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We study systems of bosons whose low-energy excitations are located along a spherical submani-
fold of momentum space. We argue for the existence of gapless phases which we dub “Bose-Luttinger
liquids”, which in some respects can be regarded as bosonic versions of Fermi liquids, while in other
respects exhibit striking differences. These phases have bosonic analogues of Fermi surfaces, and
like Fermi liquids they possess a large number of emergent conservation laws. Unlike Fermi liquids
however these phases lack quasiparticles, possess different RG flows, and have correlation functions
controlled by a continuously varying exponent η, which characterizes the anomalous dimension of
the bosonic field. We show that when η > 1, these phases are stable with respect to all sym-
metric perturbations. These theories may be of relevance to several physical situations, including
frustrated quantum magnets, rotons in superfluid He, and superconductors with finite-momentum
pairing. As a concrete application, we show that coupling a Bose-Luttinger liquid to a conventional
Fermi liquid produces a resistivity scaling with temperature as T η. We argue that this may provide
an explanation for the non-Fermi liquid resistivity observed in the paramagnetic phase of MnSi.
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I. INTRODUCTION AND SUMMARY

The difficulty of understanding a given phase of mat-
ter roughly scales with the number of low-energy degrees
of freedom it possesses. Phases with finitely many low-
energy degrees of freedom are relatively easy to under-
stand, and can be classified using the framework of topo-
logical quantum field theory. More difficult are theories
where the gap goes to zero at isolated points in momen-
tum space. The low energy physics of these theories are
described by gapless quantum field theories. In many
cases these field theories are conformal, and can be un-
derstood using powerful techniques from conformal field
theory. More difficult still are a third class of theories
possessing a larger amount of gapless degrees of freedom,
with gapless modes located along a nontrivial submani-
fold of momentum space. The canonical examples of such
theories are Fermi liquids and non-Fermi liquids.

This third class of “very gapless” phases of matter is
of fundamental importance to condensed matter physics,
but it is at present unclear whether or not phases in this
class can be understood within any particular unifying
framework. It is therefore valuable to construct exam-
ples of such theories beyond the purview of (non-)Fermi
liquids, in order to understand what general features such
phases of matter are expected to possess.

In this paper, we will study phases of bosons which fall
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into this third class of matter. The systems we will study
have dispersion relations like

ε(k) ∼
√
r + v2(k2 − k2

B)2, (1)

so that ε(k) is degenerate along a sphere of radius kB in
momentum space, which we refer to as a “Bose surface”.

We will be interested in scenarios in which ampli-
tude ordering occurs across the entire Bose surface. In
these scenarios, the phase degrees of freedom at each
point on the Bose surface fluctuate in a quasi-one-
dimensional manner, preventing the establishment of
long-range phase ordering. In the same way that Fermi
liquids can be thought of as a collection of 1+1D Dirac
fermions, with one Dirac fermion for each point of the
Fermi surface, we will see that these phases can be re-
garded as collections of 1+1D Luttinger liquids, with one
Luttinger liquid located at each point on the Bose sur-
face. As such, we dub these phases “Bose-Luttinger liq-
uids”.1

Our motivation for studying these types of systems
is two-fold. First, whether or not such “very gapless”
phases can arise in purely bosonic systems (without fine-
tuning) is an interesting question in its own right, since
one cannot rely on degeneracy pressure to stabilize the
Bose surface. In fact a similar question has already arisen
in the literature, where it appeared in the context of
various two-dimensional ring-exchange models.5–12 These
models have an anisotropic dispersion which vanishes
along the coordinate axes in momentum space, and are
described in the IR by field theories exhibiting quasi
1+1D behavior. However, the stability of these mod-
els in the thermodynamic limit is a rather delicate issue,
and may require the presence of a UV symmetry group
with an infinite number of conserved charges. By con-
trast, the phases we will study in this paper are closer
in spirit to Fermi liquids — they are rotation-invariant,
and are stable in the presence of a small UV symme-
try group consisting only of translation and U(1) charge
conservation.

Our second motivation for studying these types of the-
ories can be traced back to an old idea of Anderson,13

who proposed that Fermi liquids in 2+1D are generically
unstable, and instead flow in the IR to Luttinger liquid
like fixed points that lack well-defined quasiparticles.

This proposal unfortunately turned out to be incor-
rect, with the geometry of the Fermi surface protecting
the quasiparticle pole against interactions, as long as the
interactions are sufficiently non-singular. While interac-
tions are not able to easily create a phase with Luttinger
liquid type exponents, this obstacle can be overcome by

1 Note that such phases are conceptually distinct from “Bose met-
als”, viz. systems of bosons (usually Cooper pairs) which at
T = 0 have metallic transport1–4. We are instead interested in
theories that possess a large number of gapless excitations (re-
gardless of whether or not they are metals).

working instead with systems of bosons, where the Lut-
tinger liquid behavior can be built in at a more funda-
mental level. We will see how this line of reasoning can be
used to construct fixed points that share some similari-
ties to those envisioned by Anderson. However as we will
see, there are also significant differences in the precise
structure of the low energy theory, and the underlying
degrees of freedom are bosonic, rather than fermionic.

The Bose-Luttinger liquids studied in this paper are
phenomenologically somewhat similar to Fermi liquids,
although there are many important differences. Like
Fermi liquids these phases are metals, have a T -linear
specific heat, possess correlation functions exhibiting os-
cillations at integer multiples of a “Bose momentum” kB ,
and have a set of Landau parameters which modify some
aspects of their phenomenology. Unlike Fermi liquids
however these phases lack quasiparticles, have correla-
tion functions with continuously tunable exponents, and
will be seen to possess rather different RG flows.

The structure of this paper is as follows. In section
II, we warm up by considering a simple one-dimensional
example of a Bose-Luttinger liquid, which like a one-
dimensional Fermi liquid involves a dispersion which is
gapless at two “Bose points” in momentum space. In the
IR this theory can be understood as a multi-component
Luttinger liquid enriched with a particular symmetry ac-
tion.

We then move on to explore a generalization of this
example to 2+1D, which is the main focus of this pa-
per. The UV model is introduced in section III, and
consists of translation-invariant conserved bosons with
a dispersion possessing degenerate minima along a cir-
cle in momentum space. In section IV we write down
a Lagrangian describing the low-energy physics of the
Bose-Luttinger liquid fixed point, and discuss the emer-
gent symmetries and operator content of the IR theory.
In these two sections, we assume the presence of a mi-
croscopic particle-hole symmetry which fixes the system
to be at zero average density. This is done only for sim-
plicity, and in section VI we explain the generalization to
the finite density case.

In section V we set up an RG analysis to determine
the stability of the Bose-Luttinger fixed point. We find a
regime of parameter space where the fixed point is stable
against all symmetric perturbations, and another regime
where it possesses an instability with respect to a BCS-
type pairing interaction. In section VII we discuss the
phenomenology of these phases, and compare them to
Fermi liquids. Section VIII discusses how the results of
the previous sections generalize to 3+1D.

In section IX we consider an application of the general
theory put forth in previous subsections. We consider
systems consisting of a Fermi liquid coupled to a Bose-
Luttinger liquid, and examine the effect that this cou-
pling has on the transport properties of the Fermi liquid.
A concrete example of a material where such a theoret-
ical description may be applicable is the helical magnet
MnSi, which exhibits a metallic phase possessing spin
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fluctuations whose dispersion has a degenerate minimum
along a sphere in momentum space. Modeling this sys-
tem as a Fermi liquid coupled to a Bose-Luttinger liquid,
we calculate the transport scattering rate and show that
it predicts a resistivity scaling as ρ ∝ T η, where η > 1
is a non-universal exponent. This offers a possible ex-
planation for the observed T 3/2 scaling of the resistivity
in this material,14 which cannot be explained within the
context of Fermi liquid theory alone.

We close with a discussion of future lines of work in
section X, with discussions of a related model lacking
U(1) symmetry and several technical details relegated to
the appendices.

The idea of using unconventional dispersion rela-
tions to stabilize higher-dimensional Luttinger liquid-like
states has in fact already appeared in an earlier work by
Sur and Yang,15 who focused on the context of spin-orbit
coupled bosons in 2+1D.2 While the general idea of Ref.
15 is quite similar to that of the present paper, there
are several key differences. Similar to Ref. 15 we ana-
lyze the IR theory by decomposing the Bose surface into
a large number of coupled Luttinger liquids. Unlike in
Ref. 15 however, we take care to ensure that the phys-
ical properties of the IR theory do not depend on the
exact way we perform this decomposition, which leads to
a more careful analysis being needed when considering
theories defined at finite density. We also emphasize the
importance of gapped vortex excitations which do not
seem to have been considered in Ref. 15. Our identi-
fication of the emergent symmetry is also different, and
this leads us to a different perspective on certain vortex
operators. We argue that our treatment is needed in or-
der to be confident about the stability of the theories we
study. Finally, the present work is also slightly broader
in scope, and includes discussions of several other related
models, a procedure for performing RG, and an expanded
treatment of various phenomenological aspects.

II. WARMUP: 1+1D

In this section we will warm up by looking at the case
of translation-invariant conserved bosons in 1+1D. We
will be working at T = 0 throughout, and will assume
the presence of a reflection or time reversal symmetry
ensuring that the dispersion is symmetric under k→ −k.
For simplicity will furthermore assume the existence of a
particle-hole symmetry P which fixes the average density
of the bosons to be zero. This symmetry is imposed
purely for simplicity, and all of the results in this section
can easily be extended to the finite density case.

The Bose-Luttinger liquids we will find in 1+1D are
nothing more than multi-component Luttinger liquids en-
dowed with a certain symmetry action. In 1+1D a Bose

2 We thank Zhen Bi for bringing Ref. 15 to our attention.
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FIG. 1: An illustration of a dispersion possessing
minima at the two Bose points ±kB . The IR theory
contains only modes within ±Λ of each Bose point.

surface just consists of two points, and so these do not re-
ally give us examples of phases with a “large” number of
low energy degrees of freedom. Nevertheless the analysis
here is quite simple, and will be useful when we proceed
to the more complicated 2+1D case.

A. UV theory

Our starting point will be a Lagrangian whose free part
gives a dispersion ε(k) possessing two minima at ±kB ,
with kB > 0. The prototypical example of a Lagrangian
with such a dispersion is

L = ψ∗
(
−v−1∂2

τ +
v

4k2
B

(−∂2
x − k2

B)2 + r

)
ψ +

g

4
|ψ|4.

(2)
We will be interested in the regime where r < 0, so

that the system is nearly a superfluid. The particle-hole
symmetry acts as P : ψ 7→ ψ∗, and the dispersion ε(k)
is illustrated in Figure 1. One example of a system that
exhibits this type of dispersion is the lower band of a
spin-orbit-coupled boson,16 although in what follows we
will not restrict our attention any particular physical re-
alization.

To understand the IR theory we will integrate out
modes at momenta far away from ±kB , assuming that
the interaction g is initially weak in the UV. After in-
tegrating out these modes, we obtain an effective action
for the modes with momenta within ±Λ of ±kB , where
Λ/kB � 1 (see Figure 1).

The two-body interaction of the bosons g|ψ|4 is rele-
vant under the free fixed point scaling, with RG eigen-
value +2. Since the flow is towards strong coupling, we
will need to switch to a different language to describe the
IR physics.

B. IR theory

Since we are assuming the interaction is weak in the
UV, the kinetic energy is the dominant consideration
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when determining the correct IR Lagrangian to write
down. We thus start by decomposing ψ as

ψ(x) =
1√
2

(eikBxψR(x) + e−ikBxψL(x)), (3)

with the ψL/R fields which annihilate bosons at the right
and left “Bose points” k = ±kB . The symmetries of
translation through a distance a and U(1) particle num-
ber act on the ψα fields as

U(1) : ψα → eiλψα, Ta : ψα(x)→ eαikBaψα(x+ a),
(4)

where α = ±1 when it does not appear as a field index.
In terms of these fields, the IR Lagrangian is

L =
∑

α=R,L

ψ∗α
(
−v−1∂2

τ − v∂2
x + r

)
ψα+

∑
αβ

gαβψ
∗
αψαψ

∗
βψβ ,

(5)
where gαβ is a symmetric non-degenerate matrix
parametrizing the interactions.

In using the decomposition (3) and in writing down
the above Lagrangian, we have glossed over an impor-
tant subtlety. Due to interactions the field ψ will acquire
a non-zero self-energy, which will generically renormalize
the value of kB . If this process is significant enough to
renormalize kB to zero by the time we reach the IR scal-
ing regime, a description in terms of the ψα fields will
not be correct. In Appendix B we argue that one can
always choose the density and UV interaction strength
such that the renormalized kB is finite, and henceforth
we will always assume that this is the case. In the follow-
ing, kB > 0 will then be taken to mean the renormalized
Bose momentum.

Since we are working at r < 0, we are prompted
to write ψα in terms of fluctuations about a nearly-
superfluid state by taking

ψα = (r0 + rα)eiφα , (6)

where r0 =
√
ρS is the square root of the average boson

amplitude3 (since the action is L ↔ R symmetric, the
potential favors an equal amplitude for both fields). The
IR regime is reached at length scales larger than the in-
verse mass of the rα fields. In this regime we may write
down an IR Lagrangian solely in terms of the phase vari-
ables φα, which we take to have momentum modes in
the interval [−Λ,Λ].4 Fluctuations of rα are accordingly

3 We use the term “boson amplitude” here because there is no
condensate (|〈ψ〉| = 0) and because “superfluid density” is po-
tentially confusing, given that we are working at zero average
boson density.

