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We compute the low-energy excitation spectrum and the dynamical spin structure factor of the
Kitaev-Heisenberg-Gamma model through a variational approach based on the exact fractionalized
excitations of the pure Kitaev honeycomb model. This novel approach reveals the physical reason
for the asymmetric stability of the Kitaev spin liquid phases around the ferromagnetic and antifer-
romagnetic Kitaev limits. Moreover, we demonstrate that the fractionalized excitations form bound
states in specific regions of each Kitaev spin liquid phase and that certain phase transitions induced
by Heisenberg and Gamma interactions are driven by the condensation of such a bound state. Re-
markably, this bound state appears as a sharp mode in the dynamical spin structure factor, while
its condensation patterns at the appropriate phase transitions provide a simple explanation for the
magnetically ordered phases surrounding each Kitaev spin liquid phase.

I. INTRODUCTION

Quantum spin liquids are highly unconventional, fun-
damentally quantum phases of magnetic systems that do
not order by spontaneous symmetry breaking and are
instead characterized by long-range quantum entangle-
ment,1,2 along with a rich variety of exotic phenomena,
including topological order, emergent gauge theories, and
quasiparticle fractionalization. Indeed, the spin degrees
of freedom in quantum spin liquids appear to be fraction-
alized into nonlocal quasiparticle excitations that carry
internal gauge charges and exhibit nontrivial anyonic par-
ticle statistics. In addition to their fundamental appeal,
these anyonic quasiparticles facilitate topological braid-
ing processes and thus provide manifestly fault-tolerant
schemes of quantum computation.3,4

The Kitaev spin liquid phase on the honeycomb lat-
tice is particularly amenable to theoretical studies due
to its exactly solvable limit described by the famous Ki-
taev honeycomb model.5 Remarkably, it has been demon-
strated that the bond-directional spin interactions of the
Kitaev model are naturally realized between effective
spin-one-half magnetic moments in strongly spin-orbit-
coupled 4d and 5d systems,6 and this realization has led
to the discovery of several candidate materials in which
the microscopic spin Hamiltonian is believed to be well
approximated by the Kitaev model.7–10 These Kitaev
materials include the honeycomb iridates Na2IrO3,11–16

α-Li2IrO3,17,18 H3LiIr2O6,19, and Ag3LiIr2O6,20 as well
as the analogous ruthenium system α-RuCl3.21–29 While
the precise microscopic Hamiltonians of these materi-
als are still subject to intense debate,30–41 the simplest
nearest-neighbor model one may consider is the Kitaev-
Heisenberg-Gamma model,42–44 where isotropic (Heisen-
berg) interactions and symmetric off-diagonal anisotropic
(Gamma) interactions are superimposed on the diagonal
anisotropic (Kitaev) interactions.

Even though none of the candidate materials seem to
realize the Kitaev spin liquid, and most of them are found
to be magnetically ordered at the lowest temperatures,
there are nevertheless direct experimental indications of
dominant Kitaev interactions.16 The Kitaev materials are
thus expected to be proximate to the Kitaev spin liquid,27

making it important to understand the magnetically or-
dered phases surrounding the Kitaev spin liquid, along
with the corresponding quantum phase transitions giving
rise to magnetic order. To this end, the phase diagram
of the Kitaev-Heisenberg-Gamma model has been stud-
ied extensively using a wide range of techniques, includ-
ing exact diagonalization,42–46 density-matrix renormal-
ization group,47–49 tensor-network methods,50,51 slave-
particle mean-field theories,52 and variational Monte
Carlo approaches.53 These works yield consistent phase
diagrams, predicting a rich variety of magnetically or-
dered phases around the ferromagnetic (FM) and antifer-
romagnetic (AFM) Kitaev spin liquid phases. However,
while they seem to indicate that some of the phase transi-
tions are close to continuous (i.e., weakly first order), the
underlying mechanisms driving these phase transitions
are still not properly understood.

Since quantum spin liquids do not break any symme-
tries and possess no local order parameters or any other
“smoking-gun” signatures, they are notoriously difficult
to identify in an experimental setup. It is conventional
wisdom that, as a result of fractionalization, quantum
spin liquids are characterized by diffuse continuum fea-
tures in spectroscopic probes because any local magnetic
excitation (magnon) created by such a probe immedi-
ately decomposes into several nonlocal quasiparticle exci-
tations (spinons). Indeed, for the Kitaev spin liquid, such
continuum features have been proposed to be observable
in inelastic neutron scattering,54–57 Raman scattering,58

and resonant inelastic x-ray scattering.59,60 However, it is
important to emphasize that the presence of such contin-
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uum features does not necessarily indicate an underlying
quantum spin liquid, as it can also originate from disor-
der and/or thermal fluctuations in classical phases with
no long-range entanglement.61–63

The main difference between the two scenarios is that
the continuum features of quantum spin liquids are pro-
duced by coherent (albeit nonlocal) quasiparticles while
those appearing in classical phases have completely in-
coherent (diffusive) origins. To confirm the presence of
an underlying quantum spin liquid, one must therefore
demonstrate the coherent nature of its nonlocal quasi-
particle excitations. For example, these nonlocal excita-
tions, which typically correspond to continuum features
in dynamical responses, may also form local bound states,
thereby producing sharp modes and providing evidence
for coherent behavior. Surprisingly, the distinctive signa-
ture of the quantum spin liquid in this scenario is then a
sharp mode, in conjunction with the continuum features
and the lack of magnetic order.

In this paper, we use a variational approach based on
the exactly solvable Kitaev honeycomb model to demon-
strate that such local bound states of nonlocal excitations
are prominent in both Kitaev spin liquid phases of the
Kitaev-Heisenberg-Gamma model. Specifically, we focus
on the nonlocal flux pair and Majorana fermion exci-
tations of the pure Kitaev model and investigate their
dynamics and interactions resulting from the Heisenberg
and Gamma perturbations. We find that the flux pairs,
which are static in the pure Kitaev model, acquire an
emergent dynamics and may bind Majorana fermions to
form local magnon-like excitations. In turn, such a local
excitation manifests in the dynamical spin structure fac-
tor as a sharp mode descending from a diffuse continuum
feature. Moreover, when such a bosonic magnon-like ex-
citation becomes gapless, its condensation directly gives
rise to magnetic order. We argue that this condensation
is the driving force behind the weakly first-order transi-
tions out of the Kitaev spin liquid phases and, by consid-
ering the precise condensation patterns, we account for
the resulting magnetically ordered phases found in pre-
vious works. Finally, by studying the dynamics of both
nonlocal and local excitations, we explain the asymmet-
ric stability of the Kitaev spin liquid phases around the
FM and AFM Kitaev limits.

The structure of this paper is as follows. In Sec. II, we
introduce the model Hamiltonian and the variational ap-
proach for computing its low-energy excitation spectrum.
In Sec. III, we study the dynamics of flux-pair excitations
while, in Sec. IV, we consider magnon-like bound states
formed by a flux pair and a Majorana fermion. In Sec. V,
we determine the magnetic orders obtained by condens-
ing these magnon-like excitations while, in Sec. VI, we
calculate their direct contributions to the dynamical spin
structure factor. Finally, we conclude the paper with a
brief summary and outlook in Sec. VII.
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FIG. 1. Kitaev honeycomb model with bond-dependent Ising
interactions on the honeycomb lattice. The three bond types
(x, y, z) are marked by three different colors. The bond vari-
ables u〈ij〉 are Z2 gauge fields whose fluxes around hexagonal
plaquettes p coincide with the plaquette operators Wp.

II. GENERAL FORMULATION

A. Kitaev-Heisenberg-Gamma model

The Kitaev-Heisenberg-Gamma model42–44 is obtained
by including Heisenberg and Gamma interactions on top
of the exactly solvable Kitaev honeycomb model5. The
corresponding Hamiltonian,

H = HK +HH +HΓ, (1)

includes three contributions,

HK = K
∑

γ={x,y,z}

∑
〈jk〉‖γ

σγj σ
γ
k ,

HH = J
∑
〈jk〉

σj · σk,

HΓ = Γ
∑

α6=β 6=γ

∑
〈jk〉‖γ

σαj σ
β
k , (2)

where J is the isotropic Heisenberg interaction, Γ is a
symmetric off-diagonal exchange anisotropy, and K is the
Kitaev interaction, corresponding to diagonal exchange
anisotropy. As it is illustrated in Fig. 1, the Kitaev terms
are bond-dependent Ising interactions between spin com-
ponents that depend on the bond orientation.

B. Exactly solvable Kitaev limit

The pure Kitaev model (J = Γ = 0) is exactly solvable
by means of a simple mapping in which each spin opera-
tor is expressed as a product of two Majorana fermions:
σγj = ibγj cj .5 The “matter” Majorana fermion cj does
not carry any flavor and is associated with the site j. In
contrast, the “bond” Majorana fermions bγj have three
flavors, γ = x, y, z, associated with the three orientations
of the bonds connected to the site j. In terms of these
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Majorana fermions, the Kitaev Hamiltonian becomes

HK = −iK
∑
γ

∑
〈jk〉‖γ

u〈jk〉‖γcjck, (3)

where u〈jk〉‖γ ≡ ibγj b
γ
k are conserved bond variables that

can be identified as static Z2 gauge fields coupled to the
matter fermions. In each bond-fermion sector character-
ized by the Z2 gauge fields, u〈jk〉 = ±1, the quadratic
matter-fermion Hamiltonian can then be diagonalized:

HuK =
∑
α

εuα(fuα)†fuα . (4)

The superscript u of the fermion operators, fuα , and the
corresponding eigenenergies, εuα ≥ 0, indicates their de-
pendence on the Z2 gauge-field configuration. Note that,
in the following, we use the terms “fermions” and “mat-
ter fermions” interchangeably, unless we make an explicit
distinction between them.

