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In a seminal paper, Page found the exact formula for the average entanglement entropy for a
pure random state. We consider the analogous problem for the ensemble of pure fermionic Gaus-
sian states, which plays a crucial role in the context of random free Hamiltonians. Using recent
results from random matrix theory, we show that the average entanglement entropy of pure ran-
dom fermionic Gaussian states in a subsystem of NA out of N degrees of freedom is given by
〈SA〉G = (N − 1

2
)Ψ(2N)+( 1

4
−NA)Ψ(N)+( 1

2
+NA−N)Ψ(2N −2NA)− 1

4
Ψ(N −NA)−NA, where

Ψ is the digamma function. Its asymptotic behavior in the thermodynamic limit is given by
〈SA〉G = N(log 2 − 1)f + N(f − 1) log(1 − f) + 1

2
f + 1

4
log (1− f) + O(1/N), where f = NA/N .

Remarkably, its leading order agrees with the average over eigenstates of random quadratic Hamil-
tonians with number conservation, as found by  Lydżba, Rigol and Vidmar. Finally, we compute the
variance in the thermodynamic limit, given by the constant limN→∞(∆SA)2G = 1

2
(f+f2+log(1−f)).

Introduction.—Entanglement is a hallmark of quantum
theory [1, 2]. The study of the von Neumann bipartite
entanglement entropy plays a central role in the quan-
tum foundations of statistical mechanics [3–21], in quan-
tum information theory [22–29], in the formulation of
the black hole information puzzle [30–37], and the study
of the quantum nature of spacetime geometry [38–43].
Also experimentally there has been recently tremendous
progress in measuring entanglement entropy in optical
lattices with ultracold atoms [44].

In a seminal paper [45], Page showed that, when an
isolated quantum system is in a random pure state, the
average entanglement entropy of a subsystem is close to
maximal. In particular, he conjectured an exact formula
for the average, taken with respect to the Haar measure
over states in a finite-dimensional Hilbert space. In this
letter we address the analogous problem for the ensemble
of pure fermionic Gaussian states. We compute the aver-
age entanglement entropy 〈SA〉G of those states (6) and
study its properties (figure 1) with the help of random
matrix theory.

Pure fermionic Gaussian states appear as ground states
and eigenstates of free, i.e., quadratic, Hamiltonians,
and remain Gaussian in the time evolution after a free
quantum quench [46, 47]. They play an important
role in quantum computing in the context of match-
gates [48]. Moreover, there has been an increased in-
terest in fermionic Gaussian states from the perspective
of quantum chaos [4], and the eigenstate thermalization
hypothesis [5, 49, 50]. The average eigenstate entangle-
ment is of particular interest in this context [13, 15, 16],
where one averages the entanglement entropy over the
discrete set of eigenstates, which are Gaussian states for
a given quadratic Hamiltonian. Our main results, the
average entropy (6) and particularly its thermodynamic
limit (7), unveil close relations to recent work on the av-
erage entanglement entropy of eigenstates of quadratic
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FIG. 1. We compare the Page curve for random states 〈SA〉
to the Page curve for random Gaussian states 〈SA〉G for a
system with N fermionic degrees of freedom.

Hamiltonians [14, 19, 20]. In particular, our formula (7)
coincides in the thermodynamic limit with the average of
the entanglement entropy with respect to the eigenstates
of random quadratic Hamiltonians with number conser-
vation (later numerically confirmed in [20] to also apply
to random Hamiltonians without number conservation).

