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We study the current-induced torques in asymmetric magnetic tunnel junctions containing a
conventional ferromagnet and a magnetic Weyl semimetal contact. The Weyl semimetal hosts
chiral bulk states and topologically protected Fermi arc surface states which were found to govern
the voltage behavior and efficiency of current-induced torques. We report how bulk chirality dictates
the sign of the non-equilibrium torques acting on the ferromagnet and discuss the existence of large
field-like torques acting on the magnetic Weyl semimetal which exceeds the theoretical maximum
of conventional magnetic tunnel junctions. The latter are derived from the Fermi arc spin texture
and display a counter-intuitive dependence on the Weyl nodes separation. Our results shed light on
the new physics of multilayered spintronic devices comprising of magnetic Weyl semimetals, which
might open doors for new energy efficient spintronic devices.

PACS numbers: 71.10.Pm, 73.22.-f, 73.63.-b

Introduction. Magnetic topological materials have
been a subject of intense interest in recent years [1–
6], exhibiting a unique interplay between magnetism
and band structure topology [2–4, 7]. In particular,
magnetic Weyl semimetals (MWSM), three-dimensional
topological semimetals with broken time-reversal sym-
metry, have drawn considerable attention due to their
unique electronic structure [3, 8, 9]. In these materials,
low-energy quasi-particles behave as chiral massless Weyl
fermions [8], underpinning several interesting transport
phenomena such as the chiral anomaly [10–13] and chiral
magnetic effect [14, 15]. In addition, MWSMs also host
topologically protected surface states, so-called Fermi arc
(FA) states, with distinctive spin textures [8, 16].

In this work, we show that the bulk chiral and FA
surface states have a strong influence on the flow of
spin-currents in magnetic tunnel junctions composed of
a MWSM and a trivial ferromagnet (FM) separated by
a thin insulating spacer, as illustrated in Fig. 1(a). The
current-induced torque can be decomposed into field-like
and damping-like components, referring to the reactive
and dissipative contributions (m×mP and m×(m×mP),
where m and mP are the magnetization orientation of
free and pinned layers), respectively. We discuss how the
chirality of the MWSM bulk states dictates the character-
istics of current-induced torques acting on the magnetiza-
tion of the trivial FM layer, giving rise to unconventional
voltage dependencies. In addition, we show that the pres-
ence of FA states at the MWSM/insulator interface nat-
urally leads to exceptionally large field-like spin transfer
torques into the MWSM layer, with a counter-intuitive
dependence on the magnetic exchange interaction. Our
findings highlight the novel non-equilibrium spin torques
phenomena due to MWSM, offering a new perspective on
the application of these systems in spintronics over what

is currently known [17–19].

Theoretical model. We investigate an asymmetric mag-
netic tunnel junctions (MTJ) [20–22] consisting of an
insulating spacer sandwiched between a MWSM and a
trivial FM, as sketched in Fig. 1(a). We employ a 4-
band tight-binding model describing a general 3D mag-
netic Weyl semimetal constructed on a cubic lattice of
side length a, whose k-space bulk Hamiltonian is [23, 24]

H = τz ⊗ [f(k) · σ] + τx ⊗ [g(k)σ0] + τ0 ⊗
(
β

2
m̂ · σ

)
,(1)

where f(k) = x̂t sin(kxa) + ŷt sin(kya) + ẑt sin(kza) and
g(k) = t(1− cos(kxa)) + t(1− cos(kya)) + t(1− cos(kza))
are structure factors, σ = x̂σx + ŷσy + ẑσz is the
vector of Pauli matrices and t = 1 eV is the near-
est neighbor hopping parameter. The Pauli matrices
τ (σ) operate in the orbital (spin) space and m̂ is
the unit vector pointing along the magnetization direc-
tion with β being the exchange splitting [25], related
to the exchange field strength Bexc by Bexc = β/2µB

where µB is the Bohr magneton. In constructing the
MTJ structure, we discretize the Hamiltonian operator
Ĥ along the transport direction (x-direction) by rewriting

