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We show that nitrogen-vacancy (NV) centers in diamond can produce a novel quantum hyperbolic
metamaterial. We demonstrate that a hyperbolic dispersion relation in diamond with NV centers
can be engineered and dynamically tuned by applying a magnetic field at 20 K. This quantum hyper-
bolic metamaterial with a tunable window for the negative refraction allows for the construction of a
superlens beyond the diffraction limit. In addition to subwavelength imaging, this NV-metamaterial
can be used in spontaneous emission enhancement, heat transport and acoustics, analogue cosmol-
ogy, and lifetime engineering. Therefore, our proposal interlinks the two hotspot fields, i.e., NV
centers and metamaterials.

I. INTRODUCTION

Metamaterials with negative refraction have attracted
broad interest [1–4]. Metamaterials can be used, e.g., for
electromagnetic cloaking [5], perfect lens beyond diffrac-
tion limit [2], fingerprint identification in forensic science
[6], simulating condensate matter phenomena [7] and re-
versed Doppler effect [8]. In order to realize negative re-
fraction, sophisticated composite architectures [3, 9] and
topologies [10–14] are fabricated to achieve simultane-
ously negative permittivity and permeability. However,
hyperbolic (or indefinite) metamaterials were proposed
[15–18] to overcome the difficulty of inducing a magnetic
transition at the same frequency as the electric response.
The magnetic response of double-negative metamateri-
als is so weak that it effectively shortens the frequency
window of the negative refraction [10]. In addition to
subwavelength imaging [19, 20] and focusing [20], hy-
perbolic metamaterials have been used to realize sponta-
neous emission enhancement [21], applied in heat trans-
port [22] and acoustics [23], analogue cosmology [24], and
lifetime engineering [25, 26].

On the other hand, quantum devices based on
nitrogen-vacancy (NV) centers in diamond are under in-
tense investigation [27, 28] as they manifest some novel
properties and can be explored for many interesting ap-
plications [29, 30]. For example, NV centers in diamond
have been proposed to realize a laser [31] and maser [32]
at room temperature. Highly-sensitive solid-state gyro-
scopes [33] based on ensembles of NV centers in diamond
can be realized by dynamical decoupling, to suppress
the dipolar relaxation. Shortcuts to adiabaticity have
been successfully performed in NV centers of diamond
to initialize and transfer coherent superpositions [34, 35].
The high sensitivity to external signals makes single NV

centers promising for quantum sensing of various physi-
cal parameters, such as electric field [36, 37], magnetic
field [38–41], single electron and nuclear spin [42–50],
and temperature [51–53]. Numerous hybrid quantum
devices, composed of NV centers and other quantum
systems, e.g. superconducting circuits and carbon nan-
otubes, have been proposed to realize demanding tasks
[54–59].

Inspired by the rapid progress in both fields, here we
propose to realize a hyperbolic metamaterial using NV
centers in diamond. We consider an electric hyperbolic
metamaterial, in which two principal components of its
electric permittivity possess different signs. When an op-
tical electromagnetic field around 637 nm induces the
transition 3A2 ⇋

3E, the NV centers in diamond will
negatively respond to the electric field in one direction.
This process effectively modifies the relative permittivity
of the diamond with NV centers and thus one principal
component has a different sign. When a transverse mag-
netic (TH) mode is incident on this diamond with the
principal axis of the negative component perpendicular
to the interface, the transmitted light will be negatively
refracted, as both the incident and transmitted light lie at
the same side of the normal to the interface. Because this
optical transition is intrinsically quantum and can only

be described by quantum mechanics, we call it quantum

metamaterial.

Note that it is difficult to fabricate classical metama-
terials working in the optical-frequency domain, because
the sizes of the elements therein are sub-micron. How-
ever, the NV centers in diamond can be easily fabricated
in several ways [29], e.g., as an in-grown product of the
chemical vapour deposition diamond synthesis process,
as a product of radiation damage and annealing, as well
as ion implantation and annealing in bulk and nanocrys-
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talline diamond. The NV-metamaterials proposed here
solve this problem.