4 Fixing a momentum cutoff of Λ on ψα is of course not the same as
putting a cutoff of Λ on φα. A slightly more accurate treatment
would be to use a sharp cutoff for φα while using a soft cutoff
for ψα. Given that the exact cutoff procedure is not important
for the effective field theory approach we are taking here, we will
not pay attention to such subtleties in the following.

taken into account by examining the effects of the vertex
operators eiθα . Here θα are the fields dual to φα, with
the commutation relations

[φα(x), ∂xθβ(y)] = α2πi δα,βδ(x− y). (7)

From (4) we see that φα transforms under the relevant
microscopic symmetries as

U(1) : φα 7→ φα + λ,

Ta : φα 7→ φα + αakB ,

P : φα 7→ −φ−α,
(8)

with λ ∈ [0, 2π) a constant and where −α denotes the
opposite index to α. The dual fields θα are neutral under
U(1) and Ta, and transform as P : θL/R 7→ θR/L + π
under particle-hole symmetry.

These considerations then lead to an IR Lagrangian
which generically takes the form L0 + LI , with

L0 =
1

4πη

∑
α

(
v−1(∂τφα)2 + v(∂xφα)2

)
+

1

4πη

(
v−1fρ∂τφL∂τφR + vfj∂xφL∂xφR

)
LI = g

∑
α

cos(2θα) + g±LR cos(θL ± θR) + · · · ,

(9)
where · · · are higher-derivative interactions and less rel-
evant cosines (note that there are no symmetry-invariant
cosines in the φα variables). The parameter η is a non-
universal phenomenological coefficient, and the fj , fρ are
“Landau parameters” characterizing the couplings of the
spatial current densities (fj) and the couplings of the
charge densities (fρ). Positivity of the Hamiltonian re-
quires |fρ|, |fj | < 1.

The Lagrangian is diagonalized using the fields

φ± ≡
φR ± φL√

2
, θ± ≡

θR ± θL√
2

, (10)

which have commutation relations

[φ±, ∂xθ±] = 0, [φ±, ∂xθ∓] = ±2πiδ(x− y). (11)

In terms of these variables, the Lagrangian is

L0 =
1

4π

∑
σ=±

1

ησ
φσ(v−1

σ ∂2
τ + vσ∂

2
x)φσ, (12)

where

η± ≡
η√

(1± fρ)(1± fj)
, v± ≡ v

√
1± fj
1± fρ

. (13)

By dualizing the Lagrangian L0 in terms of the θ± vari-
ables (under which η± → 1/η±), one finds that the RG
eigenvalues yO = 2−∆O of the most relevant interactions
in LI are

ycos(θα) = 2− η−1
+ + η−1

−
4

, ycos(θL±θR) = 2− 1

η∓
.

(14)
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If any of these eigenvalues are positive, some or all of
the low-energy degrees of freedom will be made massive.
However, it is always possible to choose η small enough
such that all three of the RG eigenvalues above are neg-
ative, and as such there always exists a regime of param-
eter space where the free fixed point described by L0 is
stable.

The phenomenology of the fixed point L0 can be de-
termined straightforwardly, since the IR theory is simply
that of two coupled Luttinger liquids acted on by trans-
lation and U(1) symmetries in a particular way. Corre-
lation functions at the fixed point are characterized by
the non-universal exponents η±, and possess oscillations
at wavevectors corresponding to integer multiples of kB .
For example, the 2-point function of the UV bosons is

〈ψ(x)ψ†(0)〉 ∼ cos(kBx)

|x|η , η ≡ η+ + η−
2

. (15)

Rather than pursuing a detailed analysis of the phe-
nomenology at this fixed point we will instead proceed di-
rectly to 2+1D generalizations, which is where our main
interest lies.

III. 2+1D: UV THEORY AND PATCH
DECOMPOSITION

We will now turn our attention to systems of
translation-invariant conserved bosons in 2+1D. As in
the previous section, we will assume the presence of a
UV particle-hole symmetry, which fixes the average par-
ticle density at zero and forbids a linear time derivative
ψ∗i∂tψ from appearing in the action. In Section VI we
will explain what happens when this symmetry is absent.
We will furthermore assume that the bosons have a dis-
persion with a minimum along a circle of radius kB > 0
in momentum space. In order that this degeneracy be ex-
act, we will assume the presence of continuous rotational
symmetry, although we will see later that this assumption
is not essential, as long as the rotation-breaking terms are
small.

A general UV Lagrangian satisfying these criteria can
be written as

L = |∂τψ|2 +A|∇ψ|2 +B|∇2ψ|4 + r|ψ|2 +
g

4
|ψ|4,

(16)
where A < 0. We will be interested in the regime where
r < 0, so that a superfluid-like description can be used
in the IR. Such a scenario can arise in the context of
FFLO-type superconductivity (with the field ψ repre-
senting Cooper pairs) or in certain types of frustrated
magnets (which will be discussed further in section IX),
but in what follows we will not be concerned with any
particular physical realization. We will find it convenient
to parametrize the kinetic part of L in terms of the mo-

2Λ

2Λ

γ

kx

ky

k‖

k⊥

FIG. 2: How the low-energy annulus in momentum
space is broken up into patches. Each patch is labeled
by an angle γ, with corresponding unit vector γ.

mentum kB minimizing the dispersion as

L = ψ∗
(
−∂2

τ +
1

4k2
B

(−∇2 − k2
B)2 + r

)
ψ +

g

4
|ψ|4.

(17)
To obtain the IR theory, we first integrate out modes

with large |k| − kB , producing a theory with modes sup-
ported on a momentum-space annulus of width 2Λ� kB
surrounding the Bose surface. As in the 1+1D case the
renormalization of kB as the modes away from the Bose
surface are integrated out will be finite, and one needs
to worry about whether or not kB can in fact be renor-
malized to zero. We again argue in Appendix B that one
can choose parameters such that this is generically not
the case, and in what follows we will use kB to denote
the renormalized Bose momentum, which we assume to
be nonzero. At energy scales much less than kB , the
dispersion will cause the low-energy fields to fluctuate in
a quasi-1+1D fashion, giving rise to a theory which in
the IR has the potential to be treated using an approach
similar to the one used in the previous section.

After integrating out the modes far from the Bose sur-
face it is helpful to use a patch decomposition for the
remaining fields, similar to the ones employed in treat-
ments of Fermi liquids.15,17–20 We proceed by breaking
up the annulus around the Bose surface into many small
patches of size 2Λ × 2Λ, and define patch fields ψγ such
that

ψ(x) =
1√
N

∑
γ

eikBγ·xψγ(x), (18)

where the momentum modes of ψγ lie within a patch
centered on the momentum kBγ, with γ a unit vector
(see Fig. 2). The parameter N is defined as the number
of patches, viz.

N ≡ 2πkB
2Λ

� 1. (19)
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The kinetic term for each ψγ field has the form

L0 ⊃
1

N
ψ∗γ
(
k2
‖ +

1

kB
(k3
‖ + k ‖ k

2
⊥)

+
1

4k2
B

(k4
‖ + 2k2

‖ k
2
⊥ + k4

⊥)
)
ψγ ,

(20)

where k ‖ = k · γ is parallel to γ, k⊥ = k · γ⊥ is per-
pendicular, and where the notation a ⊃ b is to be read
as “b is a term appearing in a”. Note that due to the
flatness of the dispersion along the γ⊥ direction, there
is no quadratic term k2

⊥ appearing in the above kinetic
term. Since k ‖ , k⊥ are always much less than kB , for
most purposes we may approximate this as

L0 ⊃
1

N
ψ∗γk

2
‖ψγ . (21)

For some calculations it is however important to retain
all the terms in (20), as we will see when we discuss long-
distance real-space correlation functions in section VII.
Until then, we will simply take the dispersion for each
patch field ψγ to be given by (21).

As a brief aside, we note that the exact procedure we
use for breaking up the region near the Bose surface into
patches is rather arbitrary, and should not have any bear-
ing on the universal aspects of the IR theory. In partic-
ular, no physical quantities should have any explicit de-
pendence on N (indeed, we will see that N flows under
RG), which is something we will need to check as we go
forward.

In terms of the ψγ fields, the Lagrangian can be written
as

L =
1

N

∑
γ

ψ∗γ
(
−∂2

τ −∇2
γ + r

)
ψγ + LI , (22)

where LI contains the interactions and where we have
used the notation ∇γ ≡ γ · ∇.

As in Fermi liquids, the kinematics of the Bose sur-
face ensures that the dominant interactions only occur
in the forward-scattering and BCS channels, so that
LI = LFS + LBCS , with

LFS =
1

4N2

∑
γ,γ′

ψ∗γψγgFS(γ − γ′)ψ∗γ′ψγ′

LBCS =
1

4N2

∑
γ,γ′

ψ∗γψ
∗
γ+πgBCS(γ − γ′)ψγ′ψγ′+π,

(23)

where due to rotational symmetry the two interactions
are functions only of angular differences. We now turn to
writing down a Lagrangian which captures the IR physics
of this theory.

IV. IR THEORY

We flow to the IR by integrating out modes of ψγ with
large (k · γ)2 + ω2. As in 1+1D, the relevance of the

density-density interactions forces us to switch to a dif-
ferent description for discussing the IR physics. Since we
are taking r < 0 in (17), we are prompted to minimize
the potential r|ψ|2 + g

4 |ψ|4 by writing each patch field as

ψγ = (r0 + rγ)eiφγ . (24)

In what follows we will make the crucial assumption
that the potential for the ψγ fields favors a state where
the expectation value 〈r0 + rγ〉 is nonzero and indepen-
dent of γ.5 Depending on the details of the interactions
in the UV this very well may not be the case, with the
system preferring instead to spontaneously break rota-
tion symmetry and develop amplitude order only at iso-
lated points along the Bose circle. Spontaneous symme-
try breaking is energetically favorable if the UV interac-
tion is a simple delta function contact interaction,21,22

although if the interaction acquires momentum depen-
dence this need not be true.23 There seems to be nothing
a priori forbidding a state with uniform amplitude order-
ing for all of the ψγ , and in what follows we will simply
assume that this is the case.

Making this assumption, and working at length scales
larger than the inverse mass of the rγ fields, we are lead
to a superfluid-like IR description in terms of the phase
fields φγ . These fields are acted on by the microscopic
U(1) symmetry as

U(1) : φγ 7→ φγ + c (25)

for constant c, while translation along a vector µ acts via

Tµ : φγ(x) 7→ φγ(x + µ) + kBµ · γ. (26)

Finally, particle-hole symmetry sends P : φγ 7→ −φγ+π.
The general IR Lagrangian consistent with these sym-

metries is L0 +Lf +LI , with LI containing interactions
(which will be discussed shortly in section IV B) and with
the first two terms given by

L0 =
kB

4πNη

∑
γ

(
v−1(∂τφγ)2 + v(∇γφγ)2

)
Lf =

kB
4πN2η

∑
γ,γ′

(
v−1fγ,γ

′

ρ ∂τφγ∂τφγ′

+ vfγ,γ
′

j ∇γφγ∇γ′φγ′
)
,

(27)

where η, fγ,γ
′

ρ , fγ,γ
′

j are all dimensionless non-universal
parameters, and where v is a non-universal velocity.
Fluctuations in the charge (current) density of the ψγ
fields at each patch are represented in the IR as ∂τφγ (as
∇γφγ), with (27) consequently being a general hydrody-
namic Lagrangian parametrizing the gradient energy for

5 Allowing the expectation to be nonzero but with nontrivial γ
dependence is also possible, but we will ignore this possibility
for now.
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fluctuations in the densities and currents. The theory
described by this fixed point is a Bose-Luttinger liquid
(BLL), and is the fixed point that we will focus on for
the majority of the rest of this paper.

As in 1+1D, the couplings fγ,γ
′

j , fγ,γ
′

ρ are dimension-
less “Landau parameters” characterizing the IR theory.

The fγ,γ
′

j term couples the spatial current densities for

the U(1) particle number symmetries on patches γ, γ′,
while fγ,γ

′

ρ couples the charge densities. Due to rota-
tional invariance, the Landau parameters will be func-
tions only of γ − γ′. We will see that they are marginal
under RG, just as in a Fermi liquid.

While in some respects the BLL of (27) is similar to
a bosonic Fermi liquid, there are several key differences.
First, bosonized descriptions of Fermi liquids have only
one pair of fields φ, θ for every pair of antipodal points,
which is half as many as in the present context. Secondly,
the coefficient η (which we will see determines scaling of
correlation functions at the fixed point) can take on any
value, and is a non-universal function of the microscopic
parameters.6 This is in contrast to the Fermi liquid con-
text, where the value of η is fixed. Finally, in a Fermi
liquid the spatial and temporal components of the cur-
rent are related to one another by the Fermi velocity, and
thus Fermi liquids have only a single set of Landau pa-
rameters. Here however the charge and current densities
are distinct, giving two distinct sets of Landau parame-
ters.

A. Emergent symmetry group

As in a Fermi liquid, the BLL fixed point possesses a
very large emergent symmetry group. As formulated in
(27) this symmetry group is naively realized by shifting

φγ(x) 7→ φγ(x) + fγ(x · γ⊥), (28)

for some functions fγ of the perpendicular coordinate
x · γ⊥. This symmetry group is much too large however,
and is an artifact of approximating the dispersion in each
patch γ by a function only of k · γ.7 Accounting for
the small curvature in each patch reduces the symmetry
action (28) to γ-dependent constant shifts. Since each φγ
is a phase variable, the naive emergent symmetry group
is then U(1)N .