it as Ĥ =
∑
j HS(k||)c

†
k||,j

ck||,j + Ŵc(k||)c
†
k||,j+1ck||,j +

Ŵ †c (k||)c
†
k||,j−1ck||,j , where k|| = (kz, ky) is the in-plane

momentum, j is the principal layer (PL) index and ck||,j

(c†k||,j
) annihilates (creates) a particle with momentum

k|| = (kz, ky) at the j-th PL. Hence, the MWSM is
viewed as a series of PLs having translational invariance
in the yz-plane, as described by HS, and connected to
its nearest-neighbor PLs via interlayer hopping matrices
Ŵc. The Hamiltonians describing the FM and insulating
barrier are also constructed in a similar fashion [26].
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FIG. 1: (Color online) (a) Asymmetric MTJ comprising of a
magnetic Weyl semimetal (left layer) and a trivial ferromag-
netic (right layer) contact. (b) Spin-texture and local density
of states at the interface of a semi-infinite magnetic Weyl
semimetal system as a function of kz, for ky = 0. Surface
normal is x̂, magnetization direction is ẑ. The vector field is
S = (Sz, Sy) as described in Ref. [26].

Spin texture of bulk and surface states. We begin by
reviewing the aspects of the MWSM which underlie the
unique properties of the MTJ device. The key property
is the chirality-derived spin texture of the bulk and sur-
face states in k-space. Figure 1(b) displays the surface
local density of states (LDOS), A(kz, ε), defined over the
yz surface assuming m̂ = ẑ, and associated spin texture
as a function of the z component of in-plane momentum
kz, with ky = 0, and energy ε as obtained from the sur-
face Green’s function of a semi-infinite MWSM lead [26].
The surface LDOS exhibits two distinct contributions;
from the FA and bulk states. The FA surface states ap-
pear as a straight line connecting the two Weyl nodes
at k±0 = (0, 0,±k0) [25], which we describe in more de-
tail in the next paragraph. The projected bulk states
form the Dirac cones around the Weyl points, which we
describe here. The origin of this behavior can be better
understood by considering the long-wavelength simplified
effective Hamiltonian derived from Eq. (1) for the two-
crossing bands: H = ~v(σxkx + σyky + κσz) with a kz-
dependent mass κ(kz) = 2t(sin(k0a/2)−| sin(kza/2)|)/~v
being positive when |kz| < k0 while vanishing at kz =
±k0. This approximation is valid to linear order in kx(y)
while |kz| ≤ π/a and the Fermi velocity is v = ta/~.
The expectation value of spin operator along the mag-
netization direction is 〈σz〉 = n[κ(kz)/εk], where εk =√
k2x + k2y + κ(kz)2, with sign governed solely by the con-

duction (n = +1) and valence (n = −1) band indexes.
The sign change can also be understood as a manifesta-
tion of the opposite electron and hole chirality at a given
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FIG. 2: (Color online) Panels (a) and (b) show the voltage de-
pendence of damping-like and field-like torques, respectively,
acting on the magnetization of the ferromagnetic layer at dif-
ferent doping levels EF . The dashed horizontal line highlights
the equilibrium torque values in both cases. The band dia-
grams are shown in panel (c) for EF = 0 eV, with negative
(top) and positive (bottom) voltages. Filled bands are rep-
resented by shaded regions and the spin kets represent the
net spin polarization direction. The shaded region between
µL and µR demarcate the transport energy window and the
tunnel barrier is represented in shaded gray.

Weyl node [27]. The spin polarization is the same for
both Weyl nodes at a given energy, reflecting the system
magnetization as shown in Fig. 1(b). The spin texture
around the Weyl points results in a sign change of the
spin polarization at the Weyl point energy, which is im-
portant for the behavior of the MTJ device we discuss in
the next section.