This paper is organized as follows: In the next sec-
tion, we briefly introduce the NV center in diamond,
with the selection rules for optical transitions summa-
rized in Appendix A, and the relative permittivity cal-
culated by the linear-response theory, with details illus-
trated in Appendix B. We further prove in Appendix C
that the bandwidth of the negative refraction is not sig-
nificantly influenced if the Lorentz local-field theory is
applied. Then, we show that we can switch between the
negative and normal refraction by tuning the magnetic
field in Sec. III. In Sec. IV, we elaborate how the nega-
tive refraction occurs. In Sec. V, we discuss experimen-
tal feasibility of our proposal. Finally, the main results
are summarized in Sec. VI. In Appendix D, we prove
that non-Hermitian Hamiltonian approach is equivalent
to the quantum master equation approach and has been
widely used to describe the damping and dephasing in
open quantum systems.

II. MODEL

As schematically illustrated in Fig. 1(a), an NV center
is composed of a vacancy, e.g. site O, and a substitutional
nitrogen atom at one of its four possible neighboring sites,
e.g. site A, B, C and D. The electronic ground state is a
spin-triplet state with Hamiltonian [29]

Hgs = DgsS
2
z + µBg

‖
gsBzSz + µBg

⊥
gs(BxSx +BySy)

+d‖gsδzS
2
z + d⊥gsδx

(

S2
y − S2

x

)

−d⊥gsδy (SxSy + SySx) , (1)

where Dgs = 2.88 GHz is the zero-field splitting of the

electronic ground state, µB is the Bohr magneton, g
‖
gs ≃

g⊥gs = ggs ≃ 2 are respectively the components of the g-

factor of the electronic ground state, ~B = Bxêx+Byêy+
Bz êz is the magnetic field, Sα (α = x, y, z) are the spin-1

operators for the electron spin, ~δ = δxêx + δy êy + δz êz

is the strain field, d⊥gs = 17 Hz cm/V and d
‖
gs = 0.35 Hz

cm/V [60] are the components of the ground-state electric
dipole moment.

At low temperatures, the Hamiltonian of the electronic
excited state is given as [29]

Hes = D‖
esS

2
z − λ‖

esσy ⊗ Sz

+D⊥
es[σy ⊗ (S2

y − S2
x)− σx ⊗ (SySx + SxSy)]

+λ⊥
es[σz ⊗ (SxSz + SzSx)− σx ⊗ (SySz + SzSy)]

+µB(l
‖
esσy + g‖esSz)Bz + µBg

⊥
es(SxBx + SyBy)

+d‖esδzσy + d⊥esδxσz − d⊥esδyσx, (2)

where σx, σy and σz are the Pauli matrices. The val-
ues of the fine structure parameters are obtained from

the direct observation as [61] D
‖
es = 1.42 GHz, D⊥

es =

0.76 GHz, λ⊥
es = 5.3 GHz and λ

‖
es = 0.14 GHz. The
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Figure 1. (a) Four possible orientations of NV centers in dia-
mond [29, 68]: ~rOA = (−1,−1,−1)/

√
3, ~rOB = (1, 1,−1)/

√
3,

~rOC = (1,−1, 1)/
√
3, ~rOD = (−1, 1, 1)/

√
3. d = 154 pm is

the length of carbon bond. The angle between any pair of
the above four orientations is identically α = 109◦28′. The
magnetic field ~B is along −~rOA. (b) Negative refraction for
hyperbolic dispersion with εx < 0 and εz > 0. The TH mode
is incident on the yz interface with electric field ~Ei, wavevec-

tor ~ki, and Poynting vector ~Si. The angle between the normal
(x-axis) and the incident field is θ. It is reflected with electric

field ~Er, wavevector ~kr, and Poynting vector ~Sr. The Poynt-
ing and wavevector of the transmitted wave are, respectively,
~St and ~kt.

magnetic circular dichroism is given as l
‖
es = 0.1 [62, 63].

The components of the excited-state g-factor tensor are

g
‖
es = g⊥es = 2.01 [64, 65]. The components of the electric

dipole moment are d
‖
es, d⊥es ≈ 6 kHz m/V [66, 67]. Be-

cause d
‖
es and d⊥es are larger than d

‖
gs and d⊥gs by 5 orders

of magnitude, the spectra of the excited-states are more
sensitive to the strain field.

As illustrated in Fig. 1(a), there are four possible orien-
tations for the NV centers in diamond [27–30, 68]. Since
both Hamiltonians of the ground and excited states are
obviously dependent on the relative orientation of the
symmetry axis with respect to the magnetic field, the
energy spectra and thus the electromagnetic response of
the NV centers to the applied fields are different for the
four possible orientations.

