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We analyze the decay of spin waves into Stoner excitations in magnetic Weyl semimetals. The
lifetime of a mode is found to have a universal dependence on its frequency and momentum, and on a
few parameters that characterize the relativistic Weyl spectrum. At the same time, uniform Gilbert
damping by Weyl electrons is absent. The decay rate of spin waves is calculated perturbatively
using the s-d model of itinerant Weyl or Dirac electrons coupled to local moments. We show that
many details of the Weyl spectrum, such as the momentum-space locations, dispersions and sizes
of the Weyl Fermi pockets, can be deduced indirectly by probing the spin waves of local moments
using inelastic neutron scattering.

I. INTRODUCTION

Weyl semimetals are condensed matter realizations
of massless fermions with a chiral relativistic three-
dimensional spectrum1–3. Topologically protected gap-
less Fermi “arc” states on the system boundaries, and
unconventional transport properties such as the intrinsic
anomalous Hall effect, set Weyl semimetals apart from
other weakly interacting conductors. One way to ob-
tain a Weyl spectrum involves breaking the time-reversal
symmetry in a material that has Dirac quasiparticles.
The presence of magnetization, for example, will remove
the spin degeneracy of a Dirac node by splitting it into
a dipole of opposite-chirality Weyl nodes in momentum
space. Magnetism then becomes intimately related to
the presence of Weyl electrons. Alternatively, Weyl spec-
trum of itinerant electrons can be created by a broken
inversion symmetry, e.g. due to the crystal structure,
and then coupled to magnetism if the material possesses
additional local moments or undergoes a spin density
wave instability. Some of these theoretical scenarios are
slowly finding their actualization in experimentally stud-
ied magnetic Weyl semimetals4–13.
Here we analyze an important imprint of Weyl elec-

trons on the magnetic dynamics – the damping of spin
waves via particle-hole (Stoner) excitations. This basic
interaction effect reveals the defining features of the Weyl
spectrum, relativity and chirality. We will show that the
lifetime of spin waves exhibits a universal dependence on
the mode frequency and momentum which can be used to
extract detailed properties of the underlying Weyl elec-
trons. By measuring the mode lifetime throughout the
first Brillouin zone, it is possible to discern the locations
of the Weyl nodes in momentum space, their relative chi-
ralities, slope of the energy versus momentum dispersion,
and the size of the Fermi pockets on the Weyl nodes.
The spin wave lifetime is obtained from the width of the
scattering intensity peaks in inelastic neutron scattering
experiments, provided that a sufficient energy resolution
is available and other sources of decoherence (thermal
broadening, disorder, phonons) do not mask the elec-
tronic source.
Even though neutron scattering is a powerful Green’s

function probe, its ability to detect fermionic quasipar-
ticles is normally ruined by the incoherent continuum
of excitations that can absorb an angular momentum
quantum. Interestingly, this problem is reduced in Weyl
semimetals14, and fortunately it is also possible to in-
directly characterize the quasiparticles via collective ex-
citations. The latter has been achieved in the neutron
studies of samarium hexaboride (SmB6)

15,16, where the
measured dispersion of a “spin exciton” has revealed a
non-trivial topology of the underlying electronic quasi-
particles. An energy gap protects the exciton’s coherence
in SmB6, but the gapless quasiparticles in Weyl semimet-
als will generally induce ubiquitous damping of collective
modes. Such a damping can in fact reveal the existence
and properties of chiral fermionic quasiparticles. The
Weyl electron characterization through damping could
potentially overcome various issues that plague other ap-
proaches, such as correlation effects in the case of band-
structure calculations, limited resolution in the case of
ARPES, sensitivity to conventional bands (that coexist
with Weyl nodes) in transport measurements, etc.

Closely related to the physics we pursue here is the ex-
tensively studied damping in metallic ferromagnets17–29.
Stoner excitations provide a mechanism for the decay
of spin waves, and also typically give rise to Gilbert
damping30 – the dissipated precession of uniform mag-
netization in an external magnetic field. Many works
have been devoted to the calculation of Gilbert damp-
ing since it is possible to measure it by ferromagnetic
resonance31,32 and time-resolved magneto-optical Kerr
effect33,34. A careful consideration of the relativistic elec-
tron dynamics has revealed that Gilbert damping origi-
nates in the spin-orbit coupling and depends on the elec-
trons’ mass25. In the case of massless Weyl electrons,
we show here that Gilbert damping of a precessing uni-
form magnetization is absent. However, spin waves un-
avoidably decay via Stoner excitations35–40, which can
be phenomenologically described as non-local Gilbert
damping41–43. We show that the damping shaped by
Weyl electrons also features “non-reciprocity” – differ-
ent polarization modes that carry the same momentum
have different damping rates. This accompanies the non-
dissipative aspects of chiral spin-momentum locking44,45.
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Spin wave “non-reciprocity” has been anticipated in spi-
ral magnets46, magnetic interfaces with a Dzyaloshinskii-
Moriya interaction derived from the Rashba spin-orbit
coupling47–53, and observed in several experiments54–59.
In the context of magnetic Weyl semimetals, initial the-
oretical studies have been focused on the domain wall
dynamics60,61.
The rest of this paper is organized as follows. Section

II presents the approach and the main results of the anal-
ysis, focusing on the observable physical characteristics
of the spin wave damping by Weyl electrons. Section III
is devoted to the technical development of the damping
theory. It contains separate derivations of the dissipative
terms in the effective spin action (III A), spin wave damp-
ing (III B), and Gilbert damping from the semiclassical
field equation (III C). The last section IV summarizes the
conclusions and discusses the broader applicability and
limitations of the damping theory.