This is not correct though, as the way of tiling the
region near the Bose surface into patches is arbitrary.

6 In CFT language, η is related to the radius of the φγ bosons as
η = 1/R2.

7 As mentioned earlier, this approximation does not change the
analysis of the stability of the fixed point (to be discussed
shortly), but is in fact too crude of an approximation for an-
alyzing several physical properties of the fixed point. Therefore
the fixed point theory technically must still remember the curva-
ture of each patch, and the transformations (28) cannot actually
be the right emergent symmetry at the fixed point.

While using square patches of size 2Λ × 2Λ is a par-
ticularly convenient choice, we could equally well con-
sider a decomposition into a larger number of narrower
patches. Since the physical emergent symmetry group
at the fixed point cannot depend on an arbitrary choice
like this, identifying the emergent symmetry as U(1)N is
clearly not correct.

One might then think that since we are interesting in
the large N limit, we should simply identify the emergent
symmetry group with U(1)∞.15,20,24 This is also not cor-
rect. A symmetry group of U(1)∞ would imply that the
particle number at each point of the Bose surface is quan-
tized to be an integer, but in fact we may only speak of a
non-quantized particle density ργdγ, with the only quan-

tized charge being the global charge
∫
dγ
2πργ . Further-

more, elements in U(1)∞ generically shift the φγ fields
by discontinuous functions of γ. When we weakly break
this symmetry group by e.g. adding a very small mag-
netic field (which introduces derivatives ∂/∂γ into the
action), these discontinuous shifts create field configura-
tions with infinite action, which we regard as unphysical.

The correct identification of the emergent symmetry
group is instead the loop group LU(1) = Map[S1 →
S1].25 This group acts on the φγ fields as

LU(1) : φγ 7→ φγ + fs(γ), (29)

where fs(γ) is a smooth function of γ, with fs(2π) −
fs(0) ∈ 2πZ (the UV U(1) particle number symmetry
is embedded as the subgroup where fs is independent of
γ, which is in fact the only U(1) subgroup of LU(1)).
The emergent symmetry group of LU(1) is shared by the
“Ersatz Fermi liquids” of Ref. 25.

Another way to arrive at this conclusion is to declare
that only field configurations φγ which are smooth func-
tions of γ are physical, as this subspace is only preserved
by LU(1), and is violated by generic elements in U(1)∞.
Our statement above about charge quantization can then
be understood by noting that although the vertex opera-
tors einφγ are only well-defined for n ∈ Z, it is not correct
to treat the φγ as independent compact variables, since
shifting a single φγ by 2π cannot be done while obeying
the smoothness constraint. Since each φγ is not individu-
ally compact, the charge on each patch is not quantized.
The only compact variable is instead

∫
dγ
2π φγ , whose com-

pactness ensures the quantization of the UV U(1) charge.
The LU(1) symmetry is unfortunately not completely

manifest in our description (27) of the fixed point, and
is only made explicit if we sub-divide each square patch
γ into many infinitesimally thin slices. As already dis-
cussed, the price of doing this is that writing down La-
grangians which are local in real space becomes rather
unwieldy. Therefore in what follows we will continue to
work with the a finite number of square patches, with the
acknowledgment that true emergent symmetry group is
in fact LU(1), and not U(1)N .

Ref. 25 showed that a large class of translation-
invariant compressible (definable over a continuous range
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of densities) systems must necessarily have an infinite-
dimensional emergent symmetry group in the IR, with
LU(1) being the simplest example. Despite the fact that
the discussion above has been focused on the particle-
hole symmetric zero-density limit, the BLL fixed point
considered here in fact represents a compressible phase
of matter, as we show in section VI. Thus one may ask
whether the existence of the emergent LU(1) symmetry
is a necessary feature of the IR theory.

However, we can not actually directly use the results
of Ref. 25, which assumes that the IR symmetry group
does not include any continuous higher form symmetries,
which are symmetries whose charged objects have dimen-
sion greater than zero.26 This assumption is actually vi-
olated in the present context: the BLL fixed point pos-
sesses a continuous 1-form symmetry associated with the
fact that the worldlines of vortices in the UV boson field
ψ must form closed loops. A vortex in ψ causes a si-
multaneous vortex in every φγ field, and is well-defined
due to the quantization of the global U(1) charge. This
global vortex is massive at the BLL fixed point, and does
not show up in the IR description. Nevertheless it must
be included so that the IR and UV theories live in the
same Hilbert space, and the additional 1-form symmetry
it leads to means that the LU(1) symmetry is not a pri-
ori a necessary feature of BLL-like fixed points, at least
within the context of the filling constraints of Ref. 25.
Simpler examples of compressible states of matter with
emergent continuous one-form symmetries and their for-
mal properties will be discussed in Ref. 27.

B. Allowed perturbations to the fixed point

In order to assess the stability of the fixed point de-
scribed by L0+Lf , we need to know the interactions that
can appear in LI , which we treat as perturbations to the
fixed point. Any allowed perturbation must respect the
UV symmetries of translation and U(1) charge conserva-
tion. The most relevant symmetry-allowed interaction of
the φγ fields is the BCS pairing term

LI ⊃
1

N2

∑
γ,γ′

gBCS(γ − γ′) cos(ϕγ,γ′), (30)

where we have defined

ϕγ,γ′ ≡ φγ + φγ+π − φγ′ − φγ′+π. (31)

This coupling explicitly breaks the LU(1) symmetry of
the fixed point down to the subgroup generated by func-
tions with odd angular momenta, under which ϕγ,γ′ is
invariant. Since we are working with spinless bosons, the
BCS coupling must consist only of even angular momen-
tum channels, with gBCS(γ − γ′) = gBCS(γ − γ′ + π).

One important question to ask is whether or not
cosines of the fields θγ dual to φγ may appear in LI .
The most natural way of defining these fields is to have

them satisfy the commutation relations

[φγ(x),∇γ′θγ′(y)] = 2πi
N

kB
δγ,γ′δ

(2)(x− y), (32)

so that exponentials of θγ create vortices in the phases
of the ψγ patch fields. The θγ are neutral under the
microscopic U(1) symmetry, and since we are working
at zero density in this section they are invariant under
translation as well. Thus from the basis of the symmetry
actions alone, one may also think to include in LI cosines
like

LI
?⊃ 1

N

∑
γ

gθ cos(θγ). (33)

We claim however that cosines in the θγ fields do not
represent legal perturbations to the fixed point (unlike
in Ref. 15), and that we may in fact restrict our atten-
tion purely to the pairing term (30). There are several
ways to argue this,8 with the arguments being similar
to those used when discussing the correct identification
of the emergent symmetry group. First, the existence
of well-defined vortex operators eiθγ would require the
charge on each patch to be quantized. As was discussed
above this is not the case, and only the global charge∫
dγ
2πργ is quantized. Furthermore, the action of any pu-

tative vortex operator eiθγ would create a field configu-
ration which is singular as a function of γ, which would
have infinite action in the presence of a small LU(1)-
breaking perturbation like a small magnetic field. Since
there is no way to smoothly pass between field configu-
rations of different vorticity, it is impossible to define a
“smoothed-out” version of eiθγ which creates allowable
non-singular field configurations. For these reasons, we
will regard individual vortex operators eiθγ as being un-
physical. Thus the only allowed perturbation to the fixed
point is indeed the pairing interaction of (30) (as well as
less-relevant higher-body operators).

While operators creating vortices in each of the φγ
fields individually are not allowed, there is of course al-
ways an allowed operator which creates a vortex in the
UV field ψ. These vortices will be gapped excitations
of the BLL phase. The low energy description in terms
of the phase fields that we have developed is only legiti-
mate at energy scales below the vortex gap. Indeed, the
phase-only theory of the BLL does not know about the
periodicity of the phase of ψ, and we need to incorporate
these gapped vortex excitations in order to have an IR
theory that lives in the correct microscopic Hilbert space
that ψ lives in. From a formal point of view, the IR the-
ory of the BLL without the vortices has a U(1) one-form
symmetry which is not present in the UV theory, and
therefore we must also include excitations which explic-
itly break this one-form symmetry. An effective action

8 For a related discussion in the context of Fermi liquids, see Ref.
28.
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that includes both the gapless excitations and the vortex
field can be written along the same lines as the discus-
sion for 2+1D bosonized Fermi liquids in Ref. 28, but we
will not do so explicitly here. Despite the fact that the
vortices do not appear in the IR theory, we will argue in
section VI that they play a crucial role in understanding
how the BLL can exist at a generic non-zero density.

C. Fixed-point correlation functions

Before determining the relevance of the terms in LI ,
let us first calculate the correlation functions at the fixed
point described by L0. When the Landau parameters
vanish, the two-point functions of the φγ fields are ob-
tained from the Lagrangian (27) as

Gφγ,γ′(k, ω) ≡ 〈φ∗γ(k, ω)φγ′(k, ω)〉 = δγ,γ′
2πlΛη

ω2/v + vk2
γ

(34)
where we have defined

lΛ ≡
(∫ Λ

−Λ

dk⊥
2π

)−1

=
π

Λ
=

N

kB
(35)

as the length scale on which the patch fields can be lo-
calized.

The effects of the Landau parameters show up only at
order 1/N , and as such can be ignored for the purposes of
computing the patch field correlators. For example, if we
consider the simple case where fγ,γ

′

ρ = fρ is independent

of angle and fγ,γ
′

j = 0, we can show that fρ modifies the
φγ correlators as

Gφγ,γ′(k, ω) =
2πlΛη

w2/v + vk2
γ

δγ,γ′

− 2πlΛη

N(ω2 + v2k2
γ)(ω2 + v2k2

γ′)

ω2fρ

1 + fρω/
√
ω2 + v2k2

,

(36)

where the square root in the last term comes from an
angular integral over the Bose surface. The fact that the
Landau parameters only enter at order 1/N (provided
they are smooth functions of γ−γ′) is true for essentially
the same reason as the statement that non-singular Lan-
dau parameters cannot destroy the quasiparticle in Fermi
liquids,9 with the fact that the leading contribution to
the self energy goes as 1/N being a standard feature of
large-N theories (this is essentially equivalent to the fact
that mean field theory becomes exact as d→∞).

In Fermi liquids, this means that destroying the quasi-
particle with interactions is difficult. In the present con-
text we are similarly unable to use the Landau parame-
ters to make an order 1 modification to the self energy,
but since we are starting from Luttinger liquids of arbi-
trary radius on each patch, we are still able to construct
a theory without quasiparticles, as we will see shortly.

The above discussion by no means implies that the
Landau parameters have no physical consequences (as
they make nonzero contributions to correlation functions
involving integrals over the Bose surface), and we will see
that they play an important role in some aspects of the
phenomenology of the BLL fixed point. We will however
set both Landau parameters to zero until we discuss this
phenomenology in section VII.

We now calculate the correlation functions of the ver-
tex operators eiφγ at the L0 fixed point. We find

〈eiφγ(x)e−iφγ′ (0)〉

∼ δγ,γ′ exp

(
−2πlΛvη

∫
d2k dω

(2π)3

eik·x+iωτ − 1

ω2 + v2k2
γ

)
,

(37)
where the momentum integral is taken over the region
[−Λ,Λ]2. The integral in the exponent is

2πlΛvη

∫
d2k dω

(2π)3

eik·x+iωτ − 1

ω2 + v2k2
γ

= −lΛη
∫ Λ

−Λ

dk⊥
2π

(
ln

(
1

L

√
x2
‖ + τ2v2 +

1

ΛL

)
eik⊥x⊥ + ln(ΛL)

)
, (38)

where L is an IR cutoff and x ‖ = x · γ, x⊥ = x · γ⊥.

When the perpendicular displacement x⊥ � Λ−1 the
integral over k⊥ is trivial, and simply cancels the fac-
tor of lΛ. When x⊥ � Λ−1 the first logarithm term on
the RHS of (38) vanishes, and when this happens the
remaining ln(ΛL) term is uncanceled and sends (38) to

−∞. Therefore we approximate the vertex correlator as

〈eiφγ(x)e−iφγ′ (0)〉 ∼ δγγ′δΛ(x · γ⊥)

× 1

(1 + (Λvτ)2 + (Λx · γ)2)η/2
,

(39)
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where we have defined the function

δΛ(x⊥) ≡
{

1, |x⊥| ≤ Λ−1

0, else
. (40)

Before moving on, let us comment briefly on the range
in which our derivation of the correlation function (39)
is valid. To derive this correlator, we have ignored the
terms in the dispersion (20) depending on k⊥. If we re-
introduce the k4

⊥/k
2
B term, the integral over k⊥ means

that the integral in (38) no longer diverges logarithmi-
cally at long distances x ‖ � Λ−1N29. Thus strictly

speaking, the eiφγ vertex operators have power-law cor-
relations only for distances Λ−1 � x � Λ−1N . This is
however an artifact of discretizing the Bose surface, and
the power-law behavior persists at all distances Λ−1 � x
in the limit N →∞.

V. RG AND STABILITY

We are now interested in studying the stability of
the fixed point governed by the Lagrangian L0 in
(27). We will find it convenient to use an RG scheme
which is slightly different from the usual Fermi liquid
approach,20,30 which avoids any non-uniform re-scalings
of spacetime. More details on this RG scheme and an
application to Fermi liquid phenomenology can be found
in Ref. 31.