According to Appendix A, the non-zero transition ma-
trix elements of the position vector ~r = xêx + yêy + zêz

are in the following transitions |Φc
A2;S,ms

〉 α′

⇋ |Φc
E,α;S,ms

〉
[69], where α, α′ = x, y and α 6= α′. For the ground
states, they can be formally diagonalized as |gi〉 =
∑1

j=−1 C
g
ij |Φc

A2;1,j
〉 (i = 1, 2, 3) with eigenenergy Eg

i .
And for the excited states, they can be formally diag-
onalized as |ef 〉 =

∑

α=x,y

∑1
j=−1 C

e
fαj |Φc

E,α;1,j〉 (f =

1, 2, · · · , 6) with eigenenergy Ee
f . Notice that the degen-

eracy of the electronic excited states is lifted for different
α’s at low temperatures. According to Refs. [70, 71], the

constitutive relation reads ~D = ε0
←→εr ~E = εDε0 ~E + ~P ,

where ~D is the electric displacement, ε0 is the electric
permittivity of vacuum, ←→εr and εD are, respectively, the
relative permittivity tensor of diamond with and without
NV centers. The polarization density can be calculated
using the linear-response theory [10, 72], cf. Appendix B,
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as

~P = − 1

~v0
Re





′
∑

j,i,f

ρi

~d
(j)
if

(

~d
(j)
fi · ~E

)

ω −∆
(j)
fi + iγ



 , (3)

where ~ is the Planck constant, n0 = v−1
0 is the density

of the NV centers, ρi is the probability of the initial state
|gi〉 at thermal equilibrium, i.e., ρ(0) =

∑

i ρi|gi〉〈gi|, ω is

the frequency of the electric field ~E = ~E0 cos(ωt), ∆
(j)
fi is

the transition frequency of the jth NV center between the
initial state |gi〉 and the final state |ef 〉, γ−1 is the lifetime

of the final state, and ~d
(j)
if is the transition matrix element

of the electric dipole of the jth NV center between the
initial and final states. The prime over the summation
indicates that i 6= f .

The relative permittivity tensor is

←→εr = εD −
′
∑

j,i,f

∑

j1,j2

Re

[

(C
e(j)
fxj1

~d
(j)
y + C

e(j)
fyj1

~d
(j)
x )

3~ε0v0(ω −∆
(j)
fi + iγ)

×Cg(j)∗
ij1

C
g(j)
ij2

(C
e(j)∗
fxj2

~d(j)y + C
e(j)∗
fyj2

~d(j)x )
]

, (4)

where ~d
(j)
x and ~d

(j)
y are the components of the transition

dipole of the jth NV center. Clearly, there can be eigh-
teen possible negative permittivity components around

the eighteen transition frequencies ∆
(j)
fi = E

e(j)
f − E

g(j)
i

of the jth NV center. However, if a static magnetic field
is applied along the direction (1, 1, 1), all transition fre-
quencies would be identical for all orientations except the
one along ~rOA [68]. Moreover, the relative permeability
is not modified by the presence of NV centers because the
transition 3A2 ⇋

3E can only be induced by the electric-
dipole couplings to the electromagnetic field [29]. In the
above calculations, we assume isolated identical NV cen-
ters for simplicity. Generally, there are dipole-dipole in-
teractions between the NV centers and inhomogeneous
strain fields on different NV centers [29]. Due to the
presence of the inhomogeneous strain fields, the NV cen-
ters are different. However, the dipole-dipole interaction
can be neglected as long as the dipole-dipole interaction is
much smaller than inhomogeneity induced by the random
strain field. In Ref. [73], a dipole-dipole interaction with
420 kHz is reported for the density of NV centers with
45 ppm. For n0 = 0.5 ppm, the dipole-dipole interaction
is estimated as 4.67 kHz since it scales linearly to n0. As
long as the standard deviation of the random strain field
is much larger than 4.67 kHz, the dipole-dipole interac-
tion can be reasonably neglected, which will be investi-
gated in the next section.