II. SUMMARY OF THE RESULTS

In this paper, we work with the s-d model of Weyl
electrons coupled to local moments. We perturbatively
calculate the dissipative non-Hermitian parts of the mo-
ments’ effective action, which determine the rate γ of spin
wave damping. γ also depends on the magnetic order and
the wave’s propagation direction relative to the magneti-
zation, but it is always controlled by the components of
the universal damping rate tensor given by

γabmn(q) =
a30J

2
KΩ

2

128πSv3
fab
mn

(
|Ω|

vq
,
|Ω|

2|µ|
; sign(µ,Ω)

)
(1)

for ferromagnetic local moments of spin magnitude S.
The upper indices a, b ∈ {x, y, z} refer to spin projec-
tions. The universal scaling functions fab

mn are dimen-
sionless, the factor a30 is the unit-cell volume of the local
moment’s lattice, JK is the Kondo or Hund coupling en-
ergy scale, v and µ are the Fermi velocity and Fermi
energy of the Weyl electrons respectively, and Ω is the
real spin wave frequency (we use the units ~ = 1). The
spin wave momentum q in this expression is measured
relative to the difference ∆Q = Qm − Qn between the
wavevectors Qm,Qn of any two Weyl nodes in the first
Brillouin zone. Coherent collective excitations that span
the entire first Brillouin zone can be used to separately
address many pairs of Weyl nodes – by tuning the total
wavevector ∆Q + q to the vicinity of ∆Q. Representa-
tive functions fab

mn for the Weyl nodes with finite Fermi
surfaces are plotted in Figures 1 and 2
We make analytical progress and gain valuable physi-

cal insight through several idealizations: all Weyl nodes
are assumed to be identical, spherically symmetric and
living at the same node energy. Their chiralities χm = ±1
and locations Qm are arbitrary (as long as the total chi-
rality in the first Brillouin zone vanishes). Under these
conditions, only three tensor components of

γabmn = q̂aq̂bγ‖‖mn + (δab − q̂aq̂b)γ⊥⊥
mn + ǫabcq̂cγ⊥⊥′

mn (2)

(a)

(b)

FIG. 1. The plots of functions (a) f⊥⊥ and (b) f‖‖ for the
damping rates of transverse and longitudinal spin waves re-
spectively, contributed by the Fermi surfaces on a particular
pair of Weyl nodes. Solid red lines are for the same-chirality
nodes, and the dashed blue lines are for the opposite-chirality
nodes. |Ω| = 1.4|µ| was assumed in this example.

FIG. 2. The plots of selected universal functions fab featured
in the damping rate γ ∼ Ω2 f(vq/|Ω|; xµ). The functions
are parametrized by xµ = 2|µ/Ω|, with finer dashes corre-
sponding to larger Weyl Fermi pockets (solid lines refer to
the Fermi level that crosses the Weyl nodes). Shown func-
tions include transverse (⊥⊥) and chiral (⊥⊥′) damping chan-
nels shaped by electron scattering between equal-chirality (+)
and opposite-chirality (−) Weyl nodes. Longitudinal channels
(‖‖) are similar to the shown transverse channels, compare
with Fig.1.
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(a) (b)

FIG. 3. Examples of the damping rate map in momentum
space for (a) µ 6= 0 and (b) µ = 0 (with and without a Fermi
surface of Weyl electrons respectively). Brightness depicts the
rate γ(q) of spin wave damping, and the red crosshair shows
the reference ∆Q for the local wavevector q = 0. These are
qz = 0 slices through the full 3D map. Observing patterns
of this kind in the full Brillouin zone scan will indicate the
Weyl-electron origin of damping and reveal the complete set
of ∆Q = Qm − Qn wavevectors from which the individual
node wavevectors Qm can be deduced (assuming, for exam-
ple,

∑
m
Qm = 0). The bright outer ring, which shrinks and

closes when 2|µ| < |Ω|, originates in the inter-band electron
scattering and gains strength from the rapidly growing Weyl
electron density of states. Note that various details in these
maps, such as the anisotropy and ring sizes, will generally
depend on the concrete spin-wave dispersion Ω(q+∆Q), po-
larization, type and orientation of magnetic order, as well as
the chiralities and symmetries of the Weyl nodes.

are finite and independent, γ
‖‖
mn, γ⊥⊥

mn and γ⊥⊥′

mn (q̂a is the
component of the unit-vector q̂ ‖ q along the direction a,
and ǫabc is the Levi-Civita symbol; repeated indices are
summed over). Here and throughout the paper ‖ indi-
cates the spin direction parallel to the mode’s wavevector
q, and ⊥,⊥′ are the spin directions which are perpendic-
ular to q and each other. The full expression for damping
rates is presented in Section III B; in Weyl ferromagnets,
it becomes

γmn = γ⊥⊥
mn ± γ⊥⊥′

mn (3)

for the two polarizations of spin waves propagating along
the magnetization direction.
The essential utility of the universal damping comes

from its qualitative features that reflect the relativistic
nature of Weyl electrons. If the Fermi energy µ lies away
from the energy of the Weyl nodes, Fermi surfaces will
form. Then, the spin wave damping rate is expected to
exhibit a set of minimums and maximums as a function of
the frequency Ω and momentum q. The locations of these
extremums depend on the parameters that characterize
the Weyl nodes: Fermi velocity v, chemical potential µ
and even their relative chiralities χmχn = ±1. Fig.3
demonstrates how the locations Qm of Weyl nodes can
be extracted from the full Brillouin zone map of the spin
wave’s damping rate γ(q). Once the wavevectorsQm are
known, Fig.4 illustrates how the observation of enough

