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We study the many body localization (MBL) transition for interacting fermions subject to
quasiperiodic potentials by constructing the local integrals of motion (LIOMs) in the MBL phase
as time-averaged local operators. We study numerically how these time-averaged operators evolve
across the MBL transition. We find that the norm of such time-averaged operators drops discontinu-
ously to zero across the transition; as we discuss, this implies that LIOMs abruptly become unstable
at some critical localization length of order unity. We analyze the LIOMs using hydrodynamic
projections and isolating the part of the operator that is associated with interactions. Equipped
with this data we perform a finite-size scaling analysis of the quasiperiodic MBL transition. Our
results suggest that the quasiperiodic MBL transition occurs at considerably stronger quasiperiodic
modulations, and has a larger correlation-length critical exponent, than previous studies had found.

Intuition suggests that isolated many-body systems
initialized out of equilibrium should “thermalize” under
their intrinsic unitary dynamics, in the sense of approach-
ing a state in which local observables and correlation
functions exhibit equilibrium behavior [1–4]. Since An-
derson’s work [5], it has been understood that thermal-
ization is not fully generic: systems subject to strong
quenched randomness can instead exhibit a many-body
localized (MBL) phase, in which thermalization fails, and
the system instead retains a local memory of its ini-
tial conditions to arbitrarily late times [4, 6–11]. This
memory is due to the existence in the MBL phase of
(quasi-)local operators that are exact integrals of mo-
tion, called LIOMs or l-bits [11–19]. The existence of
the MBL phase and of LIOMs has been established un-
der minimal assumptions in one-dimensional random spin
chains [11]; experimental evidence for the MBL phase ex-
ists in many different settings [20–33] (but see Refs. [34–
41]). Rare regions—i.e., regions of a sample in which
the disorder is anomalously weak or strong—play a cen-
tral part in our understanding of MBL, determining the
nature of the MBL transition [42–51], response on both
sides of the transition [52–63], and even the stability of
the MBL phase in higher dimensions [56, 64]. However,
many experiments on the MBL phase treat systems sub-
ject to quasiperiodic (QP) rather than random poten-
tials [20, 24, 65–72]. Noninteracting 1d QP systems have
a localized phase [73], which appears to be perturbatively
stable in the presence of interactions [65]. However, rare
regions are absent in QP systems, so it seems that the
MBL transition—and the response near it—must differ
qualitatively from the random transition [66]. The nu-
merical evidence on the QP-MBL transition is mixed,
with some studies casting doubt on whether a transition
exists at all [74], while others find a breakdown of diffu-
sion [67, 75], potentially even in a regime where single-
particle states are delocalized [76, 77].

Most work on QP-MBL systems has worked in the
Schrödinger picture, considering the properties of typical

individual eigenstates across the transition. The response
of typical eigenstates in the MBL phase to a probe will
involve both the external QP potential and self-generated
configurational randomness, from the random pattern
of occupation of localized orbitals (which exert random
Hartree shifts on one another). Thus from the eigenstate
perspective there is no clear distinction between random
and QP MBL systems; since the transition is really an
instability of the MBL phase, one might be led to con-
clude that the transition should also be the same. In the
present work, we instead take the Heisenberg perspec-
tive and focus on the properties of the LIOMs as opera-
tors [78]. In the QP-MBL phase, the pattern of LIOMs
is quasiperiodic, with LIOMs approximately repeating at
regular distances that are rational approximants to the
QP pattern; there are no rare regions with anomalous LI-
OMs. Thus from this operator perspective the QP and
random MBL phases differ, and one would also expect
the transition at which LIOMs cease to exist to differ, if
rare regions are indeed important. (Whether this transi-
tion coincides with the transition into the thermal phase
is an issue we revisit below.)

In the present work we explicitly construct LIOMs in
QP systems by time-averaging local operators, as first
proposed in Ref. [15]. We perform the infinite-time av-
erage explicitly, via full diagonalization (we also explore
tensor-network methods [79] (see, also, references [80–
84] therein)). We analyze these LIOMs by computing the
fraction of the operator norm that comes from n-fermion
terms in the expansion O = Aijc