To perform RG, we first write φγ(k, ω) = φ>γ (k, ω) +
φ<γ (k, ω), where φ>γ (k, ω) consists of modes satisfying

sΛ <
√

(k · γ)2 + ω2/v2 < Λ, (41)

where

s = 1− d ln Λ (42)

is a number slightly less than 1. We then integrate out
the φ>γ , obtaining an effective action for the φ<γ . Be-
cause after the mode elimination the resulting patches
are no longer square, we further re-partition the low-
energy annulus into slightly smaller square patches of size
2sΛ × 2sΛ, thereby increasing the number of patches to
N/s. Finally, we re-scale the UV ψγ fields as

ψγ 7→
√
sψγ , (43)

which preserves the 1/N normalization in the patch de-
composition of ψ (18).

The RG flow of the couplings in LI is obtained by com-
paring the dimensionless couplings before and after the
mode integration. To evaluate the relevance of pertur-
bations to L0, we then need to know how to construct
dimensionless parameters from the couplings appearing
in LI .

In conventional scenarios, one is interested in RG flows
near a scale-invariant fixed point. In that case there is
only one scale in the problem (namely the cutoff Λ), and

as such there is a unique way of defining dimensionless
coupling constants. In the present context however there
is another scale, namely kB . The Bose momentum kB
is a defining momentum scale of the theory, and does
not change during mode elimination. This means that if
we make a given coupling constant g dimensionless us-
ing powers of both kB and Λ, only the powers of Λ will
determine the RG eigenvalue of g.

To determine the flow of a given coupling constant g,
we then need to figure out the correct way of using powers
of kB and Λ to define a dimensionless coupling constant
ḡ. Consider for example the Landau parameters fρ ap-
pearing in the free Lagrangian Lf of (27). As it stands
the fρ are dimensionless, and since no powers of Λ ap-
pear in its contribution to the action, it will be marginal
under RG. However, we could equally well keep fρ dimen-
sionless while replacing the kB appearing in (27) with Λ.
In this case we would naively conclude that the fρ are
relevant under RG. How do we resolve this ambiguity?

To see the answer, recall that kB and Λ are related
by N = πkB/Λ. Thus different ways of making coupling
constants dimensionless differ from one another by pow-
ers of N . The correct dimensionless couplings are then
chosen in a way such that the dimensionless couplings
always make at most order N0 contributions in pertur-
bation theory to correlation functions at the fixed point.
If instead a dimensionless coupling always makes Nn<0

contributions to correlation functions it can be ignored,
while if it can make Nn>0 contributions then a pertur-
bative RG analysis is invalid in the first place.

For example, it is easy to show that as in Fermi liq-
uids, the Landau parameters only appear in correlation
functions in the combinations f, f/N, f/N2, and so on.
Thus the Landau parameters are dimensionless and can
be taken to be of order 1 as they appear in (27), and as
such are indeed marginal (the scaling of the 1/N2 in the
Landau parameter term is canceled by the multiplicative
re-scaling of the ψγ fields appearing in (43)).

The γ-index structure of the BCS term is the same as
that of the Landau parameters, and similarly appears
only in the combinations gBCS/(NΛ3), gBCS/(N

2Λ3),
etc. Thus the correct dimensionless coupling for the BCS
interaction is

ḡBCS(γ − γ′) ≡ 1

NΛ3
gBCS(γ − γ′), (44)

so that LI can be written as

LI =
kBΛ2

N2

∑
γ,γ′

ḡBCS(γ − γ′) cos(ϕγ,γ′). (45)

Thus the relevance of the BCS term is determined by
comparing the dimension of cos(ϕγ,γ′) to 2 and not to
3, the actual dimension of spacetime (this is true even
though there exist correlation functions of cos(ϕγ,γ′) hav-
ing power-law behavior along all three spacetime direc-
tions).

With this in mind, let us now discuss how to integrate
out the fast modes. To do this, we will need to know cor-
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relation functions of the fast field vertex operators eiφ
>
γ .

These are

〈eiφ>γ (0)〉 = exp

(
−η d ln Λ

2

)
≈ sη/2 (46)

and

〈eiφ>γ (x,τ)e
−iφ>

γ′ (0)〉 = exp
(
η d ln Λ

[
δγ,γ′δΛ(x · γ⊥)

× J0[Λ
√

(x · γ)2 + v2τ2]− 1
])
,

(47)
where we have used lΛ

∫
dk
2π e

iqy ≈ δΛ(y).
We can now integrate out the fast modes in the usual

manner. The lowest-order contribution in ḡBCS to the
effective action for the slow modes is

Seff ⊃
kBΛ2

N2

∑
γ,γ′

∫
d3x ḡBCS(γ − γ′)〈cos(ϕ<γ,γ′ + ϕ>γ,γ′)〉,

(48)
where the expectation value is taken with the free ac-

tion for the φ>γ fields, and where ϕ
>/<
γ,γ′ is the fast / slow

mode part of ϕγ,γ′ . Separating out the cosine and using
〈sin(ϕ>γ,γ′)〉 = 0, we have

Seff ⊃
kBΛ2

N2

∑
γ,γ′

∫
d3x ḡBCS(γ − γ′) cos(ϕ<γ,γ′)〈e

iϕ>
γ,γ′ (0)〉

=
kB(sΛ)2

N2
s2η−2

∑
γ,γ′

∫
d3x ḡBCS(γ − γ′) cos(ϕ<γ,γ′),

(49)
with sΛ the cutoff for the slow fields. The new dimen-
sionless coupling is then s2η−2ḡBCS , which determines
the RG eigenvalue of ḡBCS to be

ycos(ϕγ,γ′ )
= 2− 2η. (50)

Thus the pairing interaction will be irrelevant provided
that

η > 1. (51)

Loop contributions can be worked out in a similar fashion
using the propagators (47); doing this one finds

dḡlBCS
dt

= (2− 2η)ḡlBCS − C(ḡlBCS)2, (52)

where we have defined the harmonics ḡlBCS =∫
dγ cos(lγ)ḡBCS(γ), and where C is a positive constant.

Since we are working with spinless bosons we can re-
strict to even harmonics with l ∈ 2Z (as ḡBCS(γ − γ′) =
ḡBCS(γ−γ′+π)). The most important difference with re-
spect to the case of Fermi liquids is that here the pairing
interaction ḡBCS is generically not marginal at tree-level.

If the pairing term is irrelevant, the IR physics is sim-
ply that of the BLL fixed point (27), which we will ex-
plore further in the next section. Consider on the other
hand the case where the pairing terms are relevant. If

there exist angular momentum channels with ḡlBCS < 0
we expect spontaneous symmetry breaking to occur, with

〈φ+
γ 〉 = l∗γ + c. (53)

Here c is a constant (coming from the global U(1) symme-
try), l∗ is the angular momentum with the most negative
ḡlBCS , and we have defined

φ±γ ≡ φγ ± φγ′ . (54)

In the symmetry-broken phase the φ+
γ are all given ex-

pectation values, while the φ−γ are unaffected (since the

φ−γ are neutral under the global U(1), they can never be
gapped out by pairing interactions). The resulting phase
is thus a rather unconventional paired superfluid, pos-
sessing a Bose surface and described in the IR with the
remaining fields φ−γ . This produces essentially the same
IR theory as that of a BLL arising from a system of real
bosons, as we discuss in appendix A.

If all of the ḡlBCS are positive,10 we cannot find a sym-
metry breaking pattern for the φ+

γ which minimizes the
cosines in the pairing interaction. However, we see from
the beta function (52) that at least to quadratic order,
the flow for positive couplings is in fact towards a non-
trivial fixed point with ḡlBCS = (2− 2η)/C. We defer an
exploration of this interesting fixed point to future work.

Summarizing, we see that regardless of the value of
η, there are no relevant perturbations to the BLL fixed
point which are able to completely gap out the Bose sur-
face. To pass into a trivial gapped phase without explic-
itly breaking a symmetry, one may tune the parameter
µ in the UV Lagrangian (17) to be negative, or modify
the dispersion such that kB is taken to zero. One may
presumably also pass to a Mott insulator by condensing
the vortices for the UV ψ bosons, although as mentioned
earlier these vortices are massive at the fixed point and
do not have a natural representation in terms of the IR
fields. Figuring out how condense these vortices, as well
as identifying the nature of the phase transition and re-
sulting insulating state, are interesting questions that we
leave to future work.

Finally, it is also important to also address the question
of whether or not the BLL phase is stable with respect
to small modifications of the UV dispersion. We have so
far assumed a dispersion possessing rotational symmetry,
but as we are ultimately interested in theories emerging
from UV lattice models, this assumption will generically
be violated.

Consider then adding a small perturbation which
breaks the continuous rotational symmetry of the disper-
sion down to some discrete subgroup, like δε ∝ k4

x + k4
y.

10 Even if all the bare couplings are positive, negative couplings still
have the potential to be generated by a bosonic version of the
Kohn-Luttinger mechanism.32 As in Fermi liquids these effects
are however likely to be very small, and in any case are only
expected to matter at rather large l.



12

As long as the change in the dispersion caused by this
perturbation is small compared to the energy scale at
which the IR hydrodynamic description sets in, it can be
dealt with by adding terms dependent on γ⊥ · ∇ to the
dispersion for the φγ patch fields. The leading terms will
be linear in γ⊥ · ∇, but since these become total deriva-
tives in the φγ representation they can be ignored. More
generally, since the correlation functions for φγ at the
rotation-invariant fixed point do not depend on x · γ⊥,
the added terms dependent on γ⊥ ·∇ will not modify any
of the fixed-point correlation functions within perturba-
tion theory. Therefore the BLL phase is insensitive to
rotation-breaking perturbations to the dispersion, pro-
vided they are small enough so that the fixed point La-
grangian (27) is still a good starting point for describing
the IR theory.

VI. GENERALIZATION TO FINITE DENSITY

Until now, we have been assuming the presence of a
particle-hole symmetry which fixes the average particle
density ρ̄ to be zero.11 This limit is not required for
stability of the BLL fixed point, and the BLL is in fact
a compressible phase of matter, definable for a continu-
ous range of densities. The generalization to the finite-
density case requires some care however, which we now
explain.

Let us first look at the most obvious way of general-
izing the discussion above to finite density, which was
the approach taken in Ref.15 We start from the UV La-
grangian

L = ψ∗
(
∂τ − µ+

1

8mk2
B

(−∇2 − k2
B)2

)
ψ +

g

4
|ψ|4,

(55)
where the average density is fixed by µ > 0 and g. Note
that we have not included a second order time derivative
term ψ∗∂2

τψ, on the grounds that it is irrelevant under
the non-relativistic z = 2 scaling of the g = 0 fixed point.

Starting with this Lagrangian, we again decompose ψ
into patches, and make the assumption that each patch
field is nearly a superfluid, so that we may write

ψγ →
√
ρ̄+

kB
2π
∇γθγ eiφγ , (56)

where ρ̄ 6= 0 is independent of γ and where kB∇γθγ/2π
keeps track of long-wavelength fluctuations in the density

11 Note that we are always distinguishing between the average par-
ticle density (viz. the expectation value of the generator of the
U(1) symmetry, whose form depends on the structure of the time
derivative terms in the action) and the boson amplitude 〈|ψ|2〉.
The boson amplitude is nonzero in all of the phases we consider,
while the average particle density is nonzero only in the absence
of particle-hole symmetry.

on each patch. The hydro fields φγ , θγ are acted on by
the microscopic U(1) as

U(1) : φγ 7→ φγ + c, θγ 7→ θγ , (57)

for constant c, while translation along a vector µ acts via

Tµ :φγ(x) 7→ φγ(x + µ) + kBµ · γ,

Tµ : θγ(x) 7→ θγ(x + µ) +
ρ̄

kB
µ · γ. (58)

Using this bosonized representation, the general hy-
drodynamic IR Lagrangian we are led to consider is then
L0 +Lf +LI , with LI containing the BCS pairing inter-
actions, and with the first two terms given by

L0 =
1

N

∑
γ

(
ρ̄∂τφγ +

kB
2π
∇γθγ∂τφγ + β(∇γφγ)2

)
Lf =

1

N2

∑
γ,γ′

(
gθ(γ − γ′)∇γθγ∇γ′θγ′

+ gφ(γ − γ′)∇γφγ∇γ′φγ′
)
,

(59)
where β ∼ ρ̄/2m and where the first term in L0 comes
from the ψ∗∂τψ term in (55).

We then integrate out the θγ fields, producing a term
coupling the ∂τφγ on different patches. Doing this, we
get

L0 =
kB

4πNη

∑
γ

v(∇γφγ)2

Lf =
kB

4πN2η

∑
γ,γ′

(
v−1fγ,γ

′

ρ ∂τφγ∂τφγ′

+ vfγ,γ
′

j ∇γφγ∇γ′φγ′
)
,

(60)

where η, fγ,γ
′

ρ , fγ,γ
′

j are again all dimensionless non-
universal parameters.