We next discuss the properties of the FA surface states,
whose spin texture is shown in Fig. 1(b). Because of their
chiral nature, these states inherit a peculiar spin texture
where, in this model, all spins are perpendicular to the
surface normal and magnetization x̂× m̂, irrespective of
the exchange field strength, a feature that is not present
in the bulk. For clarity, we consider the long-wavelength
description of a MWSM occupying the x < 0 half-space
(interface at x = 0), from which the following evanescent
solutions are obtained by assuming infinite mass bound-
ary conditions [28]:

ΨFA
k (r) = C

(
−i
1

)
eκxeikyyΦkz (z), (2)
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with dispersion εFAq = −~vky, where C is a normalization
constant and Φkz (z) is the periodic part of the Bloch
state along the z direction. The decay constant coin-
cides with the mass term κ(kz), and the evanescent solu-
tion exists as long as κ(kz) ≥ 0, a condition satisfied for
−k0 ≤ kz ≤ k0. We find a spin polarization frozen along
the y direction that survives deep into the bulk when
kz → ±k0, since κ−1 → ∞ in this limit. Finally, the
associated density of states is energy-independent and
proportional to the Weyl nodes separation 2k0. This in-
dicates that as k0 increases with exchange field β/2µB,
the number of states with spin polarization perpendicu-
lar to the magnetization also increases. These salient fea-
tures will result in large field-like torques acting on the
MWSM with an unique dependence on the Weyl nodes
separation 2k0 and will be discussed in more detail later.

Torques due to chiral bulk states. We begin by con-
sidering the current-induced torque exerted on the triv-
ial FM lead, focusing on its voltage dependence. For
simplicity, we neglect spin-orbit coupling in the trivial
FM lead and treat it within a minimal tight-binding
approach [26]. This enables the tracking of spin angu-
lar momentum transfer from current-carrying electrons
in the trivial FM solely in terms of spin-currents. In
steady state, the spin transfer torque acting on the lo-
cal moments at the i-th PL of the trivial FM is therefore
Ti = −[∇·Q]i, where [∇·Q]i = Qi−1,i−Qi,i+1 in the 1D
chain [20–22, 26], and Qi,i+1 is the spin current flowing
between layers i and i+1. The total spin transfer torque
acting on the trivial FM is T =

∑
i∈FM Ti = Q0,1, cor-

responding to the spin current density between the last
PL of the insulating spacer (0-th layer) and the first PL
of the right magnetic lead (1st layer). The Hamiltonian
describing the trivial FM and insulating spacer are also
discretized along the transport direction [26]. We assume
that, when the system is driven out of equilibrium un-
der an applied voltage V = (µR − µL)/e, where e is the
electron charge, the potential drops linearly within the
oxide spacer. Our convention is that V < 0 gives rise to
an electron flow from the MWSM to the FM layer.

Figure 2 shows the voltage dependence of the current-
induced damping-like and field-like torques in the FM.
For simplicity, we assume ML = ŷ, MR = ẑ and consider
different doping levels EF in the MWSM lead, referenced
from the Weyl node energy. The voltage dependence of
the damping-like torque for EF = 0 eV (blue symbols),
is an even function of V around V = 0. Such behavior is
at odds with the well-known linear voltage dependence of
damping-like torques in MTJs containing trivial FM con-
tacts [29–31]. However, with increasing MWSM doping
level, the torque curves acquires a more prominent linear
voltage dependence, eventually leading to damping-like
torques that act in opposite directions as we reverse the
voltage polarity. This behavior can be visualized by the
yellow and red symbols in Fig. 2(a), for EF = 0.25 eV
and EF = 0.5 eV, respectively.

(a)

kz (nm )

0   6  -6

0

   5

   -5

ky
 (

n
m

 )

10-1

Sy (arb. units)

Fermi arc

max(Sy)

(b)

1st Layer
   3

0
10th Layer

0

   3

ky
 (

n
m

 )

20th Layer

kz (nm )

0   6 -6
0

   3

ΔSy (arb. units)

10
-4

10
-3

10
-2

10
-1

max(ΔSy)

max(ΔSy)

max(ΔSy)

-1-1

-1 -1

FIG. 3: (Color online) (a) k||-resolved component of the non-
equilibrium spin density sy(εF ,k||) at the first MWSM layer
and (b) of the symmetric contribution, ∆sy = |sy(kz) +
sy(−kz)|/2, at different MWSM layers. The dashed circles
highlight the projections of bulk Fermi surfaces onto the k||-
space. We assume the following magnetization directions for
the ferromagnet and magnetic Weyl semimetal leads MR = ŷ
and ML = ẑ, respectively.