vq

Ω

0 2�

2�

�

�

Ω=vq

Ω=vq-2�

FIG. 4. A density plot of the collective mode damping rate
γ(q,Ω) induced by Weyl electrons. Thin solid green lines in-
dicate γ = 0, and the thin dashed green line indicates the
local maximum of γ. The thick dashed yellow line represents
the dispersion Ω(q + ∆Q) of a hypothetical spin-wave exci-
tation (note that the origin of the plot corresponds to the
momentum difference ∆Q of two Weyl nodes in the first Bril-
louin zone). The spin-wave’s damping rate will exhibit local
minimums and maximums at the shown red points, which are
characteristic for the relativistic spectrum of Weyl electrons.
Resolving two of these points is enough for the determination
of the Weyl Fermi velocity v and the chemical potential µ of
the Weyl nodes addressed via ∆Q. Resolving three points al-
lows an independent verification that Weyl nodes are indeed
responsible for the damping. The two-parameter scaling of
the damping rate (1) across a range of energies is the most
general signature of Weyl electrons, and can be used to verify
the Weyl-electron origin of damping even if the visible spin
wave dispersion does not cross any of the shown characteristic
points.

extremums enables indirect measurements of the Weyl
electron spectra on multiple Weyl nodes. The presence
of Weyl Fermi pockets also introduces spin-momentum
locking into the damping rates (γ⊥⊥′

mn 6= 0), but only on
the pairs of Weyl nodes with opposite chiralities. As a
consequence, the two spin wave modes that carry oppo-
site spin currents at the same wavevector q have different
peak widths in inelastic neutron scattering.
The above qualitative features of damping disappear if

the Fermi energy sits exactly at the Weyl nodes. How-
ever, the damping rate then becomes a universal function
of a single parameter |Ω|/vq. This kind of scaling is a sig-
nature of the relativistic Weyl electrons – it is caused by
“inter-band” transitions in which an electron below the
Weyl node is excited to a state above the Weyl node. The
plots of universal functions fab

mn that appear in Eq. 1 at
µ = 0 are shown in Fig.2.
The magnitude of the damping rate depends

on the Kondo/Hund scale JK which may not be
known. However, the spin wave damping caused
by Weyl electrons is always related to the effec-
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FIG. 5. The Feynman diagram for two-spin interactions.
Thick external lines represent local moment fields and thin
lines represent Weyl electron propagators. The two-spin cou-
plings include Heisenberg, Kitaev and Dzyaloshinskii-Moriya
interactions, but the Weyl-electron origin of spin dynamics
also creates a dissipation channel in which spin waves decay
into electron-hole pairs.

tive strength J of the Weyl-electron-induced Ruder-
man–Kittel–Kasuya–Yosida (RKKY) interactions among
the local moments45:

γ

J
∼

1

(a0Λ)3

( q
Λ

)2
×

(
Ω

vq

)2

, J ∼ vΛ

(
a30Λ

2JK
v

)2

.

(4)
Here, Λ is the momentum cut-off for the linear Weyl spec-
trum, |q| < Λ. Since a0Λ < 1 and the characteristic fea-
tures of the universal damping appear near |Ω| ∼ vq, the
damping rates are generally comparable to the energy
scale J of the induced RKKY interactions. For example,
the RKKY energy scale in the magnetic Weyl semimetal
NdAlSi13 can be crudely estimated as J ∼ 1 meV. Even
if the damping rate is more than an order of magnitude
below this value of J , it should be detectable with high
resolution neutron instruments (a spin echo spectrometer
can achieve energy resolution below 10 µeV).

III. DISSIPATION BY WEYL ELECTRONS

Here we calculate the Gaussian dissipative part of the
effective action for local moments which arises due to
their coupling to itinerant Weyl electrons. The non-
dissipative part of this action, computed in Ref.45, cap-
tures the induced RKKY interactions among the lo-
cal moments: Heisenberg, Kitaev and Dzyaloshinskii-
Moriya. All Gaussian terms δnaΓabδnb of the action ob-
tain from a single two-point Feynman diagram which in-
volves momentum integration of a singular function; the
principal part of this integral yields the interactions, and
the contribution of its pole singularity amounts to dissi-
pation. We will focus only on the latter, following the
procedure from Ref.45.
The essential dynamics of local moments n̂i coupled to

conduction electrons ψi is given by the Hamiltonian:

H0 = Hint[n̂i] +
∑

k

ǫkψ
†
kψk + JK

∑

i

n̂i ψ
†
iσψi . (5)

Both the local moments and electrons live on a lattice
whose sites are labeled by i, but we will immediately take
the continuum limit. JK is the Kondo/Hund coupling,
and ǫk is the energy of itinerant electrons without inter-
actions. The term Hint contains any intrinsic exchange

and crystal-field anisotropy that the local moments ex-
perience independently of the itinerant electrons; we will
neglect it here since we are interested only in the dissi-
pative influence of electrons on the moments. The basic
two-spin correlations 〈n̂a

i n̂
b
j〉 are contained in the second-

order Feynman diagram shown in Fig.5:

Γab
mn(q) = i

J2
K

2

∫
d4k

(2π)4
tr
[
Gm

(
k−

q

2

)
σaGn

(
k+

q

2

)
σb
]

(6)
The Weyl electron Green’s functions

Gn(ω,k) =
[
ω −Hn(k) + i sign(ǫn(k))0

+
]−1

(7)

are treated as spinor matrices and refer to the low-energy
electronic states near any Weyl node n whose wavevector
in the first Brillouin zone is Qn. From this point on, the
wavevector k will be a “small” displacement |k| < Λ from
Qn, where Λ is the momentum cut-off for the linear Weyl
dispersion. These low-energy electrons are described by
the Hamiltonian