The most important difference between (60) and the
theory with particle-hole symmetry (27) is that here the
only term producing stiffness for charge density fluctu-
ations is the fγ,γ

′

ρ Landau parameter term arising from
the density-density interactions of the ψγ fields. The fact
that there is no (∂τφγ)2 term in the first line of (60) is due
to the absence of the ψ∗∂2

τψ term in the UV Lagrangian,
which provides a nonzero stiffness to the density fluctu-
ations coming from the rest energy of the charges. In
the absence of this term, there is nothing to provide an
O(N0) stiffness for the charge fluctuations, since the Lan-
dau parameters only modify correlation functions of the
φγ fields at order 1/N . As a result, physical properties
of the phase, including correlation function exponents,
acquire explicit N -dependence. Unlike in Ref. 15, our
view here is that such dependence is unphysical (as N
flows under RG, for example), and as such we do not re-
gard this approach as a route to obtaining a stable BLL
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phase.12

Fortunately, we will now argue that the reasoning lead-
ing to (60) is a bit too hasty. Indeed, we claim that
instead of (55), the correct UV starting point is a La-
grangian containing a term with a quadratic time deriva-
tive, with

L ⊃ ψ∗
(
∂τ − µ−

λm

k2
B

∂2
τ

)
ψ, (61)

where λ is a dimensionless parameter. While the λ
term is irrelevant under the z = 2 UV scaling, in the
IR variables φγ , θγ , the λ term in fact has the same
scaling dimension as the linear ∂τ term (as it becomes
∼ N−1

∑
γ(∂τφγ)2 in the IR representation), and there-

fore it should be kept.
In particular, we will be interested in situations where

the renormalized value of λ is of order 1. The amount
of RG time required to reach the IR regime where λ is
marginal need not be very long, and depends on the ex-
act values of the microscopic parameters (some further
discussion can be found in appendix B). Thus this as-
sumption does not require any particular fine-tuning.

With the λ term, the IR theory includes an O(N0)
patch-diagonal (∂τφγ)2 term, giving the charge density
fluctuations a finite stiffness as N → ∞. The IR theory
at finite density thus takes on the same form as in the
zero-density case (provided that the UV value of λ is not
too small), and as such the BLL phase is a compressible
phase of matter.

Finally, let us understand how the BLL reacts to a
change in the average density ρ̄. As a compressible phase
there is essentially no change in the gapless sector de-
scribed by the phase modes φγ . However, much like in
the familiar superfluid phase, the gapped vortices will see
the average particle density as an effective background
magnetic field. Thus translations will act projectively on
these vortex degrees of freedom. As the particle density
is changed the effective background magnetic field will
change, and accordingly so to will the action of magnetic
translations on the vortices. This is the main effect of
changing the density, and is sufficient to ensure that the
low energy theory has the correct action25 of translation
when a uniform 2π magnetic flux is turned on. See Ref.
27 for a discussion of these issues in a simpler context.

VII. PHENOMENOLOGY

We now make some brief comments on the phe-
nomenology of the BLL fixed point, assuming η > 1
so that the pairing interactions in (30) are irrelevant.

12 In 1+1D this is not an issue, since there we have N = 2, and the
Landau parameters make a nonzero contribution to the correla-
tion functions of the patch fields.

In some aspects the phenomoenology is similar to Fermi
liquids, but in other aspects it is rather different.

A. Thermodynamics

Since the IR theory is given by a collection of com-
pact bosons with exactly marginal current-current inter-
actions, the specific heat C will always be linearly pro-
portional to T , as in a Fermi liquid. To get an exact
expression for C we would need to diagonalize the Hamil-
tonian resulting from the Lagrangian (27), which is non-
trivial when the Landau parameters are nonzero. How-
ever, the Landau parameters only enter C at order 1/N ,
and as such can be ignored. Since the specific heat (den-
sity) of a non-chiral 1+1D boson dispersing as w = vk is
C1+1D = πT/3v, we then have

C =
πT

3v

2πkB
2π

=
πkBT

3v
. (62)

Here kB should not be confused with Boltzmann’s con-
stant, which is set to unity throughout.

The compressibility is calculated from the connected
density-density correlator, the low-momentum part of
which is

χρρ(k, ω) = 2

(
kB

4πvNη

)2∑
γ,γ′

ω2〈φγ(k, ω)φγ′(−k, ω)〉.

(63)
The compressibility is obtained from this correlation
function by taking the limit ω → 0 after setting k = 0.

Since the current Landau parameters fγ,γ
′

j do not con-
tribute to correlation functions of the φγ fields at k = 0
the compressibility will not depend on them, and without
loss of generality we can set them equal to zero.

From the above we see that χρρ is proportional to
〈φ0(k, ω)φ0(−k,−ω)〉 where the charge mode φ0 is de-
fined as

φ0 ≡
∫
dγ

2π
φγ , (64)

so that the compressibility is only sensitive to the zeroth

Fourier mode f
(0)
ρ =

∫
dγ
2πf

γ
ρ . Computing the correlation

function with (36), we then find for the compressibility

κ = 2N

(
kB

4πvNη

)2

2πlΛvη

(
1− f

(0)
ρ

1 + f
(0)
ρ

)

=
kB

4πvη

1

1 + f
(0)
ρ

,

(65)

which parametrically is the same as in a Fermi liquid,
but with kF replaced by kB .

B. Zero sound

Even though there is no quasiparticle having finite
overlap with the UV boson ψ (due to the continuous ex-
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ponent appearing in the eiφγ correlators), these theories
can host collective zero sound modes in a manner simi-
lar to Fermi liquids. Charge and momentum are carried
by separate fields, and as such we can consider collec-
tive modes in either the φγ phase variables or in the θγ
density variables.

For example, consider the case where fγ,γ
′

ρ =

fρ, f
γ,γ′

j = fj are both constants, so that the fixed-point

Lagrangian reads (now in real time)

L =
kB

4πNη

∑
γ,γ′

φγ

(
ω2v−1(δγ,γ′ +N−1fρ)

− kγkγ′v(δγ,γ′ +N−1fj)
)
φγ′ .

(66)

The equation of motion for φγ reads

φγ =
1

N(−ω2 + v2k2
γ)

∑
γ′

(fρω
2 − fjkγkγ′)φγ′ . (67)

We now sum over γ, and replace N−1
∑
γ →

∫
dγ
2π . We

see then that the fj term drops out, and that the equation
of motion becomes

φ0 = fρω
2

∫
dγ

2π

1

−w2 + v2k2 cos2 γ
φ0. (68)

Nonzero solutions exist provided that ω/vk > 1 (so as
to avoid the pole in the denominator), for which we can
solve the above equation to find

fρ = −
√

1−
(
vk

ω

)2

, (69)

in terms of which

ω =
vk√

1− f2
ρ

. (70)

Therefore zero sound modes arise at ω > vk as long as
−1 < fρ < 0. Note that as in a Fermi liquid, the zero
sound velocity is always greater than v.

Collective modes of the dual θγ fields are analyzed in
a similar way. When we rewrite the free action in terms
of the θγ fields, we find

L =
kBη

4πN

∑
γ,γ′

θγ

(
ω2v−1(δγ,γ′ +N−1f̃ρ)

− kγkγ′v(δγ,γ′ +N−1f̃j)
)
θγ′ ,

(71)

where the dual Landau parameters are

f̃ρ = − fj
1 + fj

, f̃j = − fρ
1 + fρ

, (72)

which follows from (1+aC)−1 = 1− a
1+aC, where C is the

N ×N matrix with each entry equal to 1/N . Therefore

using the same steps as above we conclude that regardless

of f̃j , a collective mode in θ0(ω, k) ≡
∫
dγ
2π θγ(ω, k) exists

provided that ω/vk > 1 and −1 < f̃ρ < 0, with the

dispersion being ω = vk/
√

1− f̃2
ρ . Thus couplings of the

U(1) charge densities give rise to collective phase modes,
while couplings of the U(1) current densities give rise
collective density modes.

C. Real-space correlation functions

We now turn to studying the long-distance behavior of
various correlation functions of the UV bosons ψ. When
doing this, it is important to retain the subleading terms
in the dispersion (20) in order to account for the fact that
the Bose surface curves slightly within each patch. These
effects show up on length scales larger than ∼ kB/Λ2 and
were not important when performing RG in the previous
section, since the RG eigenvalues are calculated using the
correlation functions of the fast fields at zero spacetime
separation. When computing long-distance correlation
functions however, the curvature within each patch must
be accounted for.

To do this, we refine each patch field ψγ as

ψγ(x) =

∫ γ+Λ/kB

γ−Λ/kB

dγ′

2π
eikB(γ′−γ)·x ψ̃γ′(x), (73)

with ψ̃γ(x) supported on an infinitesimally thin sliver of
momentum space oriented along the γ′ direction. As we
did for the ψγ fields, we then continue to assume that we

may work in a phase representation with ψ̃γ ∼ eiφ̃γ . The
free Lagrangian L0 is still diagonal when written in terms

of the φ̃γ ,13 and we find that the eiφ̃γ have correlation
functions

〈eiφ̃γ(x)e−iφ̃γ′ (0)〉 = δγ,γ′
1

(τ2 + (x · γ)2)η/2
, (74)

with the only difference compared to the eiφγ correlators
being the complete independence on x · γ⊥ (now and in
the following, we will not be explicitly writing out the
regularization by the UV cutoff or unimportant constant
factors). The correlation function for the φγ fields with
the curvature in each patch taken into account is there-

13 Since ψ̃γ is completely delocalized along x · γ⊥, the ψ̃γ fields
are not well-suited for dealing with couplings between different
angles on the Bose surface, which is why we did not make use of
them above. These off-diagonal couplings however do not enter
into the expression for the ψ correlator, and so for the present
purposes it is better to calculate with the ψ̃γ fields.
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fore

〈eiφγ(x)e−iφγ(0)〉 ∼
∫ γ+Λ/kB

γ−Λ/kB

dγ′

2π
eikB(γ′−γ)·x

× 1

(τ2 + (x · γ′)2)η/2
.

(75)
We now calculate the correlation functions of the UV

bosons at long spacetime distances, xΛ� 1. We find

χ(x, τ) = 〈ψ(x, τ)ψ†(0)〉

∼
∫
dγ

2π
〈eiφ̃γ(x,τ)e−iφ̃γ(0)〉

∼
∫
dγ

2π

eikBx cos γ

(τ2 + (x cos γ)2)η/2
.

(76)

Consider now the case of purely spatial separation,
with τ = 0. Since we are interested in xkB � xΛ � 1,
only the angular regions near the stationary points of the
exponential (viz. γ = 0, π) contribute significantly to the
integral. Therefore we can ignore the cos γ in the denomi-
nator, with the integral over γ then producing a term pro-
portional to J0(kBx � 1) ∝ (kBx)−1/2 cos(kBx − π/4),
and hence the leading contribution to χ(x, τ) takes the
form

χ(x, 0) ∼ cos(kBx− π/4)

xη+1/2
, (77)

which decays faster than any of the eiφ̃γ by virtue of de-
structive interference from multiple patches. The phase
shift of π/4 in (77) is the same as one finds in Fermi
liquids; unlike in Fermi liquids however, the exponent of
the power law in (77) is continuously tunable.

Using the Fourier transformation of the patch vertex
operators (75), we see that the equal-time momentum-
space expectation value of the ψ fields is (recall that η > 1
for stability)

〈ψkψ
†
k〉 ∼ |k − kB |η−2. (78)

Note that if we were to use the approximation15,18

where the dispersion in patch γ is a function only of k ·γ,
we would not be able to reproduce the π/4 phase shift
and the added factor of 1/2 in the power law (77). Thus
the ψ correlator is sensitive to the smoothness of the
Bose surface, and in order to obtain the correct corre-
lation functions is essential to integrate over the whole
Bose surface.

As a final example we can calculate the “Kohn
anomaly” present at the fixed point, by examining how
the correlation function of ψ†ψ behaves at momenta with
magnitude close to 2kB . In real space, we have

〈(ψ†ψ)(x, τ)(ψ†ψ)(0)〉

∼ 1

N2

∑
γ,γ′

eikBx(cos γ−cos γ′)

[(τ2 + (x cos γ)2)(τ2 + (x cos γ′)2)]η/2
.

(79)

We will be interested in the Fourier transform of this ex-
pression at zero frequency and at momentum with mag-
nitude close to 2kB . Since we are using a UV cutoff at
the length scale Λ−1, we will always have kBx� 1 when
Fourier transforming. Therefore again only the points
of stationary phase (γ, γ′ = 0, π) will contribute signifi-
cantly to the angular integrals, allowing us to drop the
γ, γ′ dependence in denominator. So then since k ≈ 2kB
also means kx� 1, the dominant part of the integral is

〈ψ†ψ(k, 0)ψ†ψ(−k, 0)〉

∼
∫
dτ dx dθ dγ dγ′

xeix(−k cos θ+kB [cos γ−cos γ′])

(τ2 + x2)η

∼
∫
dx

cos(kx− π/4) cos2(kBx− π/4)

x2η−1/2k1/2

∼
∫
dx

cos(x[k − 2kB ] + π/4)

x2η−1/2k1/2

∼ Re[(2kB − k)2η−3/2].
(80)

Note that if η is such that the ψ fields have the scaling
dimensions of fermions (η = 1), we get the same square
root as in 2d Fermi liquids (recall that the interactions
are irrelevant for η > 1). In this case the singularity in
(80) is one-sided and visible only at k > 2kB (since the
real part of

√
2kB − k then vanishes). For generic values

of η however the singularity is two-sided and visible for
momentum transfer less than kB .