Since the Majorana fermion representation of the spin
operators enlarges the local Hilbert space, it gives rise to
a local Z2 gauge transformation, Dj = bxj b

y
j b
z
jcj , which

commutes with any physical observable and anticom-
mutes with the bond variables u〈jk〉 that include the site
j. The physical states are then characterized by gauge-
invariant products or “fluxes” of the Z2 gauge fields, cor-
responding to their circulation (i.e., Wilson loop) around
each hexagonal plaquette (p):

Wp =
∏

〈jk〉∈∂p

u〈jk〉 = ±1. (5)

An eigenvalue −1 (+1) of the flux operator Wp indicates
the presence (absence) of a Z2 gauge flux Φ or, equiva-
lently, a vison at the plaquette p.

To obtain a general eigenstate of the Kitaev model,
we start from a product state |u〉 ⊗ |nu〉 in the enlarged
Hilbert space of the Majorana fermions, where the Z2

gauge field configuration, |u〉, is a simultaneous eigen-
state of all bond variables, u〈jk〉 = ±1, while the matter-
fermion state |nu〉 is a simultaneous eigenstate of all
fermion numbers, nuα = (fuα)†fuα = {0, 1}, corresponding
to a Slater determinant in terms of the matter fermions
cj . The physical eigenstate is then obtained by projecting
this product state into the physical Hilbert space through
an appropriate projector,

P =
1

2N

∏
j

(1 +Dj), (6)

which enforces Dj = +1 for all sites j = 1, . . . , N of the
lattice. Consequently, the physical eigenstate

|Φ; f〉 = 2N/2P
{
|u〉 ⊗ |nu〉

}
, (7)

labeled schematically by its flux (Φ) and fermion (f)
configurations, is manifestly gauge invariant. Note that
the same physical eigenstate, |Φ; f〉, can be obtained by
projecting distinct Majorana-fermion states |u1〉 ⊗ |nu1〉

and |u2〉⊗|nu2〉 related by gauge transformations. While
these states belong to distinct bond-fermion sectors, u1

and u2, they correspond to the same flux sector Φ.
Due to the extensive projection described by Eq. (6),

it is not surprising that the ground state of the Kitaev
model, characterized by flux operators Wp = +1 for all p
and fermion numbers nuα = 0 for all α, is a strongly en-
tangled quantum spin liquid.5 While the flux excitations,
characterized by Wp = −1 for some p, are gapped, the
fermion excitations, characterized by nuα = 1 for some α,
have a single gapless Dirac point.

C. Variational approach

Beyond the exactly solvable Kitaev limit, one can treat
small enough Heisenberg and Gamma interactions as per-
turbations. In general, perturbation theory would require
the evaluation of all matrix elements of HH and HΓ be-
tween the exact Kitaev eigenstates. To simplify the prob-
lem, we instead take a variational approach and only cal-
culate these matrix elements within an appropriate vari-
ational subspace. Importantly, this variational subspace
is naturally constrained by the various selection rules on
the flux and fermion quantum numbers which make most
of the above matrix elements vanish.

Let us first concentrate on the fluxes. For a Heisenberg
term along an x bond, 〈jk〉 ‖ x, the component σxj σ

x
k sim-

ply renormalizes the corresponding Kitaev term, while
the components σyj σ

y
k and σzjσ

z
k each invert the eigen-

values, Φp = ±1, of all four fluxes at the plaquettes p
surrounding the bond 〈jk〉. In contrast, for a Gamma
term along the same x bond, 〈jk〉 ‖ x, the components
σyj σ

z
k and σzjσ

y
k each invert the eigenvalues of only two

fluxes at the plaquettes p that are separated by the bond
〈jk〉. The symmetry-inequivalent flux sectors connected
by these Heisenberg and Gamma terms are depicted in
Figs. 2 and 3, respectively.

From the flux selection rules of Figs. 2 and 3, it is clear
that both Heisenberg and Gamma interactions naturally
result in flux-pair hopping [see Figs. 2(b) and 3(b)]. Re-
markably, a flux-pair excitation, consisting of two flux ex-
citations at neighboring plaquettes, can propagate coher-
ently and, thus, can be treated as a well-defined quasipar-
ticle even in the presence of the gapless fermions. Indeed,
a flux-pair excitation does not lead to an orthogonality
catastrophe because it corresponds to a local perturba-
tion (the flip of a single hopping amplitude u〈jk〉 = ±1)
from the perspective of the fermions which are, in turn,
gapless at a Dirac point only.64 In other words, the matrix
elements of HH and HΓ connecting different flux sectors
in Figs. 2(b) and 3(b) are O(1) between the respective
fermion vacua and exponentially small in the number of
fermions created or annihilated.

Focusing on flux-pair excitations, the variational sub-
space is then restricted to flux sectors containing a single
flux pair at various positions [see Figs. 2(b) and 3(b)]. As
shown in Refs. 55 and 56, the fermion vacuum of such a
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(a) (b) (c) (d) (e)

FIG. 2. Distinct matrix elements of the Heisenberg interactions in terms of the J = Γ = 0 flux sectors connected.

(a) (b) (c) (d) (e) (f)

FIG. 3. Distinct matrix elements of the Gamma interactions in terms of the J = Γ = 0 flux sectors connected.

flux sector has odd fermion parity.65 Therefore, the flux-
pair excitation has fermionic statistics and is topologi-
cally equivalent to a bond fermion. The hopping problem
of such a bare flux pair is obtained by calculating the ma-
trix elements of HH and HΓ between the fermion vacua
of the appropriate flux sectors. Another excitation of in-
terest is the bound state of a flux pair (i.e., bond fermion)
and a matter fermion which has bosonic statistics and is
topologically equivalent to a spin flip or, in other words,
a magnon (i.e., topologically trivial). This composite flux
pair is important for us because it directly manifests in
the dynamical spin structure factor and its condensation
immediately leads to magnetic order. To demonstrate its
formation and solve the hopping problem, we calculate
the matrix elements of HH and HΓ between one-fermion
states of the appropriate flux sectors.

As shown in Figs. 2 and 3, the Heisenberg and Gamma
interactions also give rise to many other processes beyond
flux-pair hopping. First, the energy of the ground state is
renormalized because of matrix elements connecting the
ground-state flux sector (i.e., the flux-free sector) with
excited flux sectors [see Figs. 2(a) and 3(a)]. Next, the
“closed” flux-pair excitations of Figs. 2(b) and 3(b) can
hybridize with “open” flux-pair excitations [see Fig. 2(c)]
and four-flux excitations [see Fig. 3(c)]. Finally and most

interestingly, the remaining processes describe the hop-
ping of single-flux excitations [see Fig. 3(d)] and their
hybridization with three-flux excitations [see Figs. 2(d,e)
and 3(e,f)]. While such single-flux excitations seem nat-
ural to consider in conjunction with flux-pair excitations,
we do not expect a single-flux excitation to be a coherent
quasiparticle as it corresponds to a vortex (rather than
a local perturbation) from the perspective of the gapless
fermions. Therefore, we concentrate on flux-pair hopping
[see Figs. 2(b) and 3(b)] in the following and only con-
sider the hybridization between “open” and “closed” flux
pairs [see Fig. 2(c)] in Sec. III D.

To verify that a flux pair is a well-defined quasiparticle
while a single flux is not, we investigate how the presence
of each distorts the matter-fermion vacuum. We first con-
sider the effect of a flux pair. In the pure Kitaev limit, the
distortion of the matter-fermion vacuum can be studied
by computing the spatial variation of the bond energy,
εij = 〈G|Kσγi σ

γ
j |G〉, where |G〉 is the ground state of the

corresponding flux sector. For the flux-free sector, this
bond energy is the same for all bonds by symmetry and
is numerically found to be ε0 ' −0.5249|K|. The gapless
nature of the matter fermions then implies that the dis-
tortion of the bond energy, δεij ≡ εij − ε0, induced by a
flux pair, falls off as a power law r−ν for long distances r
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FIG. 4. Radial dependence of the bond-energy distortion δεij
induced by: (a) a flux pair and (b) a single flux. In each case,
the asymptotic behavior obeys a power law δεij ∼ r−ν . The
exponent ν is obtained by fitting the bond-energy distortion
computed on a honeycomb lattice of 80 × 80 unit cells. The
fitting range 17 < r < 25 is chosen to capture the asymptotic
behavior while minimizing the boundary effects.

between the bond 〈ij〉 and the flux pair. The situation is
similar to Friedel oscillations induced by an impurity in
half-filled graphene, where the decay exponent is known
to be ν = 3 in both sublattices.66 This power-law behav-
ior is confirmed by our numerical results [see Fig. 4(a)],
for the distortion around a flux pair in a specific direction
with no oscillatory behavior. The value of the exponent,
ν = 2.96, is very close to the expected value, ν = 3,
for the true asymptotic behavior, and its small deviation
can be attributed to finite-size effects. In turn, since the
2D integral

∫
d2r r−ν is convergent for ν > 2, a distortion

decaying as 1/r3 can be regarded as localized. Therefore,
the two matter-fermion vacua connected by the matrix
element in Fig. 2(b) must have an O(1) overlap, which
is numerically found to be ' 0.78. From this result, we
also expect that matrix elements involving multi-matter-
fermion states can be safely neglected.