Hn(k+Qn) = vχnσk− µ , (8)

where µ is the chemical potential that determines the
Weyl Fermi pocket character and size, v is the Fermi ve-
locity, and χn = ±1 is the Weyl node chirality. The
corresponding spectrum is ǫk = ±v|k| − µ. We assume
for simplicity that all Weyl nodes are spherically sym-
metric, share the same node energy, chemical potential
and Fermi velocity, but have arbitrary wavevectors Qn

and chiralities χn = ±1 (as long as the chiralities of all
nodes in the first Brillouin zone add up to zero). By
this construction, the expression (6) is associated with a
pair m,n of Weyl nodes, and q is a “small” wavevector
measured relative to Qm −Qn.
We will carry out all calculations with the formal as-

sumption that no external or effective magnetic field is
exerted on electrons. Realistically, however, we are inter-
ested in magnetic Weyl semimetals whose local moments
may carry a non-zero net magnetization n̂0 that presents
itself as an effective magnetic field B = −JKn̂0 to elec-
trons. This is of no concern because the correction of the
spectrum (8) amounts merely to a shift of the wavevector
k → k−B/vχn. Hence, an effective magnetic field only
alters the locations Qn of the Weyl nodes in momentum
space, which are arbitrary in our formalism.
The full effective action matrix Γ for local moments

takes contributions from all Weyl node pairs:

Γ(Q,Ω) =
∑

m,n

Γmn(Q−Qm +Qn,Ω) . (9)

In this sense, it is possible to experimentally address a
particular pair of Weyl nodes, or a set of pairs, by prob-
ing the momentum space in the vicinity ofQ ∼ Qm−Qn.
The dissipative part of Γmn will contain information
about the addressed Weyl nodes.
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A. Calculation of the dissipative terms in the

effective spin Lagrangian

The calculation of (6) is lengthy, so we will only outline
its key steps. The trace has been evaluated before45, and

the frequency integration yields:

Γab
mn(q) = −

J2
K

2

∫
d3k

(2π)3

[
Xab(Ω,q; vχm

∣∣k− q

2

∣∣+ Ω
2 − µ,k)

2vχm

∣∣k− q

2

∣∣
∏

s=±1

θ
(
µ− vχm

∣∣k− q

2

∣∣)

Ω + vχm

∣∣k− q

2

∣∣− vsχn

∣∣k+ q

2

∣∣+ i0+F (sχn, χm)

−
Xab(Ω,q;−vχm

∣∣k− q

2

∣∣+ Ω
2 − µ,k)

2vχm

∣∣k− q

2

∣∣
∏

s=±1

θ
(
µ+ vχm

∣∣k− q

2

∣∣)

Ω− vχm

∣∣k− q

2

∣∣− vsχn

∣∣k+ q

2

∣∣+ i0+F (sχn,−χm)

+
Xab(Ω,q; vχn

∣∣k+ q

2

∣∣− Ω
2 − µ,k)

2vχn

∣∣k+ q

2

∣∣
∏

s=±1

θ
(
µ− vχn

∣∣k+ q

2

∣∣)

vχn

∣∣k+ q

2

∣∣− Ω− vsχm

∣∣k− q

2

∣∣− i0+F (χn, sχm)

−
Xab(Ω,q;−vχn

∣∣k+ q

2

∣∣− Ω
2 − µ,k)

2vχn

∣∣k+ q

2

∣∣
∏

s=±1

θ
(
µ+ vχn

∣∣k+ q

2

∣∣)

−vχn

∣∣k+ q

2

∣∣− Ω− vsχm

∣∣k− q

2

∣∣− i0+F (−χn, sχm)

Here, θ(x) is the step function, and two more functions,
Xab(Ω,q;ω,k) and F (s+, s−) are introduced to simplify
notation. The function Xab(Ω,q;ω,k) obtains from the
numerator of the trace in (6). Introducing the Kronecker
symbol δab and the Levi-Civita symbol ǫabc, we have:

Xab (Ω,q;ω,k) =

[
(ω + µ)2 −

Ω2

4

]
δab

+v2χmχn

[
2

(
kakb −

qaqb

4

)
− δab

(
kckc −

qcqc

4

)]

+ivǫabc
[
χm

(
ω +

Ω

2
+ µ

)(
kc −

qc

2

)

−χn

(
ω −

Ω

2
+ µ

)(
kc +

qc

2

)]
. (10)

The function F (s+, s−) with s+, s− = ±1 keeps track of
the infinitesimal imaginary terms in the denominators of
Green’s functions:

F (s+, s−) = sign
(
vs+

∣∣∣k+
q

2

∣∣∣− µ
)
− sign

(
vs−

∣∣∣k−
q

2

∣∣∣
)

= θ

(
|qk| −

∣∣∣∣
(µ
v

)2
− k2 −

q2

4

∣∣∣∣
)

×

[(
sign(µ) +

s+ + s−
2

)
sign(qk) +

s+ − s−
2

]

+(s+ − s−) θ

(
k2 +

q2

4
− |qk| −

(µ
v

)2)
. (11)

At this point, we use the relationship

1

x± i0+
= P

1

x
∓ iπδ(x) (12)

to isolate the dissipative processes that curb the x → 0
resonances. Dropping all terms that involve the principal

part P, we get:

Γ̃ab
mn(q) =

iπJ2
K

8v2

∑

sm,sn

smsn

∫
d3k

(2π)3
F ′(snχn, smχm)

χmχn

∣∣k− q

2

∣∣ ∣∣k+ q

2

∣∣

×Xab

(
Ω,q; vsmχm

∣∣∣k−
q

2

∣∣∣+
Ω

2
− µ,k

)
(13)

× δ
(
Ω + vsmχm

∣∣∣k−
q

2

∣∣∣− vsnχn

∣∣∣k+
q

2

∣∣∣
)