D. Electromagnetic response

We now discuss the electromagnetic response of the
BLL fixed point to determine if it is a superfluid, metal,
or insulator. To do this we consider the response of the
BLL phase to a background gauge field A for the micro-
scopic U(1) symmetry, setting the Landau parameters to
zero for simplicity.

The background field enters the fixed-point action by
coupling minimally to the φγ fields as14

L[A] =
kB

4πNη

∑
γ

(
v−1(∂τφγ −Aτ )2 + v(∇γφγ −A · γ)2

)
.

(81)
We now integrate out the φγ fields to obtain the fol-

lowing effective Lagrangian for A:

Leff [A(k, ω)] =
kB

4πηv

∫
dγ

2π
AµΠµν

T ;γAν , (82)

14 One way to double-check this expression is to re-write the La-
grangian in terms of the Fourier modes φl =

∫ dγ
2π
eilγφγ . Only

φ0 is charged under the microscopic U(1) symmetry, and so the
theory can be gauged by minimally coupling A to φ0. This gives
the same answer as minimally coupling to the φγ fields directly;
see appendix C for details.
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where Πµν
T ;γ is the transverse projector in the spacetime

plane (x · γ, τ). Explicitly,

Leff [A(k, ω)] =
kBv

4πη

∫
dγ

2π

A2
τk

2
γ +A2

γω
2 − 2AτAγkγω

ω2 + v2k2
γ

.

(83)
This expression is simplest in Coulomb gauge ∇ · A =
0, which we will adopt in what follows. Evaluating the
integrals, we find

Leff [A(k, ω)] =
kBv

4πη

(
A2
τζ

2v−2

1 + ζ2 +
√

1 + ζ2
+

A2

1 +
√

1 + ζ2

)
,

(84)
where we have defined ζ ≡ vk/ω.

Consider a scenario where Aτ = 0, with A tending to
a constant. We can approach this in two limits, depend-
ing on whether we take ω → 0 first followed by k → 0
or take the limit in the opposite order. The first limit
corresponds to introducing a static transverse vector po-
tential. A finite response in this limit implies Meissner
screening and superfluidity. On the other hand, a finite
response in the opposite order of limits only implies a
finite Drude weight.33,34

If we first set ω = 0 and then take k → 0, we send
ζ →∞ in (84) and conclude that

Leff [A(k→ 0, ω = 0)] = 0. (85)

Therefore, like a Fermi liquid, the BLL has zero phase
stiffness—thus there is no Meissner effect, and the BLL
is not a superconductor.

If we now consider the opposite order of limits with
ζ → 0, we see that

Leff [A(k = 0, ω → 0)] =
kBv

8πη
A2. (86)

Therefore also like a Fermi liquid, the BLL has a finite
Drude weight D, given by

D =
kBv

4η
. (87)

Note that this is parametrically the same as the Fermi
liquid result DFL = πn/m (in e = 1 units), provided
that we identify m with kB/v and n with k2

B/4η. We
conclude that the BLL is an example of a Bose metal.

VIII. BLLS IN 3+1D

In previous sections we have mostly focused on BLLs
in 2+1D, but the generalization to 3+1D is straightfor-
ward. We consider the same type of Lagrangian as in
(17), with a dispersion possessing minima along a sphere
of radius kB . We then proceed by performing a patch
decomposition of the Bose surface. We take each patch

γ to be a box of size Λ3 centered at γ, where now γ lies
on the unit S2. The number of patches is accordingly

N =
4πk2

B

Λ2
. (88)

Following the same logic as in previous sections we
arrive at the Lagrangian L0 + LI , with LI containing
symmetry-allowed interactions and with L0 given by

L0 =
k2
B

4πNη

∑
γ

(
v−1(∂τφγ)2 + v(∇γφγ)2

)
Lf =

k2
B

4πN2η

∑
γ,γ′

(
v−1fγ,γ

′

ρ ∂τφγ∂τφγ′

+ vfγ,γ
′

j ∇γφγ∇γ′φγ′
)
.

(89)

The only differences with respect to the 2+1D action are
the factors of k2

B up front (from dimensional analysis),
and the fact that now the Landau parameters are func-
tions of zγ,γ′ ≡ γ · γ′ ∈ [−1, 1].

As in two dimensions, cosines in the dual variables θγ
are forbidden from appearing in LI . The most relevant
term in LI is again the BCS pairing interaction. Follow-
ing the same logic as in section V, we write it as

LI ⊃
k2
BΛ2

N2

∑
γ,γ′

gBCS(zγ,γ′) cos(ϕγ,γ′), (90)

with gBCS dimensionless, and with ϕγ,γ′ defined as be-
fore in (31). As in two dimensions the relevance of this
term is found by comparing the dimension of cos(ϕγ,γ′)
with 2, so that as before the pairing interaction is irrele-
vant if η > 1.15

The properties of the free fixed point (89) are all rather
similar to the 2+1D case. The vertex operators eiφγ now
have correlation functions

〈eiφγ(x)e−iφγ′ (0)〉 ∼ δγγ′δΛ(x · γ⊥,1)δΛ(x · γ⊥,2)

× 1

(1 + (Λvτ)2 + (Λx · γ)2)η/2
,

(91)
where γ⊥,1,γ⊥,2,γ constitute an orthonormal triad.
Similarly, the leading part of the equal-time UV boson
correlation function at distances x� k−1

B is now

χ(x, 0) ∼
∫ 1

−1

dz
eikBxz

(1 + (Λxz)2)η/2

∼ sin(kBx)

xη+1
.

(92)

The remaining aspects of the phenomenology can all be
worked out in the same fashion as in section VII.

15 As in Fermi liquids, there are additional momentum-conserving
two-body interactions present in three dimensions, known as non-
forward scattering interactions.20 Using the RG framework of
Ref. 31, one can show that these interactions are always less
relevant than the BCS pairing interaction, and as such can be
ignored.
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IX. ELECTRON TRANSPORT IN A BLL

In this section we discuss a situation wherein a metal-
lic state of electrons coexists with a BLL. In such a set-
ting, electron scattering off of the large density of low
energy excitations of the BLL contributes to the resistiv-
ity, which we will show leads to an unusual temperature
dependence of the form

ρ ∼ T η, (93)

where η > 1 is the exponent controlling correlation func-
tions at the BLL fixed point.

In particular, we will discuss a potential BLL arising
in a metallic helimagnet in 3+1D, which may be real-
ized for example in the B20 intermetallic compounds like
MnSi and FeGe.23,35–40 We now briefly review the exper-
imental situation in these systems, focusing on MnSi for
concreteness.

At ambient pressure, this system is a ferromagnetic
metal, with a small DzyaloshinskiiMoriya (DM) inter-
action favoring the development of long-wavelength spi-
ral ordering in the magnetization.41 The direction of
the spiral ordering is determined by weak crystalline
anisotropies, which pins the ordering along directions re-
lated by cubic symmetry.42,43

As the pressure is increased, a first-order transition
into a paramagnetic phase is observed.35 This phase ex-
hibits two remarkable properties. First, the spin de-
grees of freedom are seen to exhibit “partial ordering”:
the direction of the spiral ordering is no longer pinned,
but the magnitude of the ordering wavevector remains
well-defined, with neutron-scattering experiments seeing
a nearly uniform intensity over a small sphere in momen-
tum space.36 Secondly, the resistivity is found to take on
a non-Fermi liquid form, with ρ ∼ T 3/2 across the high-
pressure phase.14 In what follows we will see how both
of these facts may be explained by modeling the spin
fluctuations in the paramagnetic phase as a 3+1D BLL.

To describe the spin fluctuations in the paramagnetic
phase, we use a Landau-Ginzbarg Lagrangian for the
magnetization vector M, whose potential part quadratic
in M contains the terms

LM ⊃ (∇M)2 + rM2 + 2kBM · (∇×M), (94)

where the wavevector kB determines the strength of the
DM interaction. To deal with the DM term, we follow
Ref. 23 and decompose the vector M into its constituent
polarizations as

Ma(x) =

∫
d3q

(2π)3
eiq·x

×
(
εa1Ml,q +

εa2 + iεa3√
2

M+,q +
εa2 − iεa3√

2
M−,q

)
,

(95)
where ε1 = q/q, and where ε1, ε2, ε3 constitute an or-
thonormal triad. Substituting this representation into

(94), we see that the DM term becomes

2kBM∗
q · (iq×Mq) = 2kBq(|M+,q|2 − |M−,q|2). (96)

The lowest energy mode is then M−, which from now on
we will write simply as M . Ignoring the higher-energy
Ml and M+ modes, we then have

LM ⊃ ((q − kB)2 − k2
B + r)|Mq|2, (97)

so that the dispersion of M has a degenerate minimum
along a sphere of radius kB .

Motivated by the fact that neutron scattering sees a
nearly uniform intensity over a sphere in momentum
space,36 we make the assumption that the spin fluctu-
ations can be captured by a 3+1D BLL formed from the
negative polarization mode M , with the Bose surface be-
ing a sphere of radius kB .

We will now compute the consequences that this as-
sumption has for the behavior of the itinerant electrons,
which for simplicity we will take to form a Fermi gas with
a spherical Fermi surface. Including the coupling between
the electrons and the spin fluctuations, the Lagrangian
we are interested in is then

L = LM + Lc + LcM ,
Lc = c(∂τ − εk)c

LcM = g c̄ασ
a
αβcβM

a,

(98)

where LM is a BLL action for M of the form written
down in (89), εk is the electron dispersion, and where
the Ma in LcM implicity only contains the negatively
polarized piece. In what follows we will assume that the
radius of the Bose surface is much smaller than that of
the Fermi surface (kB/kF � 1), which is known to be
the case in MnSi.36

The term LcM will induce a finite scattering rate for
the electrons. To determine this scattering rate, we will
need to compute the contribution of the interaction term
LcM to the imaginary part of the electron self energy Σ.
The term which contributes to Σ at lowest order in g is

Σ(K, iωf ) = g2T
∑
ωb

∫
d3q

(2π)3
Gc(K−q, i(ωf−ωb))χM (q, iωb),

(99)
where ωf and ωb are fermionic and bosonic Matsubara
frequencies respectively, Gc is the bare electron Greens
function, and χM is the magnetic susceptibility of the
BLL.

The imaginary part of Σ is determined by employing a
spectral representation for Gc and χM , with the spectral
functions Ac ≡ −π−1Im[Gc] and AM ≡ −π−1Im[χM ].
Writing Gc and χM in terms of Ac and AM , and resolv-
ing the Matsubara sum by integrating against the Bose
distribution nB , we have

Σ(K, iωf ) = −g2

∫
d3q

(2π)3
dΩ1 dΩ2 (nB(Ω2)− nB(iωf − Ω1))

× Ac(K− q,Ω1)AM (q,Ω2)

iωf − Ω1 − Ω2 + iη
.

(100)
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K

q‖

q⊥
kF

q

FIG. 3: The geometry of the scattering processes
contributing to Σ′′. A portion of the Fermi surface is
drawn in gray, with the tip of the vector K lying just
outside the Fermi surface. The purple sphere has radius
kB , and is centered on the tip of K. The two vertical
purple circles are separated by a distance of
k = |K| − kF .

Since ωf is a fermionic Matsubara frequency we may
write nB(iωf − Ω1) = nF (Ω1) − 1, with nF the Fermi
function. Doing this and continuing to real frequencies,
we then take the imaginary part and obtain

Σ′′(K, ω) = πg2

∫
d3q

(2π)3
dΩ1 dΩ2 δ(ω − Ω1 − Ω2)

× (1 + nB(Ω2)− nF (Ω1))Ac(K− q,Ω1)AM (q,Ω2).
(101)

Since the electrons are non-interacting in the absence of
their coupling to the spin fluctuations, the electron spec-
tral function is simply

Ac(k,Ω) = δ(Ω− εk), (102)

so that

Σ′′(K, ω) = πg2

∫
d3q

(2π)3
(1 + nB(ω − εK−q)− nF (εK−q))

×AM (q, ω − εK−q).
(103)

The spectral function for the M field is determined from
the patch correlator (91) after Fourier transforming and
continuing to real frequencies as

AM (q,Ω) = A0

θ(Ω2 − v2q2
‖ )

(Ω2 − v2q2
‖ )

2−η
2

, (104)

where A0 is a constant and q ‖ ≡ q − kB as before.
We will first compute the T = 0 scattering rate, work-

ing on-shell with ω = εK. We will take K to lie just

outside the Fermi surface, with

k ≡ |K| − kF � kB � kF . (105)

In this case we have

Σ′′(K, εK) = πg2

∫
d3q

(2π)3
θ(εK−q)θ(εK − εK−q)

×AM (q, εK − εK−q).

(106)

The region of momentum space contributing to this
integral can be determined with the help of figure 3. The
vector K is shown in orange, with its tip marking the
origin of the coordinates for the q integral. The Fermi
sphere is drawn in gray, and a sphere of radius kB is
drawn in purple. Since kB � kF , we will approximate
the Fermi surface as flat within a neighborhood of size
∼ kB around K. The first constraint comes from the θ
function in the M spectral function (104), which tells us
that

εK − εK−q ≈ vF q⊥ > vq ‖ , (107)

where q⊥ ≡ q ·K/K. Second, the presence of the two θ
functions in (106) restricts the integral over q to be such
that q⊥ < k and 0 < q⊥. These two θ functions restrict
the range of q to the region in figure 3 bounded by the
two planes which intersect the purple sphere along the
two vertical purple circles.