Figure 2(b) displays a similar trend for the non-
equilibrium contributions of the field-like torque. The
dashed horizontal line in Fig. 2(b) highlights the equi-
librium value, related to the equilibrium interlayer ex-
change coupling [29]. The non-equilibrium contributions
are in most cases negative at small doping levels for both
voltage polarities. This changes at sufficiently high dop-
ing levels, e.g., EF = 0.5 eV, where the non-equilibrium
field-like torques act in opposite directions with the volt-
age polarity.

We trace these non-trivial voltage dependencies to
the opposite chiralities of bulk valence and conduction
MWSM states, which in turn leads a sign change of the
spin current polarization at the Weyl point energy. To
show this, we have sketched the band diagrams for the
case EF = 0 eV in Fig. 2(c) for both voltage polarities.
When the system is driven out-of-equilibrium, the spin
current penetrating the trivial FM layer is determined by
the spin character of the right propagating states within
the transport energy window eV = µR − µL, illustrated
in Fig. 2(c). Under negative applied voltages, only right
propagating valence states of the MWSM lead can tun-
nel into the empty states of the FM lead while conserv-
ing energy and in-plane momentum. Hence, the states
penetrating the right FM lead are |ψt〉 = teikxx|y ↑〉,
where |y ↑〉 indicates the net-spin polarization direction
of valence states. The spin component of the incom-
ing state transverse to the magnetization of the trivial
FM are entirely lost due to spin-dependent reflection and
precession-induced dephasing of spins [32], leading to a
current-induced torque acting on the FM magnetization.

On the other hand, for positive applied voltages, left
propagating states undergo a spin-dependent reflection,
giving rise to right propagating reflected states of the
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FIG. 4: (Color online) Energy dependence of sy(ε) =
(2π)−2

∫
d2k||sy(ε,k||) considering ML = ẑ (in-plane) and

ML = x̂ (out-of-plane) configurations for β = 500 meV (left
panel) and β = 750 meV (right panel). The shaded en-
ergy window corresponds to that of Fermi arc states. (c)
Field-like torque efficiency Tx/J exerted on the MWSM in-
terface. Torque efficiency in conventional MTJs is limited to
the shaded region.

form |ψr〉 = reikxx|y ↑〉, since all valence states are oc-
cupied in the MWSM lead. Thus, positive and negative
applied voltages lead to right-propagating states with the
same net spin orientation, resulting in current-induced
torques that drive the magnetization of the FM layer to
the same direction. The physics is governed by the re-
spective chirality of the bulk particle-hole states.

In contrast, if the Weyl nodes are not at half-filling,
particularly in the limit where EF � |µL − µR|, the
energy transport window only consists of states of one
chirality from the MWSM. Hence, at V < 0 all tunneling
states would be of the form |ψt〉 = teikxx|y ↓〉 recovering
the expected odd-in-voltage dependency of damping-like
torques. At sufficiently high doping levels and large pos-
itive bias voltages V > 0, van Hove singularities due to
additional MWSM higher energy bands within the en-
ergy transport window leads to high voltage anomalies
as observed in Figs. 2(a) and (b). The same argument
applies to the case of large hole-doping.

Torques due to Fermi arcs. We next consider the
current-induced torques exerted on the MWSM. We find
remarkably large values of field-like torque, which we as-
cribe to the spin texture of the Fermi arc surface states.
The description of current-induced torques acting on the
MWSM lead cannot be reduced to a spin-current-only
calculation due to the presence of spin-orbit coupling in
these systems [33]. Our approach is based on the compu-
tation of the layer-resolved non-equilibrium spin-density.
The current-induced torque acting on the i -th PL of the
MWSM lead is Ti = Bexc × si, with Bexc = (β/2µB)ẑ
being the exchange field of the MWSM lead with magne-
tization along ẑ, i.e., ML = ẑ. si is the non-equilibrium
spin moment density at the i -th PL [26]. In our cal-
culations, we have considered different exchange field
strengths for the MWSM, quantified by β, ranging from
375 meV to 750 meV [34], at a fixed applied voltage of

V = 0.4 V so that electrons tunnel from the trivial FM
to the MWSM lead. Finally, we consider MR = ŷ for the
FM lead in the following.