×
[
θ
(
µ− vsmχm

∣∣∣k−
q

2

∣∣∣
)
− θ

(
µ− vsnχn

∣∣∣k+
q

2

∣∣∣
)]

We introduced F ′ = sign(F ) (1− δF,0), and the sum goes
over sm, sn = ±1. All chirality factors χm, χn = ±1
that appear outside of Xab are clearly eliminated by the
summation over sm, sn, so it will be convenient do define
s− = smχm = ±1 and s+ = snχn = ±1. The Dirac
δ-function in (13) imposes:

s+

∣∣∣k+
q

2

∣∣∣− s−

∣∣∣k−
q

2

∣∣∣ =
Ω

v
. (14)

This pins the magnitude of the wavevector k to

k =
|Ω|

2v

√
Ω2 − v2q2

Ω2 − v2q2 cos2 θ
, (15)

assuming qk = qk cos θ, and further requires satisfying
one of these two conditions:

|Ω| > vq ∧ s± = ±sign(Ω)
|Ω| < vq| cos θ| ∧ s+ = s− = sign(Ω cos θ)

The wavevector k = (k, θ, φ) integration in (13) is now
conveniently performed in the spherical coordinate sys-
tem referenced to the external wavevector q. The integral
over k = |k| is immediately solved due to the Dirac δ-
function and we merely need to replace the occurrences
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of |k| with (15). The integral over φ affects only the

quantities (10) leading to
∫
dφXab = 2πv2X̃ab with the

following non-zero components:

X̃‖‖ = s+s−

∣∣∣k−
q

2

∣∣∣
∣∣∣k+

q

2

∣∣∣ (16)

+χmχn

[
k2(2 cos2 θ − 1)−

q2

4

]

X̃⊥⊥ = s+s−

∣∣∣k−
q

2

∣∣∣
∣∣∣k+

q

2

∣∣∣

+χmχn

(
−k2 cos2 θ +

q2

4

)

X̃⊥⊥′

= iǫ‖⊥⊥′

[
−
(
χms+

∣∣∣k+
q

2

∣∣∣+ χns−

∣∣∣k−
q

2

∣∣∣
) q
2

+
(
χms+

∣∣∣k+
q

2

∣∣∣− χns−

∣∣∣k−
q

2

∣∣∣
)
k cos θ

]
.

Here and onward, the upper spin indices denote direc-
tions ‖ parallel to q, and two mutually perpendicular
directions ⊥,⊥′ which are also perpendicular to q. Note

that ǫ‖⊥⊥′

implements a chiral “right-hand-rule” rela-
tionship between the three spin directions. The integral
over θ is finite and conveniently evaluated numerically.
At the end, we arrive at:

Γ̃ab
mn(q) = i

J2
KΩ

2

128πv3
fab
mn

(
|Ω|

vq
,
|Ω|

2|µ|
; sign(µ,Ω)

)
(17)

where the dimensionless functions f = α + β have con-
tributions from intra-band α and inter-band β electron
scattering. Note that the inter-band processes require
transferring an electron between the two states whose en-
ergies have opposite signs, and thus can occur only when
|Ω| > 2|µ|. Defining

λ =
vq

|Ω|
, x =

2|µ|

|Ω|
, κ =

√
1− λ2

1− λ2ξ2
(18)

with |ξ| = | cos θ|, we have:

α⊥⊥
mn =

1∫

0

dξ θ
(
2κλξ − |x2 − κ2 − λ2|

)
κ2 (19)

×

[(
1− χmχn

−κ2ξ2 + λ2√
(κ2 + λ2)2 − (2κλξ)2

)
θ(1− λ) +

(
1 + χmχn

−κ2ξ2 + λ2√
(κ2 + λ2)2 − (2κλξ)2

)
θ(λξ − 1)

]

α‖‖
mn =

1∫

0

dξ θ
(
2κλξ − |x2 − κ2 − λ2|

)
κ2

×

[(
1− χmχn

κ2(2ξ2 − 1)− λ2√
(κ2 + λ2)2 − (2κλξ)2

)
θ(1− λ) +

(
1 + χmχn

κ2(2ξ2 − 1)− λ2√
(κ2 + λ2)2 − (2κλξ)2

)
θ(λξ − 1)

]

α⊥⊥′

mn = −i ǫ‖⊥⊥′

1∫

0

dξ θ
(
2κλξ − |x2 − κ2 − λ2|

)
κ2

×
∑

s=±1

(χm + χn) sign(µ) + s (χm − χn) sign(Ω)

2
√
κ2 + λ2 − 2sκλξ

(κξ − sλ)
[
θ(1 − λ)− s θ(λξ − 1)

]
,

and
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β⊥⊥
mn =

1∫

−1

dξ θ
(
κ2 + λ2 − 2κλ|ξ| − x2

)
κ2



1− χmχn

−κ2ξ2 + λ2√
(κ2 + λ2)

2
− (2κλξ)2



 θ(1 − λ) (20)

β‖‖
mn =

1∫

−1

dξ θ
(
κ2 + λ2 − 2κλ|ξ| − x2

)
κ2


1− χmχn

κ2(2ξ2 − 1)− λ2√
(κ2 + λ2)2 − (2κλξ)2


 θ(1 − λ)

β⊥⊥′

mn = −i ǫ‖⊥⊥′

1∫

−1

dξ θ
(
κ2 + λ2 − 2κλ|ξ| − x2

)
κ2
∑

s=±1

s (χm − χn) sign(Ω)

2
√
κ2 + λ2 − 2sκλ|ξ|

(κ|ξ| − sλ) θ(1 − λ) .