The Page curve.— Before we come to the fermionic
Gaussian states, let us briefly recall Page’s result. In
a quantum system consisting of N spin 1/2 fermions,
a subsystem of NA fermions (with N = NA + NB and
NA ≤ NB) defines a bipartition of the Hilbert space of
states as H = HA⊗HB , with dimensions dimHA = 2NA

and dimHB = 2NB . Given a pure state |ψ〉 ∈ H, the
entanglement entropy of the subsystem is SA(|ψ〉) =
−Tr(ρA log ρA) with ρA = TrB |ψ〉〈ψ| the induced den-
sity operator where the other NB fermions are traced out.
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The average over all states in H is

〈SA〉 =

∫
dµ(ψ)SA(|ψ〉) =

∫
U∈U(2N )

dU SA(U |0〉) , (1)

where dµ(ψ) is the uniform measure in H. This uni-
form measure on the 22N − 1 dimensional sphere can be
obtained by fixing an arbitrary reference state |0〉 and
acting on it with a unitary transformation U distributed
uniformly with respect to the Haar measure dU over the
unitary group U ∈ U(2N ). In [45], Page conjectured the
formula (later proven in [51–53])

〈SA〉 = Ψ(2N + 1)−Ψ(2N−NA + 1)− 2NA−1
2N−NA+1 , (2)

where Ψ(z) = Γ′(z)/Γ(z) is the digamma function.
In the thermodynamic limit N → ∞ with finite sub-

system fraction f = NA/N ≤ 1/2, the average entropy
reduces to

〈SA〉 ∼ fN log 2 − 1
2 e−(1−2f)N log 2 . (3)

Thence, for f < 1/2, the average entanglement entropy
approaches exponentially the entropy of a maximally
mixed state. Similarly, in the thermodynamic limit, the
dispersion around the average [18, 54, 55] scales as

∆SA ∼

 2−(1−f)N− 1
2 0 < f < 1

2

2−
1
2N−1 f = 1

2

(4)

and vanishes exponentially. Consequently, a typical state
in the Hilbert space is extremely close to being maximally
entangled.

Let us turn our focus to fermionic Gaussian states
which are states annihilated by a set of fermionic an-
nihilation operators. Given a reference Gaussian state
|J0〉, all Gaussian states |JM 〉 can be generated via Bo-
goliubov transformations. These states form a submani-
fold in the manifold of pure states. The uniform measure
dµG(J) over Gaussian states can be defined in terms of
the Haar measure over Bogoliubov transformation, i.e.,
real orthogonal transformations M ∈ O(2N) [56]. The
average entanglement entropy over fermionic Gaussian
states is then

〈SA〉G =

∫
dµG(J)SA(|J〉) =

∫
M∈O(2N)

dM SA(|JM 〉) . (5)

Using random matrix theory, we derive the following ex-
act formula for the average entanglement entropy:

〈SA〉G = (N− 1
2 )Ψ(2N) + ( 1

2 +NA−N)Ψ(2N−2NA)

+ ( 1
4−NA)Ψ(N)− 1

4Ψ(N−NA)−NA .
(6)

In the thermodynamic limit N →∞ with finite fraction
f = NA/N ≤ 1/2, a series expansion in N yields

〈SA〉G ∼ N
(
(log 2−1)f +(f−1) log(1−f)

)
+ 1

2f + 1
4 log (1− f) + O(1/N) ,

(7)

whose leading order term agrees with the expression de-
duced in [19] for the average over a different set of states,
as we will review in our discussion. We also find that the
standard deviation approaches the constant

lim
N→∞

(∆SA)G =

√
f + f2 + log(1− f)

2
. (8)

We outline the derivation of these results in the ensuing
discussion.

Average entropy.—A quantum system with N
fermionic degrees of freedom can be formulated in terms
of a set of creation and annihilation operators â†i and

âi with canonical anti-commutation relations, {âi, â†j} =
δij , {âi, âj} = 0 and i, j = 1 . . . N . Equivalently, we can

introduce 2N Majorana modes ξ̂µ with µ = 1 . . . 2N and

ξ̂i = 1√
2
(â†i + âi) and ξ̂N+i = i√

2
(â†i − âi) . (9)

A Bogoliubov transformation â′i =
∑N
j=1(αij âj + βij â

†
j)

transforms the operators ξ̂µ to the new ones ξ̂′µ according

to ξ̂′µ =
∑2N
ν=1Mµν ξ̂ν , where the 2N × 2N matrix Mµν

is given by [57]

M =

(
Re(α+ β) Im(β − α)
Im(α+ β) Re(α− β)

)
. (10)

The requirement that the anti-commutation relations are
preserved is equivalent to the condition MMᵀ = 1, i.e.,
M must be an orthogonal matrix in O(2N).