Next, we investigate the effect of a single flux. We start
by noting that, for a closed system with periodic bound-
ary conditions, fluxes must always be inserted in pairs
because of the global constraint

∏
pWp = 1. Therefore,

we introduce two fluxes separated by the largest possible
distance on a finite lattice, and we only concentrate on
one of these fluxes. Similarly to the case of a flux pair,
the spatial variation of the bond energy, δεij , as defined
above, falls off as a power law for long enough distances
r between the bond 〈ij〉 and the single flux. However, in
this case, we find an exponent ν ' 1.98 [see Fig. 4(b)],
which is close to the critical value ν = 2 separating the lo-
calized and the delocalized scenarios. In other words, the
distortion of the matter-fermion vacuum due to a single
flux is found to be marginally delocalized.

In view of these considerations, we exclude single-flux
excitations from our variational analysis. By doing so, we
implicitly assume that single-flux excitations do not play
a relevant role in the instabilities induced by the Heisen-
berg and Gamma terms. Note also that these excitations

are not expected to give a substantial contribution to dy-
namical correlation functions of local observables, such as
the dynamical spin structure factor, because local oper-
ators necessarily create fluxes in pairs.

D. Computation of matrix elements

In this subsection, we explain how to compute the ma-
trix element of an arbitrary Hamiltonian H′ between two
eigenstates of the pure Kitaev model specified in the form
of Eq. (7). For the purposes of this work, we consider two
different classes of eigenstates. First, there are “conven-
tional eigenstates” containing a single topologically triv-
ial excitation, for example, a bosonic bound state of a flux
pair and a matter fermion. Second, there are “fraction-
alized eigenstates” containing a topologically nontrivial
(i.e., fractionalized) excitation, for example, a fermionic
bare flux pair. Importantly, for a closed system, an eigen-
state containing a single fractionalized excitation is un-
physical and annihilated by the projector in Eq. (6). This
problem can be circumvented by considering an eigen-
state with two fractionalized excitations: the original ex-
citation of interest and another excitation as far away as
possible. In this work, however, instead of including an-
other excitation, we modify the projector in Eq. (6) such
that it enforces Dj = −1 at a far-away reference site j
and Dj′ = +1 at all other sites j′:

P̄j =
1

2N
(1−Dj)

∏
j′

(1 +Dj′). (8)

In contrast to the original projector P , this modified pro-
jector P̄j annihilates states with even fermion parity but
not those with odd fermion parity. Therefore, replacing
P with P̄j is physically equivalent to including a fermion
excitation around site j.

Exploiting [H′, P ] = 0 and P 2 = P , the general matrix
element between two conventional eigenstates reads:

〈Φ2; f2|H′|Φ1; f1〉 = 2N 〈nu2 | ⊗ 〈u2|PH′|u1〉⊗|nu1〉. (9)

Similarly, due to [H′, P̄j ] = 0 and P̄ 2
j = P̄j , the general

matrix element between two fractionalized eigenstates
takes an analogous form:

〈Φ2; f2|H′|Φ1; f1〉 = 2N 〈nu2 | ⊗ 〈u2|P̄jH′|u1〉⊗|nu1〉.
(10)

In each case, the two states connected by H′ may have
different gauge choices u1 and u2 as the appropriate pro-
jector (P or P̄j) automatically takes care of the gauge
transformation between these two gauge choices.

Since the bond fermions are static, the bond-fermion
matrix elements in Eqs. (9) and (10) can be calculated
straightforwardly. Thus, Eqs. (9) and (10) are reduced to

the general form 〈0u2 |ψ̂1ψ̂2...ψ̂2N |0u1〉 in matter-fermion
space, where |0u1,2〉 is the matter-fermion vacuum of the

gauge sector |u1,2〉, and each ψ̂i =
∑
k(aikf

(u1)
k +āikf

(u1)†
k )
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is expressed as a linear combination of the normal matter

fermion modes f
(u1)
k and f

(u1)†
k . The matter-fermion ma-

trix element is then computed by introducing a modified
form of Wick’s theorem, which is necessary because the
two states |0u1〉 and |0u2〉 correspond to different fermion
vacua. In general, these fermion vacua are related by

|0u2〉 = |C|e− 1
2

∑
kl f

(u1)†
k M∗klf

(u1)†
l |0u1〉, (11)

where the anti-symmetric matrix M = X−1Y and the
normalization constant C = det[X]1/2 are both derived
from the unitary transformation(

f
(u2)
n

f
(u2)†
n

)
=

(
X∗nm Y ∗nm
Ynm Xnm

)(
f

(u1)
m

f
(u1)†
m

)
. (12)

By expanding the exponential in Eq. (11), the matter-

fermion matrix element becomes

〈0u2 |ψ̂1ψ̂2...ψ̂2N |0u1〉 (13)

=|C|〈0u1 |
∞∑
n=0

1

n!

(
1

2

∑
kl

f
(u1)
k Mklf

(u1)
l

)n
ψ̂1...ψ̂2N |0u1〉,

and can be evaluated through Wick’s theorem. If q pairs

of ψ̂ operators are contracted, the remaining 2N − 2q ψ̂
operators must be paired with f operators. In this case,
only the term of order n = N − q gives a finite contribu-

tion because 〈0u1 |f (u1)
k f

(u1)
l |0u1〉 = 0. If we consider the

partitions of 2N − 2q ψ̂ operators into N − q pairs, for
each partition there are n! = (N − q)! equivalent ways

of contracting each pair with 1
2

∑
kl f

(u1)
k Mklf

(u1)
l . This

factor cancels the prefactor 1/n! = 1/(N − q)!. Summing
over all possible cases, 0 ≤ q ≤ N , we then obtain

〈0u2 |ψ̂1ψ̂2...ψ̂2N |0u1〉 = |C|
∑
P

ηP

N∏
q=1

[
〈0u1 |ψ̂Pq(1)ψ̂Pq(2) +

(
1

2

∑
kl

f
(u1)
k Mklf

(u1)
l

)
ψ̂Pq(1)ψ̂Pq(2)|0u1〉

]

= |C|
∑
P

ηP

N∏
q=1

〈0u2 |ψ̂Pq(1)ψ̂Pq(2)|0u1〉, (14)

where P sums over all the possible partitions of the 2N

ψ̂ operators into N pairs and (Pq(1), Pq(2)) is the index
of the q-th pair. The coefficient ηP = sgn(P ) = ±1 arises

from the fermionic statistics of the ψ̂ operators. By in-
troducing a skew-symmetric matrix A of dimension 2N ,
whose matrix elements are given by the generalized con-

traction Aij ≡ 〈0u2 |ψ̂iψ̂j |0u1〉 ≡
∑
kl

(
aikδkl − āikMkl

)
ājl

for i < j, the above result takes the concise form

〈0u2 |ψ̂1ψ̂2...ψ̂2N |0u1〉 = |C| Pf [A] , (15)

where Pf [A] is the Pfaffian of the matrix A.

III. DYNAMICS OF BARE FLUX PAIRS

A. General formulation

In this section, we focus on bare flux pairs, which are
coherently propagating fermionic quasiparticles and are
topologically equivalent to bond fermions. The relevant
variational subspace contains all eigenstates of the pure
Kitaev model that have two flux excitations at neighbor-
ing plaquettes and no matter-fermion excitations. Each
state from the variational subspace then corresponds to
a bond on the honeycomb lattice, and the state corre-
sponding to bond 〈jk〉 ‖ γ (with j ∈ A) can be written
as

|j, γ〉 = 2N/2P
{
bγj |u0〉 ⊗ |0(j,γ)〉

}
, (16)

where |u0〉 is the trivial gauge sector with u〈lm〉 = +1

for all bonds 〈lm〉, while |0(j,γ)〉 is the matter-fermion
vacuum of the gauge sector bγj |u0〉. The labels γ and j

specify the orientation (also denoted as “flavor”) and the
position of the flux pair, respectively.

The Hamiltonian restricted to the above variational
subspace describes a tight-binding problem on the dual
Kagome lattice formed by the center of bonds of the hon-
eycomb lattice (see Fig. 5 (a)). The dual Kagome lat-
tice has a primitive unit cell of three lattice sites corre-
sponding to the bonds with different orientations, which
is shown by the three colors (red, blue, green) in Fig. 5
(a). The primitive vectors a1,2 coincide with the ones
of the original honeycomb lattice. The Heisenberg inter-
action (J) generates effective hopping amplitudes within
one of the three sublattices of the Kagome lattice that are
shown by one particular color in Fig. 5 (a), which is diag-
onal in the flavor index of the flux pair. In contrast, the
Gamma interaction (Γ) propagates the flux pair within
one of the three Kagome sublattices that are shown by
one particular color in Fig. 5 (b), which is off-diagonal in
the flavor index of the flux pair. Each sublattice forms an
enlarged Kagome lattice spanned by the primitive vectors
a′1,2. For either J = 0 or Γ = 0, the respective “sublat-
tice” index is a good quantum number, which leads to a
triple degeneracy of the single flux pair spectrum.