The functions fab have the same characteristics in all
spin channels a, b ∈ {⊥⊥, ‖‖,⊥⊥′}. Their plots in Fig-
ures 1, 2, 4 illustrate that fab vanish for |Ω| < v|q|−2|µ|,
2|µ|−v|q| > |Ω| > v|q| and |Ω| = v|q|. The dissipation at
|Ω| > max(2|µ|, v|q) is dominated by the collective mode
decay into “high energy” particle-hole pairs which are
excited across the Weyl node. Outside of this frequency-
momentum region, the decay occurs by generating “low
energy” particle-hole pairs across the Fermi surface on
the Weyl node. This “low energy” channel is weaker,
but has several features that clearly reveal the relativis-
tic properties of the Weyl spectrum. Fig. 4 shows how
the minimums and maximums of a collective mode damp-
ing rate can be used to characterize the Fermi surface of
Weyl electrons.

B. Spin wave damping

The actual damping rate of collective excitations gen-
erally obtains from a mixture of spin channels. Consider
the spin waves with wavevectors ∆Q + q in the vicin-
ity of the momentum-space separation ∆Q = Qm −Qn

between two particular Weyl nodes. Let −SΩab
0 (q) be

the intrinsic part of the effective Lagrangian density
δLeff for the local moment fluctuations δn, excluding the
spin Berry phase SΩδab (S is the spin magnitude of lo-
cal moments). This can contain any intrinsic exchange
interactions of the localized electrons and crystal field
anisotropies derived from Hint in (5). The Lagrangian
density terms induced by the itinerant Weyl electrons
are all contained in the Γab tensor (6). The principal part
of (6) yields a variety of induced RKKY interactions45,

while its dissipative components Γ̃ab are collected in (17).
The presence of magnetic order in the ground state fur-
ther affects the dynamics of spin waves because the small
spin fluctuations δn of low-energy modes must be or-
thogonal to the local spins n̂. This can be incorporated
into the general analysis44, but we will simplify the dis-
cussion here by considering only a ferromagnetic ground
state n̂(r) = n̂0. The choice of a ferromagnetic order is
well-motivated because the dominant RKKY couplings
induced by Weyl electrons are indeed ferromagnetic45,
and the intrinsic exchange (normally antiferromagnetic)
is week for strongly localized f electrons that produce

magnetic moments in rare earth atoms. Beyond this,
there is no need to calculate the magnetic order and spin
wave dispersion by solving a concrete spin model – we are
interested only in the electron-induced damping rates,
which depend on the propagation direction and polar-
ization of spin waves relative to the magnetization, but
do not depend on any other mentioned details (at the
pursued one-loop order of perturbation theory).
The spectrum of damped spin waves is extracted from

the Gaussian part of the Lagrangian density in momen-
tum space

δLeff = (δna)∗
[
SΩδab−SΩab

0 (q)+a30 Γ
ab(Ω,q)

]
δnb (21)

The factor of a unit-cell volume a30 converts the energy
density Γab to the energy per lattice unit-cell, and the
factor of 1

2 in the Berry phase term Ω is appropriate for

the local moments with spin S = 1
2 . Introducing

gab = Ωab
0 −

a30
S

Γab (22)

to simplify notation, the spin wave modes obtain by di-
agonalizing PMP , where Pab = δab − n̂a

0n̂
b
0 projects-out

the high-energy amplitude fluctuations (keeps δn ⊥ n̂0)
and

Mab = Ωδab − g⊥⊥(δab − q̂aq̂b)− g‖‖q̂aq̂b − g⊥⊥′

ǫabcq̂c

is the matrix embedded in (21). An arbitrary choice of
the background magnetization n̂0 = ẑ reveals two polar-
ization modes δn = (δnx, δny) at q = qq̂

δn± ∝

(
g‖‖−g⊥⊥

2 (q̂2x − q̂2y)± δǫ

(g‖‖ − g⊥⊥)q̂xq̂y − g⊥⊥′

q̂z

)
(23)

with energies

Ω± = g⊥⊥
0 +

g‖‖ − g⊥⊥

2
(1− q̂2z)± δǫ (24)

where δǫ = 1
2

√
(g‖‖ − g⊥⊥)2(1− q̂2z)

2 − (2g⊥⊥′ q̂z)2.
These polarizations are generally elliptical, but become
circular δn ∝ (±i, 1) with Ω± = g⊥⊥ ∓ ig⊥⊥′

for the
modes that propagate along the magnetization direction
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(q ‖ n̂0), and linear δn+ ∝ q̂, δn− ∝ n̂0 × q̂ with
Ω+ = g‖‖, Ω− = g⊥⊥ respectively for the modes that
propagate in the plane perpendicular to the magneti-
zation (q ⊥ n̂0). The character and non-degeneracy
of the two polarization modes is the hallmark of the
RKKY interactions induced through the spin-orbit cou-
pling: Dzyaloshinskii-Moriya (DM) in the case of circular
polarizations, and Kitaev in the case of linear polariza-
tions.
The equation (24) has to be solved self-consistently

since the components of the gab tensor on its right-hand
side depend on frequency, but the revealed form of its
solutions ensures all of the spin wave properties that
we discuss. The two circular polarizations at the same
wavevector q ‖ n̂0 carry opposite spin currents

jai = −iqiǫ
abc(δnb)∗δnc ∝ ∓|g⊥⊥′

|2qiδ
az , (25)

so their energy difference Ω± = g⊥⊥ ∓ ig⊥⊥′

due to the
DM interaction implies spin-momentum locking. Note
that the DM interactions appears as gabDM ∝ ǫabc(iqc), so
it does shift the spin wave energy. The dissipative com-

ponents g̃ab ∝ Γ̃ab of gab impart an imaginary part γ on
the pole frequency Ω, which was introduced in Section II
(e.g. Eq.3) and corresponds to the damping rate. The

signs of both Γ̃⊥⊥, Γ̃‖‖ (f⊥⊥, f‖‖ > 0) indeed correspond
to damping and not an instability, and the chiral contri-
butions are not large enough to overturn this at any Ω.
The chiral dissipative part extracted from (17) is real,
g̃abDM ∝ ǫabcqc, and hence introduces different damping
rates for the two circular spin waves. These qualitative
conclusions hold for the elliptical modes as well.

