie-Weiss
constant due to a non-Curie-Weiss susceptibility as in
the d1 case.

For the canted FM phase in Fig. 8(d), the high T fit
of the magnetic susceptibility gives a positive Curie con-
stant, indicating that FM interactions dominate at large
η = JH/U in d2 superexchange terms. The divergence of

magnetic susceptibility at Tc features a FM phase tran-
sition. However a finite susceptibility for T < Tc appears
as a result of the canting angle between the parallel mag-
netic moments on different planes.

FM [100] structure [Fig. 8(e)]: Deviations from the
Curie-Weiss law are seen below To, and the sign of the
Curie-Weiss constant can switch from negative to positive
depending on which temperature region is fitted. Unlike
the other phases, magnetic order appears at Tc with a
first-order transition marked by the jumps in orbital oc-
cupancy and susceptibility. This arises from competition
between having the most energetically favorable orbital
structure at high temperatures and the most energeti-
cally favorable magnetic structure at low temperatures.

Size of moment: We compare values of the theoret-
ical moments to those from experiment. Oxygen hy-
bridization results in a Curie moment of µeff = P2(2S −
L)P2 = J(1 − γ/2) =

√
6(1 − γ/2)µB , where P2

is projection operator to the d2 multi-orbital Coulomb
interaction ground state16 J = 2 (with moment size

|J | =
√

2(2 + 1) =
√

6), P2SP2 = J/2,P2LP2 = J/2 , γ
is the effective orbital moment on the transition metal ion
after taking into account the oxygen hybridization. As-
suming almost half of the moment resides on oxygen (i.e.
γ = 0.5), the calculated moment is then µeff ≈ 1.8µB .
This is close to the experimentally observed moments
in Sr2MgOsO6 and Ca2MgOsO6 (both 1.87µB)[5] but
farther off from those of Ba2YReO6 (1.93µB) [36] and
La2LiReO6 (1.97µB) [36].
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