We may now do the integral, which gives

Σ′′(K, εK) = πg2A0
2πkB
(2π)3

∫ k

0

dq⊥

×
∫ vF q⊥/v

0

dq ‖
1

((q⊥vF )2 − (q ‖ v)2)
2−η
2

= C
g2kB
vF v

εηk,

(108)
with εk = vF k and with the constant

C =
A0Γ(η/2)

8
√
πηΓ((1 + η)/2)

. (109)

Since η > 1 is needed for stability, the scattering rate
vanishes faster than εk as K approaches the Fermi sur-
face, and the quasiparticles remain well-defined. As such
the electrons remain in a Fermi liquid state, albeit one
with a faster scattering rate than in a conventional Lan-
dau Fermi liquid (provided that η < 2).

To extract the transport lifetime of the quasiparticles
from the above scattering rate, we need only multiply Σ′′

by 1−cos θ, where θ is the typical scattering angle. In the
present situation θ ≈ kB/kF � 1, and so the transport
scattering rate is

Γtr(ε, T = 0) =
k2
B

2k2
F

Σ′′ ∝ εη. (110)
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Extending this result to finite T , the scattering rate is
determined by scaling to be of the form

Γtr(ε, T ) = AT ηF
( ε
T

)
, (111)

where A is a non-universal constant, and F is a univer-
sal function. We thus obtain a contribution to the DC
resistivity proportional to T η, η > 1.

Of course in the present BLL + Fermi liquid theory
the exponent η is non-universal, and there is no a priori
reason why it should take on the exact value of 3/2 ob-
served in experiments. However, a value of η ≈ 3/2 is
certainly possible, and as such the BLL + Fermi liquid
model provides one possible explanation for the observed
non-Fermi liquid behavior (with this explanation having
the advantage of being particularly simple from an ana-
lytical standpoint).

X. DISCUSSION

In this work we studied systems of translationally-
invariant bosons (at both zero and nonzero densities)
dubbed “Bose-Luttinger liquids” (BLLs). These phases
of matter possess Bose surfaces and large emergent sym-
metry groups, and have regions of parameter space in
which they are stable with respect to all symmetric per-
turbations. They lack quasiparticles and have continu-
ously varying exponents, but also have phenomenology
which is similar to Fermi liquids in some respects. There
are many further questions that would be interesting to
explore in future work.

First, it would be desirable to have a better under-
standing of where BLLs are likely to show up in experi-
ment. We have examined the example of MnSi in some
detail, but it would be nice to explore other physical re-
alizations further, such as pairing in FFLO superconduc-
tors and rotons in superfluid helium.

In this paper we have only concerned ourselves with
the phenomenology and stability of various BLL fixed
points. One question to address is the ways in which the
BLLs studied here can be connected to other phases of
matter. As was already mentioned, one possibility is to
study the transition driven by condensing vortices in the
phase of the UV boson field. It would be interesting to
understand how to perform this condensation in detail, as
well as the nature of the resulting Mott insulating state
one obtains in this way.

One straightforward generalization of our work is to
BLLs with generically-shaped Bose surfaces, beyond the
simplest cases of the spherical Bose surfaces considered
in the present work. As in Fermi liquids, the stability
analysis of the IR theory will depend on the shape of the
Bose surface, which will affect the types of symmetry-
allowed perturbations to the fixed point one is allowed
consider. It is also possible to consider fixed points where
the anomalous dimension η varies over the Bose surface.
A scenario like this can occur if the momentum depen-
dence of the microscopic interaction favors the average

patch density ργ to be a nontrivial function of γ, or if
small rotation symmetry breaking terms are included in
the dispersion of the UV bosons. Finally, it would be
nice to have a more careful method of determining how
the curvature of the Bose surface shows up in physical
quantities and in RG flows, in a way which goes beyond
the rather artificial patch construction employed here.

The BLLs constructed in this paper were approached
by thinking of them as a large number of coupled Lut-
tinger liquids. However, in principle one could imag-
ine constructing IR theories out of other types of 1+1D
CFTs, with one CFT living at each point on the Bose
surface. At present it is not clear how exactly one would
go about coupling the CFTs at each Bose surface point
together, or whether there are any particular constraints
on types of CFTs that can be chosen if the theory is to
be regarded as arising from a UV lattice model of bosons.

A final set of questions to address in future work re-
lates to our treatment of the IR patch theory. First, it
would be useful to have a more detailed understanding of
when exactly our assumption about the uniform ampli-
tude ordering of the ψγ patch fields is justified. Secondly,
it would be nice to find a way of dealing with the IR the-
ory which doesn’t rely on the patch decomposition used
here — within this framework a discussion of the emer-
gent LU(1) symmetry at the fixed point is rather awk-
ward, as are issues relating to quantization and questions
of duality between the phase and density fields. A more
careful analysis of the field theories discussed here poten-
tially would involve issues similar to those encountered
in the analysis of the fractonic field theories studied in
Refs.7,8,44,45
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Appendix A: Real bosons

In the main text we focused on theories of conserved
complex bosons. One natural question to ask is whether
the U(1) charge conservation symmetry is in fact neces-
sary for the realization of a stable BLL phase, or whether
translation symmetry alone is sufficient. This is an im-
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portant question to address, as there are several scenarios
in which we could imagine non-conserved bosons with the
desired dispersion arising in experiment.

One example is the superfluid phase of liquid He4,
where the low-energy excitations are the sound mode and
the roton. The latter has a dispersion possessing a mini-
mum along a sphere in momentum space, and while while
the roton gap ∆R is finite in the superfluid phase, ∆R

is small and can be decreased by applying pressure. It
is then perhaps not too outlandish to imagine a phase
of He4 governed by a fixed point similar to the BLL de-
scribed in the main text.

1. 1+1D

As in the case of conserved bosons, it is easiest to warm
up by looking at an example in 1+1D. We start by con-
sidering the Lagrangian

L =
1

2
Ψ

(
−v−1∂2

τ +
v

4k2
B

(−∂2
x − kB)2 + r

)
Ψ +

g

24
Ψ4.

(A1)
We will be interested in the regime where r < 0.

We start by breaking up Ψ into left and right compo-
nents

ΨL/R(x) =
√

2

∫
dk

2π
eikxΨ(±kB + k), (A2)

where the integral is over an interval of length 2Λ. Due
to the reality of Ψ the left and right fields are not inde-
pendent, and in fact constitute a single complex field

ψ ≡ ΨL = Ψ∗R. (A3)

In terms of ψ the Lagrangian is then (after dropping ir-
relevant terms)

L = ψ∗(−v−1∂2
τ − v∂2

x + r)ψ +
g

4
|ψ|4. (A4)

Therefore the IR theory is simply that of an XY model,
with lattice-scale translations providing the U(1) sym-
metry, which acts as ψ 7→ eikBaψ.

The analysis then proceeds as in the case with com-
plex bosons at zero density, except with half the num-
ber of fields due to the reality constraint. We work
in terms of a phase field φ and its dual θ, with only
φ transforming nontrivially under translation. Writing
ψ = (r0 + r)eikBx+iφ, the IR theory at energy scales be-
low the mass of the r field is

L =
1

4πη

(
v−1(∂τφ)2 + v(∂xφ)2

)
+ g cos(θ) + · · · , (A5)

where the · · · are less relevant symmetry-allowed inter-
actions. When η < 1/4 the cosine is irrelevant and we
obtain a single free boson, while for η > 1/4 the IR the-
ory is gapped and trivial. The only novelty about the
gapless theory are kB oscillations in the correlation func-
tions of the UV boson; otherwise the physics is simply
that of the XY model.

2. 2+1D

We now move on to 2+1D, and consider a UV La-
grangian of the form

L = L0 + LI

L0 =
1

2
(∂τΨ)2 +

β

2
((|∇| − kB)Ψ)2 +

r

2
Ψ2

LI =
λ

6
Ψ3 +

g

24
Ψ4,

(A6)

with r < 0. As usual, we define slowly fluctuating fields
Ψγ by breaking up Ψ into N momentum-space patches
as

Ψ(x, τ) =
1√
N

∑
γ

Ψγ(x, τ)eikBγ·x, (A7)

with each patch of size 2Λ × 2Λ. Each Ψγ(x, τ) is a
complex field, but the reality of Ψ(x, τ) imposes the con-
straint

Ψγ(x, τ)∗ = Ψγ+π(x, τ). (A8)

When written in terms of the Ψγ fields the resulting IR
Lagrangian is essentially the same as the the theory in
(17), but with two differences: the identification (A8),
and the absence of a microscopic U(1) symmetry.

As usual, we now write Ψγ ∼ eiΦγ . The reality con-
straint on the Φγ reads

Φγ = −Φγ+π, (A9)

with the angle γ now only running between 0 and π.
Translation symmetry acts on the Φγ as

Tµ : Φγ(x) 7→ Φγ(x + µ) + kBµ · γ. (A10)

The analysis is then exactly the same as the zero-
density limit of the previous theory where the UV bosons
are complex, but with only half the number of IR fields.
The IR Lagrangian can accordingly be written down as
L0 + Lf + LI , with

L0 =
kB

4πNη

π∑
γ=0

(
v−1(∂τΦγ)2 + v(∇γΦγ)2

)
Lf =

kB
4πN2η

π∑
γ,γ′=0

(
v−1fγ,γ

′

ρ ∂τΦγ∂τΦγ′

+ vfγ,γ
′

j ∇γΦγ∇γ′Φγ′
)
,

(A11)

and with LI containing the symmetry-allowed interac-
tions. As before, the coefficients appearing the above
Lagrangian are all non-universal dimensionless numbers.
The emergent symmetry of this fixed point is the sub-
group of LU(1) generated by odd angular momentum
functions.
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The most relevant translation-invariant cosine in the
Φγ variables is

LI ⊃ g3
kBΛ2

N

∑
γ

cos(Φγ + Φγ+2π/3 + Φγ−2π/3), (A12)

with g3 a dimensionless coupling (there is no BCS-type
term due to the constraint (A9)). Following the steps
described insection V, we see that the RG eigenvalue of
this perturbation is

yg3 = 2− 3η/2, (A13)

and is therefore irrelevant if η > 4/3.
As in the complex case, the absence of further relevant

interactions depends on arguing that cosines in the dual
fields Θγ do not represent legitimate deformations to the
fixed-point Lagrangian. The argument is essentially the
same as in the complex case: the patch fields do not carry
quantized charges (and indeed in the present setting there
are no quantized charges at all, since the underlying de-
grees of freedom are real), and any putative patch vortex
operator eiΘγ would create singular field configurations
having infinite action in the presence of small perturba-
tions containing derivatives along the Bose surface.

The phenomenology of the fixed point (A11) can be an-
alyzed following the discussion ofsection VII. Since there
is no microscopic U(1) symmetry there is no notion of
compressibility, but the specific heat and real-space cor-
relation functions all behave similarly to the complex
case.

Appendix B: Renormalization of kB

In the main text, the Bose momentum kB was defined
simply via ε0(kB) = 0, with ε0 the non-interacting dis-
persion. In Fermi liquids renormalization of the Fermi
momentum is forbidden at fixed density by Luttinger’s
theorem (at least in the presence of rotational symme-
try), but of course here there is no analogous relation
between kB and the boson density. The correct defini-
tion of kB in the presence of interactions is

ε0(kB)− Σ(kB , ω = 0) = 0 (B1)

with Σ(k, ω) the boson self-energy, meaning that inter-
actions will generically renormalize kB .

More precisely, renormalization of kB will occur due
to the reflection-odd terms appearing in the expansion
for the dispersion close to the Bose surface. For exam-
ple, consider the case of finite-density (non-relativistic)
bosons in 1+1D, with the bosons at the right Bose point
(say) having the dispersion

ε0(k) =
1

8mk2
B

((kB + k)2 − k2
B)2

=
1

2m

(
k2 + k3/kB + k4/4k2

B

)
,

(B2)

where k is the momentum relative to kB . While the
k3 term is irrelevant, it will generate a term linear in k
under RG, which will then renormalize kB . One may
then worry that the renormalization is such that kB as
defined in (B1) vanishes. If this happens then clearly
the IR theory will not possess a Bose surface. In the
following we will argue however that this renormalization
can always be made small, so that there always exists a
region of parameter space in which the Bose surface is
stable.

In section VI, we saw that in the case of 2+1D BLLs at
finite density it was important to keep both the ψ∗∂2

τψ
and ψ∗∂τψ terms in the UV action. At large momenta
the scaling about the UV fixed point will be governed
by the relativistic ψ∗∂2

τψ term, while at lower momenta
the scaling will be governed by the non-relativistic ψ∗∂τψ
term. The crossover between these regimes will happen
at an intermediate scale kr, which may or may not be
larger than the scale at which the IR phase-only descrip-
tion sets in.

In what follows we will consider scaling only either in
the fully z = 1 regime where the ψ∗∂τψ term is absent
(the particle-hole-symmetric limit of zero density), or in
the fully z = 2 regime where the ψ∗∂2

τψ term can be
neglected for the purposes of computing the self energy
in the UV scaling regime. This is done only for simplicity,
and a more general analysis is possible.