C. The absence of uniform precession damping

The universal dependence of (17) on |Ω|/vq introduces
a non-analytic behavior at Ω, q → 0 in the damping terms

L̃ of the spin Lagrangian density. Therefore, one cannot

strictly expand L̃ in powers of Ω, q to represent the dis-

sipation as a result of local processes. L̃ can be approx-
imated by an expansion only in special limits. Suppose
the spin waves have dispersion |Ω| = uq at low ener-
gies (in the vicinity of ∆Q = Qm − Qn → 0 for intra-
node scattering m = n). If the spin wave velocity u is
smaller than the Weyl electrons’ velocity v, then a suf-
ficiently large q pushes the spin waves into the regime

|Ω| < vq − 2|µ| where Γ̃ab = 0 in (17) and the damping
is absent (see Fig.2). Alternatively, if u ≫ v, then the
spin waves are in the regime |Ω| ≫ vq and their damp-
ing at energies |Ω| > 2|µ| is approximately characterized

by the dominant local terms Γ̃‖‖, Γ̃⊥⊥ ∼ i(AΩ2 + Bq2)

and a smaller chiral term Γ̃⊥⊥′

∼ DqΩ. Together with
the non-dissipative Hermitian terms χ−1

0 , the electron-
induced part of the local moments’ effective Lagrangian

density (21) contains

Γab |Ω|≫vq
−−−−−→

1

2

[
(χ−1

0 )ab + i(AabΩ2+Babq2) +DǫabcqcΩ
]

(26)
with Aab = A⊥⊥(δab−qaqb/q2)+A‖‖qaqb/q2 and likewise
for Bab. By construction (6), Γ ≡ 1

2χ
−1 is the inverse

time-ordered correlation function

〈δsa(q,Ω) δsb(q′,Ω′)〉 = iχab(q,Ω) δ(q + q′)δ(Ω + Ω′)

for the small fluctuations δs of the Weyl electron spins
away from their equilibrium magnetization. We will con-
sider only the simplest case of a collinear ferromagnet
in the following analysis. The equilibrium state will be
given by the uniform magnetization of local moments n̂0

and electrons 〈s0〉 ‖ n̂0.
A semiclassical representation of the local moment dy-

namics is given by the field equation for n̂. The pres-
ence of non-Hermitian damping terms in the effective ac-
tion for local moments prevents us from deriving the field
equation by considering the stationary action condition.
Instead, we can use linear response theory to learn about
the semiclassical dynamics. The retarded electrons’ spin
correlation function

χR(q,Ω) =

{
χ(q,Ω) , Ω > 0

χ†(q,Ω) , Ω < 0
(27)

is readily obtained from (26)

(χ−1
R )ab

|Ω|≫vq
−−−−−→ (χ−1

0 )ab (28)

+sign(Ω)
[
i(AabΩ2+Babq2) +DǫabcqcΩ

]
,

and then the response of electron spins to the local mo-
ment field is

〈δsa(r, t)〉 =
JK
a30

∫
dt′d3r′ χab

R (r− r′, t− t′) δnb(r′, t′) .

(29)
This follows from the Kondo interaction JK in (5) be-
tween the “perturbation” field n and the responding
electrons spin s = ψ†

σψ on a lattice site (the unit-cell
volume a30 effectively converts the integration over coor-
dinates to a summation over lattice sites). Note that
χab
R (q,Ω) = (χab

R )∗(−q,−Ω) is established globally in
momentum space (not necessarily in the immediate vicin-
ity of the Weyl node wavevector ∆Q)62, so that its in-
verse Fourier transform χab

R (r, t) is real. The thermody-
namic potential for local moments is simply

F [n̂] = JK〈s〉n̂ . (30)

The local moment dynamics is driven by an effective
“magnetic” field in units of energy

Heff(r, t) = −
δF [n̂]

δn̂(r, t)
= −JK〈s(r, t)〉 (31)
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Taking into account the Berry phase of local moments
yields the usual semiclassical field equation

∂n̂

∂t
= n̂×Heff . (32)

with

Ha
eff(r, t) ≈ −JKn̂

a
0 −

J2
K

a30

∫
dδtd3δr χab

R (δr, δt) (33)

× δn̂b(r+ δr, t+ δt)

≈ −JKn̂
a
0 −

J2
K

a30

∫
dδtd3δr χab

R (δr, δt)

×

[
1 + δr∇+ δt

∂

∂t
+ · · ·

]
δn̂b(r, t)

This is seen to generate Gilbert damping which dissi-
pates the precession of uniform magnetization in typical
ferromagnets

∂n̂

∂t
= n̂×Heff = · · ·+ n̂× αG

∂n̂

∂t
(34)

with the damping tensor

αab
G = −

J2
K

a30

∫
dδtd3δr χab

R (δr, δt) δt (35)

= i
J2
K

a30

∫
dΩ

2π

∫
dδt e−iΩδt ∂χ

ab
R (0,Ω)

∂Ω

= −
J2
K

a30

∂ Imχab
R

∂Ω

∣∣∣∣
(q,Ω)=0

.