III. QUANTUM SWITCH OF NEGATIVE

REFRACTION AND NORMAL REFRACTION

In order to show that the negative refraction can be
switched on/off, we will analyze the effect of the mag-
netic field on the energy spectra of NV centers. Ac-
cording to Eq. (4), the permittivity might be negative

Figure 2. The negative refraction (green shadows) vs ∆ij =
Ee

i −Eg
j − 1.945 eV and B when the magnetic field is applied

along the direction of (1,1,1). The transition frequencies are
identical and denoted by black curves for the NV centers of
orientations along ~rOB, ~rOC, ~rOD in Fig. 1(a) due to the spe-

cial choice of ~B. The transition frequencies for the NV cen-
ters of orientation along ~rOA are different and denoted by red
curves . The density of NV centers is n0 = 0.5 ppm and the
decay rate of the excited state is γ = 50 MHz at T = 20 K
[74].

around the transition frequencies. When ~B is in the di-
rection of (1, 1, 1), the NV centers of orientations along
~rOB, ~rOC, ~rOD are identical, while the NV centers of ori-
entation along ~rOA are different, which makes the ma-
terial anisotropic. Generally, there are thirty-six tran-
sition frequencies ∆fi, which can be subtly tuned by
varying the magnetic field. Figure 2 shows the regions
of negative refraction in the frequency domain vs differ-
ent magnetic field B’s. When B = 0 G, since all four
possible orientations of the NV centers are identical, the
three eigenvalues of permittivity possess the same sign
and thus negative refraction is absent. However, if a
non-vanishing B is introduced, we would expect nega-
tive refraction in some frequency domains. For example,
when B = 103 G, the negative refraction can be realized
around ∆ij ≃ 0.2 GHz, which can not be observed for
B = 0 G. We remark that the increasing magnetic field
does not only modify the transition frequencies, but also
redistributes electric dipoles among the eigenstates. In
this regard, by tuning the magnetic field, we can switch
on/off the negative refraction on demand. Here, the den-
sity of NV centers in diamond is 0.5 ppm and γ = 50 MHz
at T = 20 K [74].

Generally speaking, the NV centers in diamond are not
in a perfect crystal and thus are exposed to strain fields.
Since the eigenenergies and eigenstates are dependent
on the strain field, for simplicity, we consider a random
strain field in the x-direction of normal distribution, with
mean δ = 0.83 MV/m and standard deviation σδ. Since
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the mean shifts the energy spectra of the ensemble ho-
mogeneously, we investigate the dependence of the band-
width of the negative refraction on σδ in Fig. 3. When
the strain fields experienced by different NV centers are
almost homogeneous, i.e., σδ is small, the bandwidth is
nearly not influenced by the strain field. However, as σδ

increases, the bandwidth is effectively narrowed as the
negative response of different NV centers do not overlap
at the same frequency region. Eventually, the negative
refraction will disappear for a sufficiently-large inhomo-
geneous strain field.
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Figure 3. The bandwidth of the negative refraction B vs σδ

for δ = 1 MV/m, n0 = 0.5 ppm, B = 800 G, and T = 20 K.
Here, we assume the ensemble of NV centers are exposed to
random strain fields of normal distribution with mean δ and
standard deviation σδ.
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Figure 4. The dependence of negative refraction on the
density of NV centers n0. (a) The product of two components
of permittivity tensor εxεz vs detuning ∆ω = ω − ∆fi; (b)
The bandwidth B vs n0. The intensity of magnetic field is
B = 800 G. Other parameters are dx = dy = 11 D [75],
γ = 50 MHz at T = 20 K [74], εD = 5.7 [76], and µD =
1− 2.1× 10−5 [77].

As implied by Eq. (4), the negative eigenvalue of the
permittivity can be more pronounced if there are more

NV centers in a given diamond. Figure 4(a) shows the
bandwidth of the negative refraction for different densi-
ties of NV centers, as determined by εxεx < 0, which
are the two components of the diagonalized permittivity
tensor

←→εr =





εx 0 0
0 εy 0
0 0 εz



 . (5)

Compared to the situation with n0 = 0.1 ppm, the win-
dow of the negative refraction for n0 = 0.5 ppm has
been significantly broadened, because more NV centers
can negatively respond to the applied electromagnetic
field. With this increased density, the negative dip at
∆ω = 0.2 GHz can be more profound for B = 800 G.
However, the bandwidth will converge as the density in-
creases. Notice that in the numerical simulations we have
not used the local-field correction [70, 71], since it will
not substantially change the center and bandwidth of
the negative refraction domain but modify the magni-
tude of the permittivity [10, 78, 79], as also proven in
Appendix C. Therefore, we have demonstrated the neg-
ative refraction in diamond with NV centers.