To compute each hopping amplitude, we consider a flux
pair |i0, z〉 on the bond 〈i0j0〉 ‖ z (see Fig. 5 (c) or (d)).
The hopping amplitude of a flux pair on bonds x or y is
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FIG. 5. Sublattices of the dual Kagome lattice on which the
flux pair propagates through (a) Heisenberg and (b) Gamma
interactions. The primitive lattice vectors of the triangular
Bravais lattice of the dual Kagome lattice are indicated in
each figure. (c) The blue arrows indicate the non-zero hopping
amplitudes of a flux pair via Heisenberg interaction. (d) The
green arrows indicate the non-zero hopping amplitudes of a
flux pair via Gamma interaction.

related to this case by the three-fold rotation symmetry
of the model. The Heisenberg interaction moves this flux
pair to the neighboring sites of the dual (Kagome) lattice
with the same bond orientation. The hopping amplitude
that takes the flux pair |i0, z〉 to |i1, z〉 (see Fig. 5 (c) for
lattice site labels) is

T zzi1,i0 = Ju0
〈i0j0〉z

[
〈0(i1,z)|ici1cj0 |0(i0,z)〉

+ u0
〈i1j0〉x〈0

(i1,z)|0(i0,z)〉
]
, (17)

where the iµ ∈ A and jµ ∈ B, µ = 0, 1. This formula
also applies to the other hopping processes related by
mirror symmetry about the z-bond shown by Fig. 5 (c).
The remaining two hopping amplitudes are obtained by
complex conjugation of Eq. (17). There are in total six
independent hopping parameters including all the three
flavors of flux pairs. For the isotropic Kitaev model, the
six hopping parameters are equal and real:

T xx−a1
= T xx−a2

= T yya1−a2
= T yya1

= T zza2
= T zza2−a1

≡ TH∈ R,
(18)

where the subscript denotes the relative vector between
the final and the initial flux pair. The hopping ampli-
tude TH has been computed for FM and AFM Kitaev
models as shown in Figs. 6 (a) and (b), which has an ap-
parent system size dependence due to the gapless nature
of the matter fermion spectrum. By fitting the numeri-
cal results with a second degree polynomial in 1/L, we
obtain the following extrapolation of the hopping ampli-

FIG. 6. Finite-size scaling of the flux-pair hopping amplitudes
under Heisenberg and Gamma interactions on top of the FM
and AFM Kitaev models. Insets: Extrapolated hopping am-
plitudes as a function of 1/Lmax, where Lmax refers to the
maximal system size used in the finite-size fitting.

tudes to the thermodynamic limit: TH ' 0.0938J for the
FM Kitaev model and TH ' 1.4702J for the AFM Kitaev
model. It is interesting to note that the two amplitudes
(for the same value of J) are different by one order of
magnitude between the FM and AFM Kitaev models.

Through the Gamma interaction, the flux pair |i0, z〉
propagates to its four second nearest neighbors of the
dual (Kagome) lattice as shown in Fig. 5 (d). The one
that takes the flux pair |i0, z〉 to |i1, y〉 reads

T yzi1,i0 = Γu0
〈i0j0〉z

[
〈0(i1,y)|ici1cj0 |0(i0,z)〉

− u0
〈i1j0〉x〈0

(i1,y)|0(i0,z)〉
]
. (19)

The other hopping amplitude that takes the flux pair
|i0, z〉 to |k, y〉 reads

T yzk,i0 = Γu0
〈kj1〉γ

[
〈0(k,y)|ici0cj1 |0(i0,z)〉

− u0
〈i0j1〉x〈0

(k,y)|0(i0,z)〉
]
. (20)

The above two formulas also apply to the remaining two
hopping processes related by mirror symmetry about the
z-bond. There are also six independent hopping param-
eters. For the isotropic Kitaev model, the six hopping
parameters are equal and real:

T yza2
= T yz−a1

= T xz−a1+a2
= T xza1

= T xya2
= T xya1−a2

≡ TΓ∈ R.
(21)
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The finite size scaling of TΓ is shown in Figs. 6 (c) and (d).
The extrapolation to the thermodynamic limit gives TΓ '
−1.4391Γ for the FM Kitaev model and TΓ ' −0.1733Γ
for the AFM Kitaev model. As in the previous case, the
two amplitudes differ by one order of magnitude.

B. Asymmetry between FM and AFM Kitaev
models

We have observed that there is an apparent differ-
ence in magnitude between the hopping amplitudes of
the flux pairs for the FM and AFM Kitaev models. As
we demonstrate below, this asymmetry arises from the
fact that each flux-pair hopping process has two contribu-
tions which interfere constructively for one sign of Kitaev
interaction and destructively for the other.

Without loss of generality, we consider the matrix el-
ement shown in Fig. 2 (b) due to the Heisenberg inter-
action on the x-bond. This matrix element has contri-
butions from the two spin-exchange interactions, Jσyi σ

y
j

and Jσzi σ
z
j , denoted as Ty and Tz, respectively. Note

that the FM and AFM Kitaev interactions are related
to each other by a four-site unitary transformation. The
two Heisenberg interactions acquire a relative “-” sign
under this transformation, namely, σyi σ

y
j → −σ

y
i σ

y
j and

σzi σ
z
j → σzi σ

z
j . It then follows that, if T FM = Ty +Tz for

the FM Kitaev model, we have T AFM = Ty − Tz for the
AFM Kitaev model. Given the similar absolute values of
Ty and Tz, the net hopping amplitudes T FM and T AFM
are dramatically different [see Figs. 6 (a) and (b)]. The
relative sign between Ty and Tz can be determined us-
ing a simple argument. We will denote the initial and
final flux-pair configurations by Φ1 and Φ2, and their re-
spective ground states by |Φ1;ω1〉 and |Φ2;ω2〉. In the
spirit of our approximation scheme, we can estimate the
product of the two matrix elements:

TyTz = J2〈Φ1;ω1|σyi σ
y
j |Φ2;ω2〉〈Φ2;ω2|σzi σzj |Φ1;ω1〉

' J2
∑
f2

〈Φ1;ω1|σyi σ
y
j |Φ2; f2〉〈Φ2; f2|σzi σzj |Φ1;ω1〉

= −J2〈Φ1;ω1|σxi σxj |Φ1;ω1〉

= −J
2

K
εΦ1
ij = 0.5851J2sign(K), (22)

where, in the second step, the ground state pro-
jector |Φ2;ω2〉〈Φ2;ω2| is replaced with the identity∑
f2
|Φ2; f2〉〈Φ2; f2| = I in the gauge sector Φ2 (f2 runs

over all the eigenstates of the pure Kitaev model in the
gauge sector Φ2). We note that this approximation is ba-
sically the same as the one that we are using in our vari-
ational scheme, where we ignore the tunneling of |Φ1;ω1〉
into multi-matter-fermion state |Φ2; f2 6= ω2〉. The sim-
ple outcome is that the above product is proportional to
the bond energy εΦ1

ij on the bond where the Heisenberg

interaction applies in the ground state |Φ1;ω1〉 of the pure
Kitaev model. By following the scheme described in the

previous subsection, we obtain TyTz ' 0.5382J2sign(K),
which is very close to the value obtained in Eq. (22).
Besides providing a sanity check for the approximation
scheme adopted in this work, this simple analysis explains
that Ty and Tz have opposite sign for a FM Kitaev model
and the same sign for the AFM Kitaev model.

Now we consider the Gamma interaction acting on the
x- bond, that also includes two terms: Jσyi σ

z
j and Jσzi σ

y
j .

Both terms contribute to the matrix elements shown in
Fig. 3 (d) or (e), which are denoted as Tyz and Tzy, re-
spectively. Under the same unitary transformation that
relates the FM and AFM Kitaev model, the above two
Gamma terms transform according to: σyi σ

z
j → −σ

y
i σ

z
j

and σzi σ
y
j → σzi σ

y
j . Therefore, Tyz and Tzy have opposite

relative sign for the FM and AFM Kitaev models. Once
again, this relative sign is determined by the sign of the
Kitaev interaction:

TyzTzy '
Γ2

K
εΦ1
ij = −0.5851Γ2sign(K). (23)

Thus, Tyz and Tzy have the same sign for a FM Kitaev
model and opposite sign for an AFM Kitaev model. Ac-
cording to the calculation, TyzTzy ' −0.5102J2sign(K)
which is in a good agreement with the approximated
value given in Eq. (23).

C. Stability analysis

The projection of the full Hamiltonian in Eq. (1) on the
subspace spanned by the states (16) leads to the tight-
binding Hamiltonian:

Hodd = ∆
∑
α,r∈A

χ̃α†r χ̃
α
r

+

 ∑
αβ,δβα

∑
r∈A
T βαχ̃β†r+δβα

χ̃αr + h.c.