1. z = 1 scaling

Let us first discuss the renormalization of kB in the
particle-hole symmetric limit of zero density, where the
ψ∗∂τψ term is absent. We will start by analyzing the
1+1D case, and will consider the Lagrangian

L = ψ∗(−v−1∂2
τ − v∂2

x − iζ∂x − iβ∂3
x +m2)ψ +

g

4
|ψ|4,

(B3)
where the initial momentum cutoff is Λ ∼ kB and where
m2 < 0. Here ψ denotes the boson field expanded about
one of the Bose points (for determining the renormaliza-
tion of kB it is sufficient to focus on just a single Bose
point), and we have dropped the k4 term in (B2) on the
grounds that it is irrelevant and cannot generate a linear
k term by symmetry. We will start with ζ = 0 in the
UV, but a nonzero ζ will be induced during the RG flow.

If we write ψ = (r0+r)eiφ, the IR theory we are aiming
for is one written only in terms of the field φ. The IR
regime is then determined by the scale at which we can
neglect fluctuations in the radial mode r and focus only
on the field φ. This happens approximately when the
cutoff reaches the mass mr of the r field, which occurs
after an RG time of

tc ≈ ln(kB/mr). (B4)

The Bose surface will thus be stable if by an RG time
of tc the renormalization of kB satisfies δkB � mr: if
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Λ, ω

k, 0 k, 0
α α′

λ′

σ′σ

λ

−Λ + k,−ω

FIG. 4: The 1-loop diagrams contributing to Σαα′(k, 0) for k > 0.

FIG. 5: The diagrams which contribute to the part of Σχχ̄(k, 0) odd in k. Solid lines represent Gχχ, dashed lines
represent Gχ̄χ̄, and mixed dashed-solid lines represent Gχ̄χ,Gχχ̄.

this is the case we will be left with a theory with a dis-
persion with minima at ±(kB + δkB), and the k3 term
will cease to renormalize kB since φ∂3φ is a total deriva-
tive. By plugging in the polar representation of ψ into
the above action and solving for the r0 which minimizes
the potential, we see that

mr =
√
gρS = kB

√
ḡ(0)ρS , (B5)

where ρS = r2
0 = −2m2/g is the boson amplitude eval-

uated at the classical minimum of the potential in (B3),
and where ḡ(0) = gk−2

B is the bare interaction strength
made dimensionless with the UV cutoff Λ ∼ kB .

To get an idea for how the βk3 term contributes to
the self-energy, we break up ψ as ψ =

√
ρS + χ, with χ

a field parametrizing the fluctuations about the classical
minimum. The action is now (in v = 1 units and treating
χ and its conjugate χ̄ as two separate fields)

S =

∫
dk dω

(2π)2

(
1

2

(
χ̄ χ
)
−k,−ω G

−1(k, ω)

(
χ̄
χ

)
k,ω

+
g
√
ρS

2
((χ̄)2χ+ χ̄χ2) +

g

4
|χ|4

)
, (B6)

with the propagator

G(k, ω) =
1

(ω2 + k2)(ω2 + k2 − 2m2)− β2k6

(
m2 ω2 + k2 −m2 + βk3

ω2 + k2 −m2 − βk3 m2

)
, (B7)

which when rotated to real frequencies has poles at the correct locations ω = k,
√
k2 +m2

r.
We will compute the flow of the self energy Σ(k, 0) by integrating out modes of all frequencies, and with momentum

lying in an interval of width dΛ about the points ±Λ. The flow of the zero-frequency self-energy Σαα′(k, 0) (where
α, α′ ∈ {χ, χ̄}) is then given to 1-loop order by

dΣαα′(k, 0)

dΛ
= 2g2ρS

∫
dω

2π

∑
σσ′λλ′=χ̄,χ

V ασλV
α′

σ′λ′ (Θ(k)Gσσ′(Λ, ω)Gλλ′(−Λ + |k|,−ω) + Θ(−k)Gσσ′(−Λ,−ω)Gλλ′(Λ− |k|, ω)) ,

(B8)
where we have defined the factors V αβγ , which equal zero if α = β = γ and are equal to 1 otherwise. The diagram

corresponding to the first term proportional to Θ(k) is shown in Figure 4.
Since Gσσ′(q, ν) = Gσ′σ(−q,−ν), we can re-write the above as

dΣαα′(k, 0)

dΛ
= 2gρS

∫
dω

2π

∑
σσ′λλ′=χ̄,χ

Gσσ′(Λ, ω)Gλλ′(−Λ + |k|,−ω)
(

Θ(k)V ασλV
α′

σ′λ′ + Θ(−k)V α
′

σλV
α
σ′λ′

)
. (B9)
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We therefore see that for diagrams in which the two V V
factors above are equal, the change in self energy is in fact
only a function of |k|, and hence cannot contribute to a
renormalization of kB . As such the Σχχ and Σχ̄χ̄ compo-
nents of the self energy do not pick up any terms odd in
k under the momentum shell integration, and therefore
we may focus on the flow of Σχχ̄.

By the same reasoning only a subset of the 1-loop dia-
grams appearing in Σχχ̄ contribute to the k-odd part of

dΣχχ̄/dΛ; these diagrams are those for which V χσλV
χ̄
σ′λ′ 6=

V χ̄σλV
χ
σ′λ′ , and are shown in Figure 5.

The full evaluation of these diagrams is rather compli-
cated, but we will only concern ourselves with the part
linear in k/Λ, first order in Λβ, and lowest order in mr/Λ.
We then find that the flow of the sgn(k)-dependent part
of Σχ̄χ is given by

dΣχ̄χ
dt
⊃ dρS β̄ḡ

2kΛ, (B10)

where ḡ = g2/Λ2 and β̄ = βΛ are dimensionless couplings
and d is a positive constant. If we then let ζ̄ = ζ/Λ
denote the dimensionless coupling associated to the linear
k term, we then get the leading order flow

dζ̄

dt
≈ ζ̄ + dρS β̄(t)ḡ2(t). (B11)

In the first stages of the flow we have ḡ(t) ≈ ḡ(0)e2t and
β̄(t) ≈ β̄(0)e−t. Starting from ζ̄(0) = 0 and flowing up
to tc, we then get

ζ̄(tc) ≈
dρSkB
2mr

β̄(0)ḡ(0)2((kB/mr)
2 − 1). (B12)

In order for this treatment of the flow of ζ̄ to remain
valid, ḡ(t) must be small for all t along the flow. This
means that we must have(

kB
mr

)2

ḡ(0) . 1 =⇒ ρS & 1. (B13)

As long as this condition is satisfied, ζ̄(tc) can be made
arbitrarily small by taking the dimensionless parameter
ḡ(0) → 0, and thus there exists a regime of parameter
space in which we expect the Bose surface to be stable.

While the above analysis was done in 1+1D, the con-
clusion is unchanged in 2+1D. In 2+1D, we are interested
in the k-dependence of the patch self-energy Σγ(k, 0).
Since the self-energy for each patch field is of order
1/N = Λ/πkB (for the same reason that the Landau
parameters only affect the patch propagators at order
1/N), kB will cease to renormalize once we reach cutoffs
Λ such that N � 1. The renormalization of kB during
the early parts of the flow where N is of order 1 can be
argued to be arbitrarily small using a similar argument
as in 1+1D, and we conclude that interactions do not
necessarily destabilize the Bose surface.

2. z = 2 scaling

We now address the limit where the ψ∗∂2
τψ term in the

action can be neglected for the purposes of computing the
flow of the linear k term. In 1+1D, the Lagrangian we
are interested in is

L = ψ∗(i∂t + µ+
1

2m
ζ i∂x +

1

2m
∂2
x − iβ∂3

x)ψ − g

4
|ψ|4,
(B14)

where ζ has units of momentum and is taken to have a
vanishing bare value, and where µ, g > 0 set the average
density.

We again write ψ as ψ =
√
ρ̄+χ, with χ a complex field

capturing the fluctuations about the background density.
The action is then the same as (B6), except that the
propagator is now (in real time)

G(k, ω) =
i

(ω + βk3)2 − ξ2
k + i0

×
(

−µ ω + βk3 + k2/2m+ µ
−(ω + βk3) + k2/2m+ µ −µ

)
,

(B15)
with

ξ2
k ≡

k2

2m

(
k2

2m
+ µ

)
. (B16)

When β = 0 we check that G has poles at ±ξk, correctly
giving the Bogoliubov dispersion.

The crossover between the high-momentum non-
relativistic ω ≈ k2/2m and the low-momentum relativis-

tic ω ≈
√
µ/2mk occurs at the momentum kc =

√
2mµ,

which in terms of the average density ρ̄ is

kc =
√
mgρ̄. (B17)

At this scale, the behavior crosses over from massive par-
ticles in the UV to coherent waves in the IR, where the
hydrodynamic phase-only representation sets in.

In order to reach the hydrodynamic regime in the IR,
we then need to flow for an RG time of tc ≈ ln(kB/kc).
The 1-loop diagrams contributing to the part of the self-
energy sensitive to the sign of k are the same as in the
previous section. To first order in mΛβ and k/Λ, we find

dΣχ̄χ
dt
⊃ cβ̄ḡ2 kρ̄

m
, (B18)

where the dimensionless parameters are now defined as

ḡ =
mg

Λ
, β̄ = mΛβ, (B19)

and where c is a positive constant. β̄ is irrelevant with
RG eigenvalue −1 under the UV scaling, while ḡ is rele-
vant with RG eigenvalue +1. In terms of the parameter
ζ in (B14), we see that dζ/dt ≈ ζ + cβ̄ḡ2ρ̄. At an RG
time t, ζ is then approximately

ζ(t) ≈ cβ̄(0)ḡ(0)2ρ̄ett. (B20)
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The hydrodynamic scaling regime is reached after a time
tc ≈ ln(kB/kc), at which point the effective dispersion is
approximately k2/2m− kζ(tc)/2m, which gives a renor-
malization of kB by an amount δkB ≈ ζ(tc)/2. In order
for the Bose surface to be stable then, we require that
ζ(tc)/kc � 1. Now using kc ≈

√
ḡ(0)kB ρ̄, we have

ζ(tc)

kc
≈ cβ̄(0)ḡ(0)2 ln(kB/kc)

kB ρ̄

k2
c

≈ c

2
β̄(0)ḡ(0) ln

(
kB
ρ̄ḡ(0)

)
.

(B21)
Thus ζ(tc)/kc can be made arbitrarily small if ḡ(0) is
made small.

Appendix C: A more careful justification of minimal
coupling

In this appendix we provide a justification for the claim
that the 2+1D BLL considered in the main text may
be coupled to a gauge field A for the microscopic U(1)
symmetry by minimally coupling A to the φγ fields on
each patch, as was written down in (81).

Our motivation for critically examining the minimal

coupling of (81) can be understood by thinking about
what happens in the context of Fermi liquids. In the
bosonized description of Fermi liquids, the chirality of
the patch fields means that it is incorrect to minimally
couple A to the phase fields on each patch. Instead, the
correct thing to do28 is to re-write the Lagrangian in
terms of the Fourier modes

φl =

∫
dγ

2π
eilγφγ , (C1)

and then to minimally couple A to φ0. Indeed, as was
discussed in the main text, the φγ are not independent
2π periodic variables—the only periodic variable is φ0,
and so only φ0 should couple to A.

Unlike the Fermi liquid the BLL is not chiral, and this
means the naive minimal coupling in (81) is indeed cor-
rect. It is however worthwhile to demonstrate this fact
explicitly.

Working in the zero density limit, and setting the Lan-
dau parameters to zero for simplicity, we can write the
IR Lagrangian as

L = k

∫
γ

(
(∂τφγ)2 + (∇γφγ)2

)
= k

∑
n,m

(
∂τφn∂τφmδn,−m +

∫
γ

(cos(γ)∂x + sin(γ)∂y)φn(cos(γ)∂x + sin(γ)∂y)φme
iγ(n+m)

)
= −k

∑
n

φn

[
∂2
τφ−n +

1

4

(
∂2
x(2φ−n + φ−n−2 + φ−n+2) + ∂2

y(2φ−n − φ−n−2 − φ−n+2) + 2i∂x∂y(φ−n+2 − φ−n−2)
)]

(C2)

where for convenience we have defined k = kB/4πη and
∫
γ

=
∫
dγ
2π . The part of L containing φ0 is

L[φ0] = −k
[
φ0

(
∂2
τ +

1

2
∇2

)
φ0 +

1

2
φ0

(
(∂x + i∂y)2φ2 + (∂x − i∂y)2φ−2

)]
(C3)

with the couplings to φ±2 taking the correct form required by rotational symmetry.
If we now couple φ0 minimally to A, the terms dependent on A are

L[A] = k

[
−2∂τφ0Aτ +A2

τ −A · ∇φ0 +
1

2
A2 − 1

2
(Ax + iAy)(∂x + i∂y)φ2 −

1

2
(Ax − iAy)(∂x − i∂y)φ−2

]
. (C4)

If we now rewrite this in terms of the patch fields, we find

L[A] = k

∫
γ

[
A2
τ +

1

2
A2 + (−2Aτ∂τ −A · ∇ − cos(2γ)(Ax∂x −Ay∂y)− sin(2γ)(Ax∂y +Ay∂x))φγ

]
= k

∫
γ

[
A2
τ +A2

γ +
(
−2Aτ∂τ − 2 cos2(γ)Ax∂x − 2 sin2(γ)Ay∂y − 2 cos(γ) sin(γ)(Ax∂y +Ay∂x)

)
φγ
]

= k

∫
γ

[
A2
τ +A2

γ − 2 (Aτ∂τ +Aγ∇γ)φγ
]
,

(C5)

which has exactly the same A dependence as the naive minimal coupling in (81).
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