Figure 3(a) displays the k||-dependent non-equilibrium
spin density along the y direction, sy(ε,k||), at the Fermi
level ε = 0 eV for the in-plane magnetized MWSM
case. The dashed circles highlight the projections of
the bulk Fermi surface onto the k||-space. As can be
seen, the largest contributions to sy(ε,k||) comes from
the FA while those from the bulk are at least 4 orders
of magnitude smaller. The total non-equilibrium spin
density at a given energy ε is obtained by integrating
sy(ε,k||) over the entire Brillouin zone. However, due to
the opposite chirality of states from the two Weyl points,
these spin densities should exactly compensate in equi-
librium. The net non-equilibrium spin density can be
made apparent by considering the symmetric component
∆sy = |sy(ε, ky, kz) + sy(ε, ky,−kz)|/2. The different
panels in Fig. 3(b) display ∆sy as one penetrates the
MWSM lead, which clearly show that non-equilibrium
spin densities decay away from the interface, but can still
survive tens of layers deep into the MWSM. This indi-
cates that FA contributions to current-induced torques
are not merely confined to a few layers from the inter-
face, as in trivial FMs [32]. This is due to the momentum-
dependent evanescent depth of FA states which diverges
at the connection points with the bulk Fermi surfaces,
as discussed previously. Fig. 3(b) reveals that the most
relevant contributions deep into the MWSM lead come
from the arc connections points with the bulk Fermi sur-
face while the contributions around kz = 0 decay very
rapidly from the interface.

The interface contribution to the total spin density
is shown in Fig. 4(a) as a function of energy consider-
ing β = 500 meV (left panel) and β = 750 meV (right
panel). We consider two distinct situations: in-plane,
ML = ẑ, and out-of-plane, ML = x̂, magnetized MWSM
lead, while keeping MR = ŷ for the FM. Because the FA
density of states is proportional to the in-plane projection
of ML, these two cases allow us to isolate contributions
of FA states from that of bulk states. Figure 4(a) shows
that in-plane and out-of-plane configurations contribute
the same sy, except in a narrow energy window (shaded
region) where there is an extra enhancement in the in-
plane case. This energy window coincides with the FA
states, confirming their role in the enhanced current in-
duced field-like torques. This results indicates that FA
states lead to a highly anisotropic angular dependence
for this torque. Additional evidence of the FA role is
provided by comparing left and right panels of Fig. 4(a),
where we show sy(ε) for β = 500 meV and β = 750 meV,
respectively. As is apparent, the extra contribution due
to FAs increases very rapidly with β. Such behavior is
counter-intuitive: one would expect that increasing the
exchange field leads to a less prominent contribution from
those spin states misaligned with the magnetization due
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to spin-orbit coupling, a picture that is no longer valid
in the presence of Weyl nodes due to constraints imposed
on spin states by the well-defined handedness of carriers.

This discrepancy can be reconciled by noting that the
density of FA states increases with β due to the larger
separation of Weyl nodes. This in turn results in an en-
hancement of sy within the FA energy window because
its spin eigenstates are locked to the ±y direction, as
previously discussed. Such feature leads to interfacial
field-like torques that increase very prominently with β,
as shown in Fig. 4(b). In particular, the interfacial field-
like torque efficiency, Tx/J where J is the current density,
surpasses the theoretical limit of ≈ 2(~/2e) expected for
conventional MTJs. These results indicate that field-like
torques might play an important role to the magnetiza-
tion dynamics of MWSM systems.

Conclusion. We have studied the current-induced
torques in magnetic tunnel junctions containing a mag-
netic Weyl semimetal contact. Our results show that
the presence of magnetic Weyl semimetals substantially
modifies the behavior current-induced torques. First, the
chirality of electronic bulk states gives rise to anomalous
voltage dependencies of spin transfer torque acting on a
trivial ferromagnetic layer. Second, the presence of topo-
logically protected Fermi arc states was found to produce
giant field-like torques acting on the Weyl semimetal,
in conjunction with a counter-intuitive behavior where
the torque increases with exchange field strength. Most
MWSMs discovered to-date consists of multiple pairs of
Weyl points with crossing bands. Nevertheless, the min-
imal model herein allows us to elucidate on the new non-
equilibrium spin torque physics, which could underpin a
new generation of spintronics with energy efficient mag-
netization switching.
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