IV. NEGATIVE REFRACTION

In Ref. [1], it has been shown that for a double-negative
metamaterial there can be negative refraction. However,
in the NV centers of diamond, because the electric per-
mittivity tensor possesses two different components, it
is natural to ask whether negative refraction can exist.
Below, we will demonstrate that negative refraction can
indeed occur for a TH incident mode, cf. Fig. 1(b).

According to Maxwell’s equations [70, 71], ∇ × ~E =

− ∂
∂t
µD

~H, ∇× ~H = ∂
∂t
←→ε ~E, where both the current den-

sity and the charge density vanish, ←→ε = ε0
←→εr is the

permittivity of diamond with NV centers, and µD is the
permeability of pure diamond.

Assuming that the transmitted electric and mag-

netic fields are, respectively, ~Et(~r, t) = (Etxêx +

Etz êz) exp[i(~kt ·~r−ωt)], ~Ht(~r, t) = Hty êy exp[i(~kt·~r−ωt)],
we have

(∇×∇×←→I − µ0ω
2←→ε ) ~Et = 0, (6)

where
←→
I is the identity dyadic. For nontrivial solutions,

the dispersion relation for the extraordinary mode reads

εxk
2
tx + εzk

2
tz = µ0ω

2εxεz, (7)

assuming ky = 0. Such a dispersion relation for the
extraordinary mode is hyperbolic or indefinite because
εxεz < 0.

According to the boundary condition [70], the tangen-
tial components of the wavevector across the interface
should be equal, i.e., ktz = kiz > 0, ktx = kix. By insert-
ing Eq. (7) into Eq. (6), we obtain the relation between
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Etx and Etz as εxktxEtx + εzktzEtz = 0. By Maxwell
equations, we have

~H = −ωεzEtz

ktx
êy exp

[

i
(

~kt · ~r − ωt
)]

. (8)

The time-averaged Poynting vector reads [70] ~St =
1
2Re(

~Et× ~H∗
t ), with the components being Stx = ωεz

2ktx

E2
tz,

Stz =
εxωE2

tx

2ktz

< 0, because εx < 0 and ω, ktz > 0.
In order to transmit energy from the interface into the
medium, Stx should be negative and thus ktx < 0 as
ω, εz > 0. Together with Eq. (7), we have

ktx = −ki

√

εz
ε0

(

1− ε0
εx

sin2 θ

)

, (9)

where k2i = µ0ε0ω
2. Because Stx, Stz < 0, we have

proven that for a uniaxial crystal with hyperbolic dis-
persion, the negative refraction exists for a TH incident
field.

V. EXPERIMENTAL FEASIBILITY

In order to analyze experiment feasibility by sim-
ple calculation, we consider that all NV centers are
aligned in the same direction, which is within the
state-of-art technology [80]. We further assume no
strain field is considered to obtain an analytic result.
For zero magnetic field, the Hamiltonians of the elec-
tronic ground and excited states are further simpli-
fied as Hgs = Dgs

∑

mz=±1 |Φc
A2;1,mz

〉〈Φc
A2;1,mz

| and

Hes ≃
∑

α=x,y

∑

mz=±1 D
‖
es|Φc

E,α;1,mz
〉〈Φc

E,α;1,mz
| , cf.

Appendix A, where we have omitted the strain-related
coupling.

For simplicity, the orientations of all NV centers are
assumed to be along the z-axis. Thus, all matrix el-
ements of the transition electric dipole are equal to
~dif = 〈Φc

A2;1,mz
|~d|Φc

E,α;1,mz
〉 = 11(êx + êy) D [75]. Ini-

tially, the NV centers are in the thermal state ρ(0) =
1
3

∑

mz
|Φc

A2;S,ms
〉〈Φc

A2;S,ms
|. Therefore,

~P = −2ζγε0Re
[

(êxêx + êyêy + êxêy + êyêx) ~E

ω −∆fi + iγ

]

,(10)

where ζ = 242n0 D2

9~γε0
. The three principal components of

the relative permittivity are, respectively,

ε(1)r = εD −
2ζγ(ω −∆fi)

(ω −∆fi)2 + γ2
, (11)

ε
(2)
r = ε

(3)
r = εD. When the frequency of the incident

field is ω = ∆fi + γ, one principal component can be
negative if n0 > nc

0 = 1.77 × 1021 m−3, while the other
principal components remain positive. Because two car-
bon atoms occupy a volume v = (1.78 × 10−10)3 m−3,

the minimum density of the NV centers to demonstrate
negative refraction is

1

2
vnc

0 = 5.00 ppb, (12)

which is feasible in experimental fabrication, e.g. 16 ppm
[81]. In addition, as can be proven, the negative com-
ponent of permittivity appears in the z-axis, because of
~B ‖ ~ez and the symmetry of four possible orientations of
the NV centers.