To define the uniform average over fermionic Gaussian
states, we exploit the notion of a complex structure J
(i.e., J2 = −1) and its relation to the correlation func-
tion [56]. The starting point is that a fermionic Gaussian
state is defined as the ground state of a set of annihila-
tion operators. We call |J0〉 the state annihilated by the
reference operators âi and |J〉 the state annihilated by
the Bogoliubov-transformed operators â′i, i.e., â

′
i|J〉 = 0.

The label J stands for the matrix J = MJ0M
−1 deter-

mined by the expectation value of the commutator of two
Majorana modes [56],

〈J | [ξ̂µ, ξ̂ν ] |J〉 = i Jµν with J0 =

(
0 1

−1 0

)
. (11)

The entanglement entropy of a Gaussian state |J〉 is di-
rectly related to the spectrum of the 2NA × 2NA left-
upper sub-block [J ]A of J via the formula SA(|J〉) =∑NA
i=1 s(xi) with [56–59]

s(x) = −
(

1−x
2

)
log
(

1−x
2

)
−
(

1+x
2

)
log
(

1+x
2

)
, (12)

where xi ∈ [0, 1] are the singular values of [J ]A.
Having defined fermionic Gaussian states in terms of

a reference state |J0〉 and an orthogonal matrix M , we
can express the uniform measure over Gaussian states
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in terms of the Haar measure over O(2N) and compute
the average entanglement entropy of Gaussian states ex-
ploiting (5). What we need to derive first is the joint
probability distribution of the singular values xi of [J ]A.
For this purpose we make repetitive use of [60, Propo-
sition A.2] by projecting away always two rows of the
matrix J ; first to [J ]N−1, then [J ]N−2 until we arrive at
[J ]NA . This yields for x = (x1, . . . , xNA) the distribution

P (x) = (detX)2

NA!

(∏NA−1
j=0 c−1

j (1− x2
j+1)∆

)
, (13)

where we have the NA ×NA matrix X and cj ,

Xij = pj−1(xi) = P(∆,∆)
2j−2 (xi) , (14)

cj =
22∆ [(2j + ∆)!]2

(2j)! (2j + 2∆)! (4j + 2∆ + 1)
, (15)

∆ = NB −NA ≥ 0 . (16)

The functions P(α,β)
n (z) are the Jacobi polynomials and

the distribution (13) is related to the Jacobi ensem-
ble [61], one of the classical random matrix ensembles
that can arise in various ways.

The k-point correlation functions [61] encode the whole
spectral statistics of a random matrix,

Rk(x1, . . . , xk) =

∫
P (x1, . . . , xk, y1, . . . , yNA−k)dNA−ky

=
(NA − k)!

NA!
detK(xa, xb) , (17)

where K(xa, xb) refers to the k × k matrix (with a, b =
1, . . . , k) given by [61]

K(x, y) =

NA−1∑
j=0

ψj(x)ψj(y), ψj(x) = (1−x2)∆/2

√
cj

pj(x) (18)

with
∫ 1

0
ψj(x)ψk(x)dx = δjk. Then, the level density is

ρ(x) = R1(x) = 1
NA

K(x, x) = 1
NA

∑NA−1
j=0 ψ2

j (x).
The average entropy is then given by the integral

〈SA〉G = NA

∫ 1

0

s(x)ρ(x) (19)

which can be evaluated by computing

Iε =

∫ 1

−1

(
x(1−x)ε

2 − (1−x2)ε

4

)
ρ(|x|) dx , (20)

such that 〈SA〉G = NA (∂εIε + log 2)ε→0. We combine
the Jacobi polynomials with the other terms in the in-
tegrand whose integrals altogether give ratios of Gamma
functions which, after the derivative yield the digamma
functions in (6).