 , (24)

where ∆ ' 0.26|K + J | is the energy gap of the flux-
pair excitation of the pure Kitaev model, χ̃α†rj , χ̃

α
rj are

fermionic creation and annihilation operators of a flux
pair state |rj , α〉 ≡ χ̃α†rj (|u0〉⊗|0u0〉) (u0 refers to the

trivial gauge sector as in Eq. (16)) which inserts a flux-
pair and simultaneously polarizes the matter fermion vac-
uum, T β=α = TH and T β 6=α = TΓ, the bond vectors δβα
are summed over the sets: δxx = {−a2,−a1}, δyy =
{a1,a1 − a2}, δzz = {−a1 + a2,a2}, δyz = {a2,−a1},
δxz = {−a1 + a2,a1} and δxy = {a2,a1 − a2}. This
tight-binding Hamiltonian can be diagonalized in mo-
mentum space:

Hodd =
∑
q

X̃†q (∆I3×3 +Mq) X̃q, (25)
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FIG. 7. (a)-(b) Dispersion of a bare flux pair (corresponding to the odd-fermion-parity sector) for the FM (a) and AFM (b)
Kitaev models with four representative perturbations indicated by black dots in panels (c) and (d). (c)-(d) Stability ranges of
the FM (c) and AFM (d) Kitaev spin liquids based on a partial variational subspace restricted to bare flux pairs. The dashed
lines mark the boundary of each Kitaev spin liquid where bare flux pairs become soft.

where I3×3 is the 3×3 unit matrix, X̃q ≡ (X̃x
q , X̃

y
q , X̃

z
q)T

with

χ̃αr =

√
2

N

∑
q

X̃α
q e

iq·r, (26)

and

Mq =

 2TH [cos(q1) + cos(q2)] TΓ[e−iq2 + e−i(q1−q2)] TΓ[ei(q1−q2) + e−iq1 ]
TΓ[eiq2 + ei(q1−q2)] 2TH [cos(q1) + cos(q1 − q2)] TΓ[e−iq2 + eiq1 ]
TΓ[e−i(q1−q2) + eiq1 ] TΓ[eiq2 + e−iq1 ] 2TH [cos(q1 − q2) + cos(q2)]

 . (27)

The resulting tight-binding spectrum of the flux-pair is
shown in Figs. 7 (a) and (b) for different sets of model
parameters (K = ±1, J,Γ = 0), (K = ±1, J = 0,Γ).

As expected, for equal strengths of either J or Γ, the
bandwidth is very different between the FM and AFM
Kitaev models. Interestingly, in the J = 0 limit, the flux
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pair propagates through the Gamma interaction on one of
the three Kagome sublattices lattices shown in Fig. 5 (b).
It is well-known that the spectrum of this tight-binding
problem hosts a completely flat band, which corresponds
to a localized single-particle state that circulates around
the six lattice sites of a hexagon and carries momentum
π. This flat band becomes the lowest energy band for
Γ < 0.

The tight-binding spectrum becomes gapless for a crit-
ical strength of the perturbations, indicating a potential
instability of the Kitaev liquid state. As will see in the
next section, a (bosonic) bound state between a single
flux pair and a matter fermion can become gapless for a
lower strength of the perturbations. While more details
of the instability analysis are presented in the next sec-
tion, here we aim to provide a qualitative understanding
of the stability of the FM or AFM Kitaev spin liquid.
Fig. 7 (c) and (d) show the boundaries in the J−Γ space
where the single flux-pair spectrum becomes gapless. Ac-
cording to this analysis, the AFM Kitaev spin liquid is
more fragile against the inclusion of a Heisenberg term,
while the FM Kitaev spin liquid is more fragile against
the inclusion of a Gamma term. Both results are en-
tirely consistent with numerical results pulished in pre-
vious works46,47. As we will see in Sec. VI, besides the
stability analysis, the flux pair dispersion induced by the
Heisenberg and Gamma terms determines the dispersion
of the continuum of excited states that contribute to the
dynamical spin structure factor.

D. Hybridization with open flux pairs

Finally, we discuss the quantum tunneling between the
closed and open flux pairs shown in Fig. 2 (c). Both per-
turbations, J and Γ, contribute to this tunneling. Given
that the two flux sectors have ground states with oppo-
site fermion parities, the fermion vacuum of the closed
flux sector can tunnel into a continuum of excited states
with odd number of fermions in the open flux sector. In
the pure Kitaev limit, the closed flux pair has higher ex-
citation energy than the open flux pair, implying that
the closed flux pair is immersed in the matter fermion
continuum of the open flux sector. The energy difference
between the two excitations is δ ' 0.03K.

For weak tunneling, |λ(ε ∼ δ)| � δ, the lifetime of
the closed flux pair is τ ∝ 1/[ρ(δ)|λ(δ)|2] ∝ 1/[δ|λ(δ)|2],
where ρ(ε) ∝ ε is the density of states of the matter
fermions around the Dirac point. A stronger tunneling
can eventually push the energy of a closed flux pair be-
low the continuum. Fig. 8 (a) shows the matter fermion
continuum of the open flux pair and the energy level of
the closed flux pair as a function of J for the FM Kitaev
model and for two different values of the momentum of
the flux pair. The tunneling between the two sectors pro-
duces a large renormalization of the energy of the closed
flux pair. In particular, the spectrum of the flux pair be-
comes gapless for a smaller absolute value of the critical

(a)

(b)

FIG. 8. (a) Minimal energy of a closed flux pair for the FM Ki-
taev model in the presence/absence of hybridization with the
open flux pair continuum (green shaded region). (b) Quasi-
particle residue of a closed flux pair hybridized with the open
flux pair continuum.

Heisenberg interaction Jc. For instance, Jc reduces from
0.40|K| to 0.20|K| an for AFM Heisenberg interaction,
and from 2.0|K| to 0.34|K| for a FM Heisenberg interac-
tion. As shown in Fig. 8 (b), the quasi-particle residue of
the closed flux pair remains above 70% before the mode
becomes soft.

IV. MAGNON-LIKE BOUND STATES

A. General formulation

In this section, we aim to describe topologically triv-
ial bound states of flux pairs and matter fermions. The
relevant variational subspace contains all eigenstates of
the pure Kitaev model that have two flux excitations at
neighboring plaquettes and a single matter-fermion exci-
tation. In the notation of Eq. (16), a general state from
this variational subspace can then be written as

|j, γ, n〉 = 2N/2P
{
f (j,γ)†
n χγ†j |u0〉 ⊗ |0(j,γ)〉

}
, (28)
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where j ∈ A, f
(j,γ)
n (labeled by n) are the matter fermions

in the gauge sector bγj |u0〉 specified by the superscript

(j, γ) and u0 refers to the trivial gauge sector. Gener-
ally, the matrix elements of the Heisenberg and Gamma
terms that connect these eigenstates give rise to inde-
pendently propagating flux pairs and matter fermions.
However, due to the interactions generated by such non-
Kitaev terms, these excitations may also form bosonic
(magnon-like) bound states.

Once again, the low-energy dynamics of flux pairs is
governed by an effective low-energy Hamiltonian that re-
sults from projecting H on the subspace spanned by the
basis (28):

Hj,β,m;i,α,n
even = 〈j, β,m|(HK +HH +HΓ)|i, α, n〉.(29)

The Kitaev term is diagonal on this basis,
〈j, β,m|HK |i, α, n〉 = δβαδijδnm(∆ + εn). In con-
trast, the Heisenberg and Gamma interactions
generate off-diagonal elements of Heven, namely a

hopping matrix (T βαij )mn = 〈j, β,m|(HH + HΓ)|i, α, n〉
which is a generalization of the hopping amplitudes

T βαij = 〈j, β|(HH + HΓ)|i, α〉 introduced for a flux pair.
For concreteness, the hopping matrix associated with
the flux-pair hopping processes in Fig. 5 (c,d) is given
by (the lattice site labels is shown in the figures)(

T zzi1,i0
)
mn

= Ju0
〈i0j0〉z [

〈0(i1,z)|f (i1,z)
m icA,i1cB,j0(f (i0,z)

n )†|0(i0,z)〉

+u0
〈i1j0〉x〈0

(i1,z)|f (i1,z)
m (f (i0,z)

n )†|0(i0,z)〉
]
,(30)

(
T yzi1,i0

)
mn

= Γu0
〈i0j0〉z [

〈0i1,y|f (i1,y)
m icA,i1cB,j0(f i0,zn )†|0i0,z〉

−u0
〈i1j0〉x〈0

(i1,y)|f (i1,y)
m (f i0,zn )†|0(i0,z)〉

]
,(31)

(
T yzk,i0

)
mn

= Γu0
〈kj1〉z [

〈0(k,y)|f (k,y)
m icA,i0cB,j1(f (i0,z)

n )†|0(i0,z)〉

−u0
〈i0j1〉x〈0

(k,y)|f (k,y)
m (f (i0,z)

n )†|0(i0,z)〉
]
.(32)

The hopping matrix associated with the other symme-
try related hopping processes can be derived in a similar
way. The translational invariance of above Hamiltonian
Heven implies that the center of mass momentum Q is a
good quantum number. Correspondingly, we introduce
the Fourier transform of the basis |j, γ, n〉 in Eq. (28):

|Q, γ, n〉 ≡
√

2

N

∑
j∈A

eiQ·rj |j, γ, n〉, (33)

where rj refers to the coordinate of lattice site j. For
given center of mass momentumQ, the diagonalization of
Heven produces the eigenvectors

∑
n,γ cQ,p(n, γ)|Q, γ, n〉

with energy eigenvalues Ep(Q), p = 1, 2, ..., 3N/2.

B. Formation of bound states

The spectrum of Heven forms a flat continuum (local-
ized flux pair plus gapless matter fermions) in the pure
Kitaev limit because of the static nature of the fluxes.
However, it becomes dispersive upon addition of the non-
Kitaev terms because the flux pair can propagate coher-
ently through the honeycomb lattice. As we discussed
before, the Heisenberg perturbation leads to a spectrum
that is much more dispersive for the AFM Kitaev model
than for the FM Kitaev model. For the FM case, i.e.,
for the Kitaev liquid state that is more robust against
the perturbation, a discrete level appears below the con-
tinuum when the strength of the Heisenberg interaction
exceeds a critical value J = Jc [see Fig. 9 (a)]. For J < 0,
we obtain Jc = −0.33|K| and the minimum of the bound
state dispersion is located at the Γ point. For J > 0,
the critical Heisenberg exchange is Jc = 0.20|K| and the
minimum of the bound state dispersion is located at the
M point.