The real part of χR(q,Ω) generally does not contribute
because it is an even function of Ω at q = 0 (even though
it diverges for gapless spin waves when Ω → 0). In the
case of damping induced by Weyl electrons, the imagi-
nary part of χR becomes zero when 2|µ|− vq > |Ω| ≥ vq,
following the behavior of the time-ordered χ−1 ≡ Γab

that was discussed earlier (see Fig.4). This feature is a
universal consequence of the energy and momentum con-
servation shaped by the massless relativistic Weyl spec-
trum. Therefore, χR is real in the limit Ω, q → 0 and the
decay of spin waves into Stoner excitations of the Weyl
electrons does not generate a uniform Gilbert damping,
αab
G = 0. By comparison, massive relativistic electrons

can induce uniform Gilbert damping25. Otherwise, the
damping of non-uniform spin configurations is a generic
consequence of spin wave decay and obtains from the
gradient expansion in (33).
The complete equation of motion for local moments

can be extracted from (32) and (33), but the non-analytic
frequency dependence of the dissipative terms in (28) in-
troduces (via its Fourier transform) non-local relation-
ships between the fields n̂(t) at different times t. If one
were to ignore this issue, or approximate the non-local
effect by couplings over small time intervals, then a local
field equation would be obtained from the expansion in-
dicated in (33). We will not pursue this here any further.

IV. CONCLUSIONS AND DISCUSSION

We analyzed the dynamics of local magnetic moments
coupled to itinerant Weyl electrons, and focused on the
dissipation of spin waves via the continuum of Stoner
particle-hole excitations. We described this dissipation at
the level of the effective Lagrangian of local moments, or
equivalently the spin-spin correlation function (dynamic
susceptibility). For the spin waves at wavevector ∆Q+q

and frequency Ω in the vicinity of the momentum differ-
ence ∆Q = Qm−Qn between twoWeyl nodes, the damp-
ing rate is proportional to Ω2 and a universal function of
|Ω|/v|q| where v is the Weyl electron (Fermi) velocity.
The presence of Fermi pockets with chemical potential
µ introduces additional dependence of the damping rate
on |Ω/µ|. If the Weyl nodes are well-separated in mo-
mentum space, then there is no cross-talk between them
in the damping rates and the momentum-space locations
of the Weyl nodes can be discerned from the wavevec-
tors near which the spin wave dissipation is locally max-
imized. The Weyl-electron origin of dissipation can be
experimentally verified by the universal relativistic prop-
erties of damping over a range of mode frequencies and
momenta, while various parameters of the Weyl spectrum
can be extracted from the momentum space locations
of the characteristic damping features (e.g. local maxi-
mums and points where damping vanishes). The damp-
ing rates involving Weyl electrons also generally exhibit
“non-reciprocity” or chirality – the modes of different po-
larizations that propagate at the same momentum q have
different lifetimes. We presented a procedure to obtain
the field equation for the semi-classical dynamics of the
local moment magnetization field, and found that the dis-
sipation on Weyl electrons does not give rise to uniform
Gilbert damping.
One important conclusion of this study is that the

spin wave damping rate reveals the relativistic nature
of Weyl electrons – both through its universal depen-
dence on |Ω|/v|q| and the places in momentum space
where it vanishes. We computed the damping rate asso-
ciated with Stoner excitations, but similar results should
hold for zero-spin particle-hole excitations as well. Then,
other kinds of collective modes coupled to Weyl electrons,
e.g. the phonons of the crystal or a charge density wave,
should exhibit similar universality in their damping rates.
This would be interesting to explore in the future since in-
elastic neutron scattering is sensitive to phonons as well.
The developed theory is very general within its limi-

tations. It makes no assumptions about the Weyl node
locations, so it applies to Dirac semimetals as well (where
the opposite-chirality Weyl nodes coexist at the same
wavevectors). It also makes no assumptions about the
magnetic order, so it holds for ferromagnets, antiferro-
magnets and paramagnets, with or without local spin
anisotropy. In this regard, however, the damping rates
of spin waves are affected by the nature of magnetic or-
der; we demonstrated the calculations only in the fer-
romagnetic (and implicitly also the paramagnetic) case.
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Analytical progress was made by simplifying the model
to spherically symmetric Weyl nodes that all live at the
same energy. This is the main limitation of the current
theory, although many implications of realistic model ex-
tensions can be readily anticipated. Energy differences
between the nodes are easily included by associating dif-
ferent chemical potentials to the nodes, while a small
Weyl node anisotropy is expected to introduce a simi-
lar anisotropy in the induced dynamics and dissipation
of local moments. It is possible that type-II Weyl nodes
fall outside of this theory’s domain, so their exploration is
left for future study. We also did not consider corrections
due to finite temperature and disorder.

The usefulness of this theory for the experimental char-
acterization of magnetic Weyl semimetals is guarantied
in principle, but depends on several factors in reality.
The needed level of detail is not easy to achieve in the
measurements of spin wave spectra. It requires at least
very clean samples, low temperatures, as well as a suffi-
ciently high energy resolution and adequate statistics to
resolve with low error bars the energy/momentum depen-
dence of the inelastic neutron scattering. These aspects
of measurements can always be improved, but there are

also material-related constraints: phonons, for example,
must not coexist with spin waves at the same momenta
and frequencies. Still, some regions of the first Brillouin
zone should expose the electronic damping mechanism
and enable the proposed experimental characterization
of magnetic Weyl semimetals. On the purely theoretical
front, the present study was concerned with a basic but
intricate and important aspect of interaction physics in
a topological system. It plays a role in piecing together
a broader picture of magnetic correlated topological ma-
terials, which can host non-trivial anisotropic magnetic
orders13, chiral magnetic states and excitations44, and
possibly even exotic spin liquids63.
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