We can compare the Gaussian Page curve (6) with the
original Page curve (2), as illustrated in figure 1. In the
Gaussian case the thermodynamic limit is approached
from above, while the original Page curve is approached
from below. In fact, we can compute 〈SA〉 = 1/3 and
〈SA〉G = 1/2 for NA = 1 with N = 2, which shows that
for small N the average entanglement entropy of Gaus-
sian states is above the one of all states. This is in stark
contrast to the thermodynamic limit, where the average
entanglement entropy of Gaussian states is almost half
of the one for all states.

Variance.—An important question in the context of
computing the average entanglement entropy is if this
average is also typical, i.e., if almost all states have an
entanglement entropy close to the average as we take
the thermodynamic limit. To answer this question, we
compute the variance (∆SA)2

G = 〈S2
A〉G − 〈SA〉

2
G of the

probability distribution. For this, it is useful to define

sij =

∫ 1

0

s(x)ψi(x)ψj(x)dx

= −

(
∂ε

∫ 1

−1

(
1− x

2

)1+ε

ψi(x)ψj(x)dx

)
ε→0

,

(21)

where we used ψi(x) = ψi(−x) to produce the two terms
in (12) by integrating over [−1, 1]. We can interpret sij
as the matrix elements of the operator s(x) with respect
to the orthonormal basis ψj(x) in [0, 1]. With this, we
find

(∆SA)2
G =

∫ 1

0

s2(x)K(x, x)dx−
∫ 1

0

s(x1)s(x2)K2(x1, x2)d2x =

∫ 1

0

s(x1)s(x2)K(x1, x2)(δ(x1 − x2)−K(x1, x2))d2x

=

∫ 1

0

s(x)s(y)

(
NA−1∑
i=0

ψi(x1)ψi(x2)

) ∞∑
j=NA

ψj(x1)ψj(x2)

 d2x =

NA−1∑
i=0

∞∑
j=NA

s2
ij with (22)

s2
ij =

(2j)!(2∆+4i+1)(∆+j+1)(2∆+2j+1)(2∆+4j+1)(2(∆+i))!((1+∆−2∆2)i−2(∆−1)i2+(∆+1)(2j+1)(∆+j))
2

2(2i)!(2i−2j+1)2(i−j)2(−2i+2j+1)2(2(∆+j+1))!(∆+i+j)2(∆+i+j+1)2(2∆+2i+2j+1)2 for i < j , (23)
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FIG. 2. We compare the probability distributions P (SA) of the entanglement entropy SA for Gaussian states and general states
in a fermionic system with NA = NB = 5. The expectation value 〈SA〉 and 〈SA〉G for NA = NB and their thermodynamic limits
are indicated by vertical lines and vertical dashed lines, respectively. The insets depict the scaling of the standard deviation
∆SA and (∆SA)G for NA = NB →∞.

where (23) is only valid for i < j, which is all we need for
the sum in (25). Despite all terms in the sum of (25) are
non-zero for large N , it is dominated by the summand
s2
NA−1,NA

(see figure 3, where we compare the sum vs.
this dominating summand), so that it makes sense to
consider the limit

s2
lk = lim

N→∞
s2
NA−1−l,NA+k

=
( 1
f−1)−2(k+l+1)(2k+2l+3−4f(k+l+1))2

4(k+l+1)2(2k+2l+1)2(2k+2l+3)2

(24)

with fixed f = NA/N . From this, we find the variance

lim
N→∞

(∆SA)2
G =

∞∑
l,k=0

s2
lk =

f + f2 + log(1− f)

2
, (25)

where we could evaluate the sum analytically. That
the variance approaches a constant is in line with nu-
merical findings in [19, 20] and analytical studies of
Renyi entropies [21]. Recall that the Page variance ∆SA
from (4) converges to zero (with a behavior that dif-
fers for f = 1

2 ), while the Gaussian standard devia-
tion (∆SA)G approaches a constant and only its relative
dispersion (∆SA)G/ 〈SA〉G will behave as 1/N . In con-
trast, the standard deviation for (Gaussian) eigenstates
of translationally invariant quadratic Hamiltonians was
found in [13] to scale as