We note that extended states have a rather strong fi-
nite size dependence. Fig. 9 (a) shows the finite size
scaling of the spectrum at the Γ point, which is the
wave vector that minimizes the bound state dispersion.
In the continuum limit, the size dependence of the en-
ergy levels follows from the linear dispersion Ep(L) =
Ep(∞) + ApL

−1. By contrast, the energy of the bound
state has negligible dependence on L because the linear
size of the bound state is much smaller than the L val-
ues used in our calculations. The L → ∞ extrapolation
of the finite size results indicates that the binding en-
ergy (gap between the bound state and the continuum)
remains finite in the thermodynamic limit.

The positive and negative signs of the Heisenberg
interaction are related by a four sublattice spin rota-
tion42,67,68 that produces the following transformations:
HH → −HH + 2HK and HK → HK . This unitary oper-
ation then establishes a correspondence between points
of the quantum phase diagram with exactly the same
energy spectrum. In terms of the dimensionless ratio
x = J/|K|69, this transformation maps 1/2 > x+ > 0 to
x− < 0,

x− = −x+/(1− 2x+). (34)

This property of the exact solution of the problem pro-
vides a quantitative test for our approximation scheme.
In other words, the instability that we are finding for pos-
itive x at x+ = 0.20 must have its negative x counterpart
at x− = −0.3333. This value agrees very well with the
result x− = −0.3312 of our approximation scheme.

The Gamma term also makes the continuum spectrum
dispersive and it induces a bound state between the flux
pair and a matter fermion. However, in this case the
bound state only appears for the AFM Kitaev model be-
cause the FM model is much more fragile against the
Gamma term (the flux-pair gap closes before the bound
state is formed). There are two interesting features as-
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FIG. 9. (a)-(d) Two-body energy spectrum of a flux pair and a matter fermion (corresponding to the even-fermion-parity
sector) for the FM (a),(c) and AFM (b),(d) Kitaev models with four representative perturbations indicated by black dots in
panels (e) and (f). The right panels of (a)-(d) show the finite size scaling of the spectrum for the wave vector that minimizes
the excitation energy (the maximum linear size of the finite lattices is 52× 52 unit cells). (e)-(f) Stability ranges of the FM (e)
and AFM (f) Kitaev spin liquids. The dashed lines indicate phase boundaries where bare flux pairs become gapless [see also
Figs. 7 (c) and (d)], while the solid lines denote phase boundaries induced by a softening of a magnon-like bound state between
a flux pair and a matter fermion. The color of each line segment shows the center-of-mass momentum Q of the bound state.

sociated with the bound state dispersion. First, in the
absence of Heisenberg interaction, the spectra are iden-
tical for the Γ and the K points of the Brillouin zone
because the dual Kagome lattice is subdivided into three
disconnected Kagome sublattices [see Fig. 5 (a)]. Con-
sequently, the bound state dispersion has global minima
at both momentum points for positive Gamma interac-
tion. This degeneracy is lifted by the Heisenberg term:
the Γ (K) point has a lower energy for a small positive
(negative) J . As the bound state becomes soft for a par-
ticular wave vector Q, the system develops a divergent
magnetic susceptibility, χ(Q, ω), at ω = ωQ → 0. Con-
sequently, the vertical line J = 0 can be regarded as a

phase boundary between Γ and K magnetic orderings.

Secondly, for negative Gamma interaction, multiple
bands of bound states are formed and the lowest energy
band has a quasi-flat dispersion. This is a direct conse-
quence of the flat lowest energy band of a single-flux pair
for the AFM Kitaev model with Γ < 0 [see Fig. 7 (b)].
For J < 0.0145|K|, the bound state becomes soft at six
incommensurate wave-vectors related by the C6 symme-
try of H. These wave vectors are located on the paths
that connect the M points of the Brillouin zone with the
zone center or Γ point. For instance, one of these wave
vectors is Q = (0, 4πq/

√
3a) with 0 < q < 0.35. The six

wave-vectors converge at the Γ point for J > 0.0145|K|.
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In summary, by contrast to the odd parity sector, the
even parity sector can include bosonic modes if the spe-
cific perturbation induces a bound state of two elemen-
tary fermionic particles. The softening of one of these
bosonic modes indicates an instability towards magnetic
ordering. The corresponding stability boundaries are
shown in Fig. 9 (e) and (f). In the next section we ana-
lyze the type of magnetic ordering that has dominant di-
vergent susceptibility on each point of these boundaries.
We stress that the actual phase transition does not need
to be continuous. Correspondingly, the area enclosed by
the stability boundaries is an upper bound for the area
occupied by the Kitaev liquid phase. It is important to
note that the hybridization with the open flux pair has
been ignored when considering the even parity sector. As
we have shown for the odd sector, this hybridization re-
duces the energy of an individual closed flux pair and,
consequently, the upper bound for the area occupied by
the Kitaev liquid phase. To account for this effect in
the even parity sector, one must enlarge the variational
space by including states with an open flux pair and two
matter fermions.

V. MAGNETIC ORDER

The magnetic ordering with dominant susceptibility
can be obtained by computing the matrix element of the
spin operator between the overall ground state |Φ0; f0〉 ≡
2N/2P{|u0〉⊗|0u0〉} of the pure Kitaev model and the
bound state |BQ〉 with center of mass momentum Q that
becomes soft,

Cµα,r = 〈Φ0; f0|Ŝµα,r|BQ〉, (35)

where Φ0 refers to the flux-free sector represented by the
gauge field configuration u0, α = A,B and r denotes
the position of each unit cell of the honeycomb lattice.
Throughout this work, the position of the unit cells is
labeled by the lattice site on the A sublattice. The quan-
tity

Ô =
∑
µ,α,r

Re[Cµα,r]Ŝµα,r, (36)

is the corresponding order parameter. We note that Cµα,r
is defined up to a U(1) phase (relative phase between the
states with n and n+ 1 bound states), which is replaced
by a Z2 freedom (H has only discrete symmetries) upon
including processes that create a pair of bound states.70

The consequent local magnetic moment at each lattice
site is given by

Mµ
α,r ∝ Re[Cµα,r], (37)

The spin components µ = x, y, z refer to the directions
parallel to the cubic axes of the underlying ligand octahe-
dra of O2− ions that mediate the Kitaev, Heisenberg and
Gamma interactions in most realizations of this model.

In this reference frame, the honeycomb layer is perpen-
dicular to the [111] axis.

As discussed in the previous section, the bound state
|BQ〉 is obtained as the eigenstate of the variational
Hamiltonian Heven at the wave vector Q, which is for-
mally written as

|BQ〉 =
∑
n,µ

cQ(n, µ)|Q, µ, n〉. (38)

The degeneracy ν of the lowest energy bound state de-
pends on the perturbations. For ν > 1, we should in
principle evaluate the matrix element (35) for each de-
generate bound state. However, this is not necessary
because the magnetic orderings associated with different
matrix elements are related by symmetry operations. In
principle, the boson can condense in a linear combina-
tion of single-bound state wave functions |BQ〉 with dif-
ferent symmetry related wave-vectors Q (multi-Q mag-
netic ordering). For simplicity, we will assume that the
condensation occurs at a single-bound state with well de-
fined ordering wave vector Q (single-Q magnetic order-
ing). However, we should keep in mind that in these cases
the actual linear combination of single-bound state wave
functions is determined by interaction terms between the
bound states, whose derivation is beyond the scope of the
present work.

To determine the magnetic moments explicitly, we
computed the two matrix elements on the A and B sub-
lattices:

CµA,r =
2√
N/2

e−iQ·rC̃µA,Q, (39)

CµB,r =
2√
N/2

e−iQ·rµC̃µB,Q, (40)

where rµ ∈ A is connected to the B site of the unit cell
at r via the µ-th bond, and

C̃µA,Q = i
∑
n

cQ(n, µ)〈0r,µ|f (r,µ)
n cA,r|0u0〉, (41)

C̃µB,Q =
∑
n

cQ(n, µ)〈0rµ,µ|f (rµ,µ)
n cB,r|0u0〉, (42)

According to Eq. (37), the magnetic moment at each lat-
tice site is explicitly given by

Mµ
α,r ∝ cos(φ−Q · r)nµα,1 − sin(φ−Q · r)nµα,2, (43)

with

nµα,1 = Re[C̃µα,Q], nµα,2 = Im[C̃µα,Q]. (44)

In other words, the local magnetic moments on sub-
lattice α = A,B are spanned by the two vectors nα,1
and nα,2 (a bold variable n ≡ (nx, ny, nz) refers to
a three-component vector). The U(1) degree of free-

dom, C̃µα,Q → C̃µα,Qe
iφ, corresponds to a uniform rota-

tion of the local moments on the 2D plane spanned by
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{nα,1,nα,2}. The U(1) phase does not affect the nature
of the magnetic orderings that we discuss below, except
for the 120◦ order. Correspondingly, the analysis of the
φ-dependence will be restricted to that case.

A. Ferromagnetic Kitaev model

1. Ferromagnetic order (J < 0)

For the FM Kitaev model, a strong enough FM Heisen-
berg term (J < 0) gives rise to three degenerate bound
states at the Γ point. The bond orientation γ = x, y, z
of the flux pair is preserved to first-order in the Heisen-
berg interaction. The resulting three degenerate bound
states can then be labeled by the quantum number |γ〉.
The condensation of one of the three bound states gives
rise to a collinear magnetic ordering with the moments
oriented along γ axis, namely Mµ

r = Mrδµγ .