In the above calculation, in order to analytically obtain
the minimum density of NV centers for negative refrac-
tion, we assume a simple model in which all NV centers
are aligned in the same direction and the strain field is
absent. However, in a practical sample, NV centers are
possible in all four directions and the strain fields per-
ceived by individual NV centers are random due to dif-
ferent distances to the surface and defects nearby. By
numerical simulations, we can show that in the presence
of random strain field with r.m.s. being about 1.6 MHz
[82], the negative refraction can be observed as long as
the density of NV centers is larger than 141 ppb. Al-
though this is larger than the counterpart obtained by
the above simplified model by one order, these two re-
sults are qualitatively consistent with each other. Fur-
thermore, the dipole-dipole interaction between adjacent
NV centers, about 1.316 kHz for 141 ppb, can be reason-
ably neglected since it only leads to energy shift due to
the large detuning induced by the random strain field.
Therefore, by the analytical and numerical calculations,
we show that the negative refraction in diamond with NV
centers can be present.

VI. CONCLUSIONS

In this work, we proposed a new approach to realize hy-
perbolic metamaterial using diamond with NV centers in
the optical frequency regime. Because of the long lifetime
of the excited states of the NV centers, this hyperbolic
metamaterial manifests an intriguing window for nega-
tive refraction. By varying the applied magnetic field
to tune the energy spectra of both ground and excited
states, the frequency of the negative refraction can be
tuned in a wide range. Note that it is difficult to fabri-
cate classical metamaterials working in optical-frequency
domain, because the sizes of the elements therein are sub-
micron. The NV-metamaterials proposed here solve this
problem. Because this NV-metamaterial can be used in
subwavelength imaging, spontaneous emission enhance-
ment, heat transport and acoustics, analogue cosmology,
and lifetime engineering, our proposal bridges the gap
between NV centers and metamaterials.
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Appendix A: Selection Rules of Optical Transitions

According to Ref. [83], there are four outer electrons
distributed in the a1, ex and ey levels, i.e., a21e

2. On ac-
count of the spin degree of freedom, the electronic ground
states can be written in the second quantization form,
i.e., |a1ā1exēxey ēy〉 with an overbar denoting spin-down,
as

|Φc
A2;1,0〉 =

1√
2
(|111001〉+ |110110〉),

|Φc
A2;1,1〉 = |111010〉, (A1)

|Φc
A2;1,−1〉 = |110101〉,

where the superscript c means configuration, the sub-
scripts are ordered as j, k;S,ms with j being the irre-
ducible representation, k being the row of irreducible rep-
resentation, S being the total spin and ms being the spin
projection along the symmetry axis of the NV center.
The six first excited states, i.e., a1e

3, are respectively

|Φc
E,x;1,0〉 =

1√
2
(|100111〉+ |011011〉),

|Φc
E,y;1,0〉 =

1√
2
(|101101〉+ |011110〉),

|Φc
E,x;1,1〉 = |101011〉, (A2)

|Φc
E,y;1,1〉 = |101110〉,
|Φc

E,x;1,−1〉 = |010111〉,
|Φc

E,y;1,−1〉 = |011101〉.

By comparing Eq. (A1) and (A2), we notice that there
is one electron transiting from a1 orbital to e orbital.
In the absence of spin-orbital coupling, on account of
conservation of spin and total angular momentum [84],
the transitions, i.e., |Φc

A2;1,ms
〉⇋ |Φc

E,α;1,ms
〉 with ms =

0,±1 and α = x, y, are allowed by the electric-dipole
coupling. The non-zero transition matrix elements of the
position vector ~r = xêx + yêy + zêz with êi unit vector

along direction i = x, y, z are listed as [69]

〈a1|x|ex〉 6= 0,

〈a1|y|ey〉 6= 0, (A3)

〈ey|x|ey〉 = 〈ex|y|ey〉 = −〈ex|x|ex〉 6= 0.

Therefore, the selection rules for optical transitions are

|Φc
A2;S,ms

〉 α′

⇋ |Φc
E,α;S,ms

〉, (A4)

where α, α′ = x, y with α′ 6= α indicates the polarization
of the electric field.