√
N (relative dispersion scaling

as 1/
√
N), which thus differs from both the Gaussian

behavior found here and Page’s result.
The stark contrast of the behavior of the standard de-

viation for all states vs. Gaussian states, i.e., exponential
vs. constant, is closely connected to the dimension of the
respective family of states (see figure 2). While the real
dimension of the manifold of pure fermionic states scales
as 2N , the manifold of pure fermionic Gaussian states

consists of two disconnected components of dimension
N(N − 1) each. This behavior can be understood via
Dyson’s Brownian motion where the number of eigenval-
ues of the underlying random matrix (exponential in NA
for pure fermionic states and quadratic in NA) is crucial
for the rate of convergence.
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FIG. 3. We compare the standard deviation
limN→∞(∆SA)G from (25) with the leading summand

|s0,0|=limN→∞ |sNA−1,NA |=
(3−4f)f
6(1−f)

from (24).

Relation to random Hamiltonians.—So far, we adopted
the perspective of studying properties of a given ensem-
ble of quantum states, namely the family of fermionic
Gaussian states, without asking in what physical system
one may necessarily encounter them. This is also the
perspective of Page’s original paper [45] where he con-
siders the family of all pure states, without reference to a
specific Hamiltonian. Remarkably, for Hamiltonians with
local interactions, while the ground state is far from Page-
typical as it generally satisfies an area law [62], the en-
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tanglement entropy of energy eigenstates can be obtained
from typicality arguments [3–13, 15–18]. Similarly, it is
instructive to investigate for which random Hamiltoni-
ans the resulting ground states constitute the considered
ensemble of fermionic Gaussian states discussed here.

For this aim, we consider the most general quadratic
Hamiltonian for N fermionic degrees of freedom,

Ĥ =

N∑
i,j=1

(Aij â
†
i âj+Bij â

†
i â
†
j+ h.c.) =

2N∑
µ,ν=1

ihµν ξ̂µξ̂ν , (26)

where the 2N Majorana modes were introduced in (9)
and hµν is an anti-symmetric matrix with real entries
(as also considered in [20]). Any such antisymmetric ma-
trix can be block-diagonalized by means of an orthogonal
transformation Mµν , such that

MhM−1 =
⊕N

i=1

(
0 ωi
−ωi 0

)
, (27)

where ωi ≥ 0 leading to Ĥ =
∑N
i=1 ωi (b̂†i b̂i − 1

2 ) with
transformed creation and annihilation operators.

If we randomly generate the matrix entries of hµν with
respect to some O(2N) invariant probability distribu-
tion, for instance a Gaussian distribution, the orthogonal
transformation M that diagonalizes it will be Haar dis-
tributed. Therefore, the resulting ground state of Ĥ is
the state annihilated by b̂i and is distributed according
to the ensemble of fermionic Gaussian states considered
so far. Moreover, the excited energy eigenstates of this
random Hamiltonian are also Gaussian states and dis-
tributed according to the same ensemble. Remarkably,
the result does not depend on which specific choice of
O(2N) invariant distribution we use to generate Ĥ: in
fact, only the one-particle spectrum ωi depends on this
choice, and the properties of the energy eigenstates are
independent of the associated eigenvalues (as long as no
degeneracies are present). Therefore, the eigenstates of
(26) are distributed as random Gaussian states |J〉 with
Haar measure dµG(J) as in (5).

This result provides an analytical derivation of the nu-
merical evidence found by  Lydżba, Rigol and Vidmar in
[20] that in the thermodynamic limit the average entropy
of eigenstates of a random Hamiltonian (26) is given by
(7). Moreover, the argument above extents the result
to systems of finite size: the average eigenstate entan-
glement entropy of O(2N)-invariant random quadratic
Hamiltonians is given by the exact analytic formula (6).

On the other hand, imposing further constraints on
the Hamiltonian (26), such as requiring it to be particle
number preserving or translationally invariant, will result
in a submanifold of the manifold of fermionic Gaussian
states (5). Therefore we cannot expect to find the same
statistical properties (average, variance) for the entangle-
ment entropy at finite system size. Yet, in the large N
limit, the average over eigenstates of number preserving

Hamiltonians studied in [14, 19] leads to an average en-
tanglement entropy that agrees with our result (7) in the
thermodynamic limit.