The Gamma term splits the three-fold degeneracy into
a singlet and a doublet. For Γ < 0, the lowest energy
bound state is the singlet

|s〉 = (|x〉+|y〉+|z〉)/
√

3, (45)

that belongs to the trivial representation of the C3 sym-
metry group. Consequently, C̃xα,0 = C̃yα,0 = C̃zα,0 ≡
C̃α, α = A,B. Note that the ground state and the
bound state are both invariant up to a phase factor un-
der the inversion symmetry, cA,r → cB,r, cB,r → −cA,r:

|0u0〉 →|0u0〉, |b〉 ≡
∑
nµ cQ(n, µ)f

(r,µ)†
n |0r,µ〉 → i|b〉, im-

plying that C̃A = C̃B . According to Eq. (37), this indi-
cates an instability towards ferromagnetic ordering along
the [111] direction [see Fig. 10 (a)].

For Γ > 0, the lowest energy bound states are spanned
by the doublet

|d1〉 =
1√
3

(|x〉+ ei2π/3|y〉+ e−i2π/3|z〉),

|d2〉 =
1√
3

(|x〉+ e−i2π/3|y〉+ ei2π/3|z〉)/
√

3. (46)

The bosons can then condense in any linear combination
of these two states. If we assume that the condensation
takes place in |d1〉 or |d2〉, we obtain nA2,nB2 = 0 and
nA1 = nB1⊥[111]. This result implies an instability to-
wards ferromagnetic ordering in the plane perpendicular
to the [111] direction [see Fig. 10 (b)]. Different in-plane
moment directions correspond to condensations in differ-
ent linear combinations of |d1〉 and |d2〉. We note that
this magnetic order coincides with the one that is ob-
tained in the classical limit of the model44. The same is
true for the remaining magnetic orders that we discussed
below.

2. Stripy order (J > 0)

For the FM Kitaev model, a strong enough AFM
Heisenberg term (J > 0) gives rise to three degenerate
bound states at the three M points. For concreteness,
we will assume that the bound state condenses at the M
point Q = (2π/

√
3a, 0) (single-Q ordering). The mag-

netic orders associated with condensations at the other
two M points are obtained by applying a C3 rotation.
In absence of the Γ-term, the condensation gives rise
to a collinear magnetic order along the [001] direction.
As shown in Fig. 10 (c), spins that are connected by
the z-bonds are oriented in the same direction, forming
the so-called stripy magnetic order44–46. As shown in
Fig. 10 (c), a finite Gamma term induces a global rota-
tion of the magnetic moments along the b-axis.

B. Antiferromagnetic Kitaev model

1. Antiferromagnetic order (Γ > 0, J > 0)

We will consider now the instabilities of the AFM Ki-
taev model. As shown in Fig. 9 (d), for Γ > 0 and J = 0,
there are three degenerate bound states. One of them is
located at the Γ point, while the other two are located
at the two K points. This degeneracy is a direct con-
sequence of the restricted motion of the bound state to
one of the three sublattices shown in Fig. 5 (b). An arbi-
trarily small Heisenberg interaction lifts the degeneracy
between the Γ and ±K points. The Γ state has lower
(higher) energy J > 0 (J < 0). In this subsection we
consider the case J > 0, while the case J < 0 is left for
the next subsection.

The bound state at the Γ point picks up a phase −i un-
der inversion. Together with the C3 symmetry of H, this
property dictates that C̃xα,0 = C̃yα,0 = C̃zα,0 ≡ C̃α, α =

A,B and C̃A = −C̃B . According to Eq. (37), this indi-
cates an instability towards antiferromagnetic ordering
along the [111] direction. The resulting antiferromag-
netic order is shown in Fig. 10 (d)

2. 120◦ magnetic order (Γ > 0, J < 0)

As explained in the last subsection, the bound state
dispersion induced by a positive Gamma interaction has
a global minimum at the ±K points for arbitrarily small
and negative FM Heisenberg interaction (J < 0). The
magnetic order produced by the condensation in one of
the two K points corresponds to a six-sublattice struc-
ture. For instance, there are three nonequivalent mag-
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FIG. 10. Magnetic order deduced from the condensation of the lowest-energy bound state for different model parameters.

netic moments on the A sublattice,

MA,0 ∝ nA1 cos(φ)− nA2 sin(φ),

MA,a1
∝ nA1 cos(φ− 4π

3
)− nA2 sin(φ− 4π

3
),

MA,2a1
∝ nA1 cos(φ− 2π

3
)− nA2 sin(φ− 2π

3
),

and three on the B sublattice,

MB,0 ∝ ñB1 cos(φ)− ñB2 sin(φ),

MB,a1
∝ ñB1 cos(φ− 4π

3
)− ñB2 sin(φ− 4π

3
),

MB,2a1 ∝ ñB1 cos(φ− 2π

3
)− ñB2 sin(φ− 2π

3
),

where

ñxB1 = −1

2
nxB1 +

√
3

2
nxB2, ñxB2 = −

√
3

2
nxB1 −

1

2
nxB2,

ñyB1 = −1

2
nyB1 −

√
3

2
nyB2, ñyB2 =

√
3

2
nyB1 −

1

2
nyB2,

ñzB1 = nzB1, ñzB2 = nzB2.

Here φ is the angle associated with the above-mentioned
U(1) freedom.

The calculation of the matrix element (35) leads to the
following constraints: |nA1| =|nA2| =|ñB1| =|ñB2| '
0.66 and nA1⊥nA2, ñB1⊥ñB2. These constraints imply
that the magnitude of the magnetic moments is uniform
over the whole lattice. As a result, the magnetic moments

form a 120◦ structure on each A and B sublattice. An-
other constraint that results from the calculation is that
ñB1 = −nA1 and ñB2 = nA2. This constraint locks the
relative vector chirality of the two different sublattices:
for each hexagonal plaquette of the honeycomb lattice,
the vector spin chirality along the up-triangles on the
A sublattice is the same as the vector chirality along the
down-triangles on the B sublattice [see Fig. 10 (e)]. There
is still a remaining degree of freedom in the magnetic
pattern because a change of φ corresponds to a uniform
rotation of the magnetic moments on the A and B sub-
lattices in opposite directions. This freedom, that also
exists in the classical limit of the model44, is removed by
the processes that create and annihilate pairs of bound
states (vacuum fluctuations) with opposite wave vectors
K and −K. As it is shown in Fig. 10 (e) for a fixed
value of φ, the resulting coplanar order lies in the [111]
plane and it agrees with the result that is obtained for
the classical limit of the model44.

3. Spiral magnetic and antiferromagnetic order (Γ < 0)

As we found in Sec. IV B, for Γ < 0 and J ≤ 0.0145|K|,
the bound state becomes gapless at six incommensurate
wave-vectors related by C6 symmetry [see Fig. 9 (f)].
A (single-Q) condensation in one of these wave-vectors,

such as Q = (0, 4πq/
√

3a) with 0 < q < 0.35, leads to
a coplanar magnetic order that lies in the plane perpen-
dicular to the [1̄10] axis because nA1×nA2,nB1×nB2 ‖
[1̄10] [see Fig. 10 (f)]. By choosing a proper phase of the
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TABLE I. Phase boundaries of the FM Kitaev spin liquid in
the presence of a Heisenberg interaction (Γ = 0).

Jc/|K| this work ED46 DMRG47

J < 0 -0.33 -0.1648 -0.1167

J > 0 0.20 0.1231 0.0938

bound state wave-function such that nA1 is orthogonal to
nA2, the two vectors nA1 and nA2 have different lengths.
The same holds true for the B sublattice. This property
leads to a spin density wave, i.e., to a modulation of the
magnitude of the magnetic moments.

The six incommensurate wave-vectors converge to the
Γ point upon increasing J , giving rise to a doublet of
bound states. Meanwhile, the magnetic moments rotate
about the [1̄10] axis and form an AFM structure parallel
to the [112̄] axis. Given the double degeneracy of the
lowest energy bound state, the AFM moments can point
in any direction of the [111] plane. We note that positive
and negative signs of the Gamma interaction added to
the AFM Kitaev model both lead to AFM order. How-
ever, the C3 symmetry about the [111] axis is preserved
in the former case, while it is broken in the latter case.
According to numerical simulations44,45, the two AFM
orders are adjacent to each other on the J − Γ phase di-
agram, in agreement with Fig. 9 (f) where J > 0. Our
analysis indicates that there should be a magnetic mo-
ment reorientation phase transition between two types of
AFM order.

C. Comparison with numerical results

We close this section with a comparison against the ex-
isting numerical simulations. The ordering wave-vectors
that we extracted from the analysis presented in this sec-
tion are consistent with exact-diagonalization (ED) stud-
ies of a 24-site cluster44–46. The orientation of the mag-
netic moments was determined from studies of the classi-
cal limit of the model44 and it also agrees with our results.
Tables I and II include a comparion between the criti-
cal values of the pertrubations at which the two fermion
bound state becomes a gapless excitation and the phase
boundaries obtained from ED studies44–46 and density
matrix renormalization group (DMRG)47. In all cases,
the present analysis predicts a larger stability range of
the Kitaev liquid because of two reasons. The first reason
is that in our simple analysis we have neglected processes,
such as the hybridization with the open flux pair or the
creation/annihilation of two flux pairs [see Fig. 2 (a)],
that produce a significant reduction in the energy of the
flux pair (Fig. 8). The second reason is that these phase
transitions are expected to be of first order, implying that
the transition occurs before the bound state excitation
becomes gapless.