As shown in Fig. 1(a), there are four possible
symmetry axes for the NV centers in diamond, i.e.,
~rOA = (−1,−1,−1)/

√
3, ~rOB = (1, 1,−1)/

√
3, ~rOC =

(1,−1, 1)/
√
3, and ~rOD = (−1, 1, 1)/

√
3. Here, ~rOA

can be obtained by rotating the z-axis around the axis
~nOA = (−1, 1, 0)/

√
2 by an angle θOA = −(180◦ − α/2),

i.e.,

~rOA = R(~nOA, θOA)êz = R(~nOA, θOA)(0, 0, 1)
T , (A5)

where the rotation matrix around ~n = (nx, ny, nz) by an
angle θ is [85]

R(~n, θ) =





R11 R12 R13

R21 R22 R23

R31 R32 R33



 (A6)

with

R11 = cos θ + n2
x(1− cos θ),

R12 = nxny(1− cos θ)− nz sin θ,

R13 = nxnz(1 − cos θ) + ny sin θ,

R21 = nxny(1− cos θ) + nz sin θ,

R22 = cos θ + n2
y(1− cos θ), (A7)

R23 = nynz(1 − cos θ)− nx sin θ,

R31 = nxnz(1 − cos θ)− ny sin θ,

R32 = nynz(1 − cos θ) + nx sin θ,

R33 = cos θ + n2
z(1 − cos θ).

And ~rOB can be obtained by rotating the z-axis around
the axis ~nOA = (−1, 1, 0)/

√
2 by an angle −θOA, i.e.,

~rOB = R(~nOA,−θOA)êz. (A8)

~rOC can be obtained by rotating the z-axis around the
axis ~nOC = (1, 1, 0)/

√
2 by an angle θOC = α/2, i.e.,

~rOC = R(~nOC, θOC)êz . (A9)

~rOD can be obtained by rotating the z-axis around the
axis ~nOC = (1, 1, 0)/

√
2 by an angle −θOC, i.e.,

~rOD = R(~nOC,−θOC)êz. (A10)
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Appendix B: Linear-Response Theory

In order to simulate the electromagnetic response of
the diamond with NV centers in the presence of applied
fields, we can employ the linear-response theory [72] to
calculate the electric permittivity. When there is an elec-
tric field applied, the NV center is polarized as

〈~d 〉 =
∫

dω

2π
S(ω) ~E(ω)e−iωt, (B1)

where the Fourier transform of the time-dependent elec-

tric field ~E(t) = ~E0 cosΩt with amplitude ~E0 and fre-
quency Ω is

~E(ω) =

∫ ∞

−∞

dt ~E(t)eiωt, (B2)

S(ω) = −J(ω)− J∗(−ω). (B3)

Here, J(ω) is the Fourier transform of the dipole-dipole
correlation function, i.e.,

J(ω) = −i
∫ ∞

0

dt Tr[~d(t)~dρ(0)]eiωt, (B4)

where the initial state of the NV center is

ρ(0) =
∑

i

ρi|i〉〈i| (B5)

with
∑

i ρi = 1.
The electric dipole in the Heisenberg picture is

~d(t) = exp(iH†t/~)~d exp(−iHt/~), (B6)

where the total Hamiltonian including the manifold of
the electronic ground and excited states is

H = Hes ⊗ |e〉〈e|+Hgs ⊗ |g〉〈g|, (B7)

with |g〉 (|e〉) being the electronic ground (excited) state.
Because the Fourier transform of the electric field can be
rewritten as

~E(ω) = π ~E0[δ(ω +Ω) + δ(ω − Ω)], (B8)

the electric dipole of the NV center in the applied electric
field is

〈~d 〉 = − ~E0Re{[J(Ω) + J∗(−Ω)] e−iΩt}, (B9)

where

J(ω) =

′
∑

i,f

ρi ~dif ~dfi
ω −∆fi + iγ

. (B10)

Using the non-Hermitian Hamiltonian in Appendix D,

Hi = 〈i|H |i〉 = Ei −
i

2
γ (B11)

with −iγ/2 being phenomenologically introduced for the
damping and dephasing of the excited state. Here, ∆fi =
(Ef−Ei)/~ is the transition frequency between the initial
state |i〉 and the final state |f〉. Therefore, the induced
electric dipole can be rewritten as

〈~d 〉 = − ~E0Re
∑

i,f

ρi

(

~dif ~dfie
−iωt

ω −∆fi + iγ
−

~dif ~dfie
−iωt

ω +∆fi + iγ

)

.