Discussion—The main result of this letter is the an-
alytical expression (6), which is the analogue of Page’s
result for the ensemble of fermionic Gaussian states for
systems of finite size, and its large N behavior (7). The
derivation was made possible by recent advances in ran-
dom matrix theory [60], which bear promise to be also
relevant for other ensembles of states. Our results enable
us to deduce a number of interesting properties of the
Page curve of fermionic Gaussian states: (a) The curve
admits a closed form expression in terms of digamma
functions from which finite size corrections to the ther-
modynamic limit can be extracted. (b) In contrast to
Page’s typicality, for fermionic Gaussian states the ther-
modynamic limit is approached from above and only al-
gebraically fast, rather than exponentially. (c) The vari-
ance approaches a constant at large N rather than decay-
ing exponentially as in Page’s case. (d) Finally, our re-
sult shows that whenever the subsystem fraction is finite
in the thermodynamic limit, the average entanglement
entropy is smaller than the maximal value f log 2, but
approaches it as the subsystem fraction f goes to zero.

Our proof helps to clarify the relationship to the av-
erage entanglement entropy of ground states and eigen-
states of random quadratic Hamiltonians, namely that
these averages coincide in the thermodynamic limit pro-
vided that the Hamiltonian is sufficiently random. Let
us emphasize that the function

lim
N→∞

1
N 〈SA〉G = (log 2−1)f + (f−1) log(1−f) (28)

was found by  Lydżba, Rigol and Vidmar in [19] as an
average over energy eigenstates of random Hamiltonians
with number conservation (and later shown numerically
[20] to also apply to eigenstates of random quadratic
Hamiltonians without number conservation). In the ther-
modynamic limit, the associated level density of the ma-
trix [J ]A for a similar model was also found previously
in [14], from which the value limN=2NA→∞

1
N 〈SA〉 =

log 2 − 1
2 was computed. Both papers construct their

family of states from number preserving quadratic Hamil-
tonians, namely either as the ground state of the SYK2
Hamiltonian [14] or as one of its eigenstates [19]. In both
cases, the set of states is determined by the subgroup
U(N) of number-preserving Bogoliubov transformations,
which is only a submanifold of the O(2N) manifold of
Gaussian states considered here. For O(2N)-invariant
random quadratic Hamiltonians, we find that the aver-
age eigenstate entanglement entropy is given by the an-
alytic formula (6) for systems of finite size. Explaining
from general arguments why in the thermodynamic limit
the average (28) arises more generally, identifying what
is the universality class and computing the finite size cor-
rections to the average and variance for different classes
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of random Hamiltonians would be an interesting avenue
for future work.

The random matrix techniques used here can also be
applied to derive similar “Page-like curves” for Renyi en-
tropies [21] and other information-theoretic quantities.
While here we focused on energy eigenstates and time-
independent Hamiltonians, our results provide also a pre-
diction for the value of the equilibrium entanglement en-
tropy under unitary evolution generated by a random
time-dependent quadratic Hamiltonian [46, 63, 64].

Another Page-like curve was considered recently [13,
15, 16] in the context of translationally invariant
quadratic Hamiltonians, for which the average entangle-
ment entropy over all eigenstates was computed. While
this average involves a discrete set of states which dif-
fers depending on the chosen Hamiltonians, numerical
evidence for several classes of translationally invariant
quadratic models suggested the conjecture that the re-
sulting curve is actually universal [56] in the thermody-
namic limit. The most compelling explanation for such
a behavior relies again on random matrix theory and as-
sumes that any such discrete set will ultimately sample
from the Haar measure on the manifold of translation-
ally invariant Gaussian states. It would therefore be a
meaningful avenue to adapt the methods developed in
this letter to derive similar analytical expressions for the
average entanglement entropy of translationally invariant
Gaussian states.
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