In the previous section, we have also shown that the
FM and AFM Kitaev spin liquids have very different sta-

TABLE II. Phase boundaries of the AFM Kitaev spin liquid
in the presence of a Gamma interaction (J = 0).

Γc/|K| this work ED44,45

Γ < 0 -0.4 -0.14

Γ > 0 0.27 0.095

bility against the Heisenberg and the Gamma terms con-
sidered in this work. This asymmetry arises from the
constructive/destructive interference between processes
that contribute to the effective hopping of flux pairs and
it is also verified by the numerical studies of this model.

Finally, we note that some magnetic orders reported
in the ED study44 are not explained by the current ap-
proach because of the absence of preformed bound states
in the excitation spectrum. In this case, the excitations
that become soft are the fractional (fermionic) modes.
This result is consistent with a recent DMRG study49,
where it is found that an AFM Gamma interaction in-
duces a transition from the FM Kitaev spin liquid to a
different type of spin liquid. The transition is character-
ized by a discontinuous change in the average flux 〈Wp〉
per plaquette.

VI. DYNAMICAL SPIN STRUCTURE FACTOR

The above-mentioned two-fermion bound state should
appear as sharp mode in the dynamical spin structure
factor that is measured with inelastic neutron scatter-
ing. As explained above, the emergence of these coherent
quasi-particle modes signals the proximity to a quantum
phase transition into a magnetically ordered state. This
phenomenon can be exploited to reveal the coherent na-
ture of the continuum of magnetic excitations produced
by the unbounded flux pair and matter fermion modes.

The diagonal components of the dynamical structure
factor are

Sµµ(q, ω) = 2π
∑
n

δ(ω − En + EG)|〈G|Sµq |n〉|2, (47)

where |n〉 and |G〉 denote the exact eigenstates and the
ground state of H with eigenvalues En and EG, respec-
tively, and µ = x, y, z. Sµµ(q, ω) can be exactly com-
puted at T = 0 for the pure Kitaev model. In this case,
the ground state has zero flux and the excited states con-
tributing to the matrix elements in Eq. (47) have only one
flux pair. As we argued in previous sections, the main
contribution to these matrix elements arises from states
containing only one matter fermion (Bogoliubov quasi-
particle in the two-flux sector). Our approach should
then provide an accurate estimate of Sµµ(q, ω) for small
enough values of J/K and Γ/K.

The excited eigenstates that contribute to Sµµ(q, ω)
are approximated by the eigenstates of the effective
Hamiltonian Heven [see Eq. (29] that acts on the reduced
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FIG. 11. (Color online) Dynamical structure factor S(q, ω) ≡
∑
µ S

µµ(q, ω) for different perturbations of the FM Kitaev model

(a-c) and AFM Kitaev model (d-f). The black dashed line indicates the lower edge of the continuum. The calculation has been
done on a finite lattice of 71× 71 unit cells and the artificial broadening of the delta functions in Eq. (47) is η = 0.08|K|.

even-parity sector. Fig. 11 (a) and (d) show the result-
ing S(q, ω) ≡

∑
µ S

µµ(q, ω) for the pure FM and AFM

Kitaev model. Panels (b) and (c) show the result for two
representative sets of perturbations around the FM Ki-
taev model. Similarly, panels (e) and (f) show the result

for two representative sets of perturbations around the
AFM Kitaev model.

Since the mass of the flux pair reduces to a finite value
for J 6= 0 or Γ 6= 0, the spectral weight distribution
acquires a finite dispersion in presence of these perturba-
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tions. The magnon-like bound state that was discussed
in the previous section gives rise to sharp and dispersive
magnetic modes. These modes acquire a finite lifetime
(the line becomes broad) upon entering in the continuum
because they can decay into two independent bond and
matter Majorana fermions. The sharp features below the
continuum provide unambiguous evidence of a coherent
quantum spin liquid (continuum features can also origi-
nate from disorder and/or thermal fluctuations in classi-
cal phases with no long-range quantum entanglement).

VII. SUMMARY AND OUTLOOK

In this paper, we have studied the low-energy excita-
tion spectrum of the Kitaev-Heisenberg-Gamma model
through a novel variational approach that is based on the
exact fractionalized excitations of the pure Kitaev hon-
eycomb model. We have demonstrated that this new ap-
proach reveals the microscopic mechanisms behind many
important aspects of the quantum phase diagram from
previous numerical works.42–47

First of all, our results provide a simple explanation for
the asymmetric stability of the Kitaev spin liquid phases
around the FM and AFM Kitaev limits. In our picture,
the phase transitions out of the Kitaev spin liquid phases
are related to softening of flux-pair excitations, which are
static for the pure Kitaev model but become dispersive in
presence of Heisenberg and/or Gamma interactions. For
J 6= 0 and Γ = 0, the hopping amplitude of such a flux
pair is large (small) for the AFM (FM) Kitaev spin liquid
due to a constructive (destructive) interference between
two contributions arising from different components of
the Heisenberg interaction. Since a larger hopping am-
plitude means a stronger dispersion for the same per-
turbation, this simple result naturally explains why the
AFM Kitaev spin liquid is more fragile against a Heisen-
berg perturbation than the FM Kitaev spin liquid. Con-
versely, for Γ 6= 0 and J = 0, the hopping amplitude is
small (large) for the AFM (FM) Kitaev spin liquid due to
an analogous interference effect, implying that the AFM
Kitaev spin liquid is more robust against a Gamma per-
turbation than the FM Kitaev spin liquid.

Importantly, our variational approach can be straight-
forwardly generalized to other perturbations on top of
the Kitaev model, including a Zeeman term represent-
ing an external magnetic field.71–73 By considering the
hopping amplitude of a flux pair, the same kind of inter-
ference effect then explains why the AFM Kitaev spin liq-
uid is more robust (fragile) against a uniform (staggered)
magnetic field than the FM Kitaev spin liquid.73 Further
perturbations of interest include different forms of dis-
order, such as bond disorder,74 random vacancies,75,76

and topological defects.77 In particular, our varational

approach may shed light on the localization of flux exci-
tations via the Anderson mechanism or the flux-binding
effect induced by spin vacancies.75,78,79

Moreover, our results provide valuable insight about
the magnetically ordered phases beyond the transitions
out of the two Kitaev spin liquid phases. In particular, for
each phase transition induced by the kind of perturbation
(Heisenberg or Gamma) against which the given Kitaev
spin liquid (FM or AFM) is more robust, we find a soften-
ing of a bosonic magnon-like excitation at a wave vector
that coincides with the ordering wave vector of the result-
ing magnetically ordered phase. Since this bosonic exci-
tation is topologically trivial (i.e., it does not carry any
gauge charge), its condensation at a continuous transition
would lead to a magnetically ordered quantum spin liq-
uid phase. To reach a conventional magnetically ordered
phase, one would then require two subsequent phase tran-
sitions for generating the magnetic order and destroying
the quantum spin liquid, respectively. However, accord-
ing to numerical studies, these two transitions are pre-
empted by a single discontinuous (first-order) transition
which immediately destroys the quantum spin liquid in
favor of a conventional magnetically ordered phase. It is
then an intriguing question whether including additional
perturbations could make this phase transition continu-
ous, thereby stabilizing a novel quantum phase in which
the fractionalized excitations of the Kitaev spin liquid
coexist with long-range magnetic order.

Finally, our work predicts that the bosonic magnon-
like excitation, which forms further away from the pure
Kitaev limit, manifests as a sharp mode in the dynam-
ical spin structure factor. This exotic bound state of a
flux pair and a Majorana fermion can then be detected
in inelastic neutron scattering and can serve as a direct
signature of the Kitaev spin liquid phase. While we have
focused on the dynamical spin structure factor, straight-
forward extensions of our approach can also be used to
compute other dynamical responses. In turn, computing
such dynamical responses away from the exactly solvable
limit is crucial for characterizing real candidate materials
both for the actual quantum spin liquid phase as well as
the “proximate” magnetically ordered phases.
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U. K. Rößler, L. Hozoi, I. Rousochatzakis, and J. van den
Brink, Nature Communications 7, 10273 (2016).

36 H.-S. Kim and H.-Y. Kee, Phys. Rev. B 93, 155143 (2016).
37 S. M. Winter, Y. Li, H. O. Jeschke, and R. Valent́ı, Phys.

Rev. B 93, 214431 (2016).
38 J. c. v. Chaloupka and G. Khaliullin, Phys. Rev. B 94,

064435 (2016).
39 S. M. Winter, K. Riedl, P. A. Maksimov, A. L. Chernyshev,

A. Honecker, and R. Valent́ı, Nature Communications 8,
1152 (2017).

40 S. M. Winter, A. A. Tsirlin, M. Daghofer, J. van den
Brink, Y. Singh, P. Gegenwart, and R. Valent́ı, Journal of
Physics: Condensed Matter 29, 493002 (2017).

41 C. Eichstaedt, Y. Zhang, P. Laurell, S. Okamoto, A. G.
Eguiluz, and T. Berlijn, Phys. Rev. B 100, 075110 (2019).

42 J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev.
Lett. 105, 027204 (2010).

43 J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev.
Lett. 110, 097204 (2013).

44 J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Phys. Rev. Lett.
112, 077204 (2014).

45 J. G. Rau and H.-Y. Kee, arXiv preprint arXiv:1408.4811
(2014).
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