(B12)

Under the rotating-wave approximation [86], the second
term of the above equation should be neglected, i.e.,

〈~d 〉 ≈ − ~E0 Re
∑

i,f

(

ρi ~dif ~dfi
ω −∆fi + iγ

e−iωt

)

. (B13)

Assuming that all NV centers are identical, the polariza-
tion density reads

~P =
n0

~
〈~d 〉, (B14)

where n0 is the density of the NV centers in diamond.

Appendix C: Lorentz Local-Field Theory

According to Ref. [70], in closely-packed molecules the
polarization of neighboring molecules gives rise to an in-

ternal field ~Ei at any molecule, in addition to the external

field ~E. The internal field is

~Ei = ~Enear − ~Emean, (C1)

where ~Enear is the actual contribution from the molecules
close to the given molecule, and ~Emean is the contribution
from those molecules treated in an average continuum.

As proven in Ref. [70], in any crystal structure ~Enear = 0

due to symmetry, and thus ~Ei = − ~Emean.
By dipole approximation and assuming no net charge

in the volume V , the mean-field contribution is [70]

~Emean = −(εD − 1) ~E − 1

3V ε0

∑

l

~dl, (C2)

where εD = 5.7 is relative permittivity of diamond [76],
and the second term is summed over all induced molecu-
lar electric dipole moments ~dl within the volume. Under
the weak field approximation, the induced dipole moment
is

~pl = ε0γmol( ~E + ~Ei), (C3)

where γmol is generally a second-order tensor. Since
~Ei = (εD − 1) ~E + ~P/(3ε0) [70, 87], the polarization
~P ≡∑l

~dl/V = n0
~dl reads

~P = n0ε0γmol( ~E + ~Ei) = n0ε0γmol(εD
~E +

~P

3ε0
). (C4)
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Furthermore, using ~P = ε0χe
~E [70, 87], we have

ε0χe
~E = n0ε0γmol(εD +

χe

3
) ~E, (C5)

leading to

χe =
n0γmolεD

1− 1
3n0γmol

. (C6)

In diamond with NV centers aligned in the same di-
rection, γmol is of the form

γmol =





η(ω)/n0 0 0
0 0 0
0 0 0



 , (C7)

where η(ω) is the second part of Eq. (4). Therefore, the
electric susceptibility is

χe =





3εDη
3−η

0 0

0 0 0
0 0 0



 , (C8)

and the relative permittivity is

←→εr =





εD(1 +
3η
3−η

) 0 0

0 εD 0
0 0 εD



 . (C9)

The frequency domain of the negative refraction is deter-
mined by the two solutions to the equation

3

2
+ η = 0, (C10)

which is not qualitatively different from the equation for
the case without the local-field correction

εD + η = 0. (C11)

As a result, both the center and bandwidth of the neg-
ative refraction in the frequency domain are not sub-
stantially modified by the Lorentz local-field correc-
tion. This is in consistent with the numerical results in
Refs. [10, 78, 79].

Appendix D: Non-Hermitian Hamiltonian Approach

The dynamics of the open quantum system can be de-
scribed by the Lindblad-form quantum master equation
[88]

dρ

dt
= −i [H, ρ]+

γ

2

∑

j

(2AjρA
†
j−A

†
jAjρ−ρA†

jAj), (D1)

where Aj ’s are the excited states projection operators,
and γ is the rate of damping and dephasing of the excited
states. Equation (D1) can be rewritten as

dρ

dt
= −i(Hcondρ− ρH†

cond) + γ
∑

j

AjρA
†
j (D2)

with

Hcond = H − i
γ

2

∑

j

A†
jAj . (D3)

When the typical process of H is much faster than the
decoherence process, i.e., the smallest energy gap of H
is far greater than γ, the last term of Eq. (D2) can be
ignored and thus

dρ

dt
= −i

(

Hcondρ− ρH†
cond

)

. (D4)

In other words, the decoherence effects could be ac-
counted by solving Schrödinger equation with a non-
Hermitian Hamiltonian (D3), instead of solving the quan-
tum master equation. This technique has been widely
used in the study of open quantum systems and quan-
tum chemistry, e.g. avian navigation [89] and exciton
energy transfer in photosynthesis [90].
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