†
i cj +Bijklc

†
i c
†
jckcl + . . .,

using tensor-network methods to efficiently extract these
quantities [79]. These n-fermion weights give us a handle
on the specifically many-body effects that occur at the
transition: unlike transport and entanglement, it is not
contaminated by the single-particle critical point, which
lies somewhat near the apparent many-body transition.
We find that the n-fermion weights and the norm of the
LIOMs give us new ways of analyzing the transition,
pointing to a transition that occurs at larger values of
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FIG. 1. (a) Evolution of the fraction f2 of the weight of the time-averaged operator Ō that comes from fermion bilinears, vs.
QP potential h. The solid lines are the average over the phase offset φ and the “violin” shapes indicate the distribution over φ
(to see the behavior of the distributions one only needs to look at the ”left” or ”right” half of the ’violin’). (b) Subtracted norm
Nsub of Ō vs. h, where the subtracted operator is defined by projecting out hydrodynamic modes, eq. (6). Note the crossing at
h ≈ 4. Inset shows the evolution of Nsub with system size, indicating an instability that sets in as the system size is increased,
even for h = 3.5 where previous studies have seen an MBL phase. (c) Two-body component of the subtracted operator, defined
in Eq. (7); once again, this shows a crossing that is consistent with a discontinuous jump at the MBL transition. (d) The
quality factor, Q, of the finite-size scaling collapse of the curves in (b, c) as a function of the chosen collapse parameters hc, ν.
Q is optimal when it is equal to 1 and in general Q ≥ 1. The yellow dot marks the minimum of the cost function; by eye, the
best collapse is for slightly different parameters (green dot) [these collapses are shown in panels (e) and (f)]. The transition
seen in level statistics is marked by the red dot; our data are clearly inconsistent with these values. For all figures, averaging
was performed over 200 phases equally spaced in the interval [0, 2π). The color scheme for different system sizes is shared for
figures (b), (c), (e) and (f).

the QP potential, with different critical exponents, than
previously expected. This transition has notable similari-
ties to the random case: in particular, the LIOMs slightly
on the MBL side of the transition are tightly localized.
Thus, as in the random case, it seems that the QP-MBL
transition is an instability of the localized phase, which
sets in at some critical value of the localization length.
The microscopic origin of this instability remains unclear.

Model.– We consider the following model,

H =

L−1∑

i=1

(XiXi+1 + YiYi+1 + V ZiZi+1) +

L∑

i=1

hiZi, (1)

where X,Y, Z denote the Pauli matrices and hi =

h cos(2π/ϕ(i − L/2) + φ) where ϕ = 1+
√
5

2 and φ is
a phase offset that we tune to translate our window.
When V = 0, this is the noninteracting Aubry-André
model which has localized eigenstates for h > 2 and
extended eigenstates for h < 2. At nonzero V , finite
size exact-diagonalization studies [65–67] of the average
eigenstate entanglement and level statistics ratio have
found an MBL transition at hc ≈ 3 with a critical ex-

ponent ν ∼ 1. (However, studies on longer spin-chains
using the time-dependent variational principle have seen
a larger critical point, consistent with ours [70].) In this
letter we set V = 1/2.

Following [15], we construct LIOMs for this model by
time averaging a local operator O, which we choose to be
ZL/2. The time average of O is given by

Ō ≡ lim
T→∞

1

T

∫ T

0

dt O(t) =
∑

E

〈E|O|E〉|E〉〈E|, (2)

where |E〉 are eigenstates of H. In the MBL phase, we
expect Ō to be an approximately local operator with ex-
ponential tails, i.e., we expect there is some operator On
with support on n sites such that ‖O − On‖F ≤ e−n/ξ

where ξ is a characteristic localization length and ‖ · ‖F
denotes the Frobenius norm. In the ergodic phase, the
time average instead produces a non-local integral of mo-
tion, predominately the projection of O onto conserved
charges. We construct Ō by full exact diagonalization,
using Eq. (2). We explore finite-time averages, performed
using exact diagonalization as well as matrix-product
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methods, in [79].
Fermion weights.— We analyze the LIOMs by expand-

ing them in a basis of n-fermion operators. These are
related to the Pauli operators by a Jordan-Wigner trans-
formation, and evidently form a complete basis:

Ō =
∑

α

cαw
α1
1 wα2

2 · · ·wα2L

2L , (3)

where {wi, wj} = 2δij are Majorana fermions. In what
follows we will focus on two quantities: the Frobenius
norm of the operator, N ≡ Tr(Ō2), and its two-body
weight f2, defined by

f2 =
1

N
∑

|α|=2

|cα|2, N =
∑

α

|cα|2. (4)

We can also define four- and six-body weights accord-
ingly. As f2 is 1 for quadratic fermion operators, 1−f2 =
f4 + f6 + . . . measures the many-body content of the op-
erator. (These weights can be efficiently computed us-
ing matrix-product operator methods; we outline these
methods and present results on the weights fn with n > 2
in [79].) Note that N and f2 probe complementary as-
pects of the time evolution: N addresses how much of
the initial-state information survives in the time aver-
age, while f2 addresses what fraction of this information
is encoded in “simple” (i.e., few-body) operators.

Hydrodynamic modes.— Fig. 1(a) shows the average
and distribution of f2. As we might expect, f2 ap-
proaches 1 and we also find that N is of order unity
in the MBL phase, since in this phase the LIOMs are
approximately single-site occupation numbers. Less ob-
viously, f2 also approaches 1 deep in the thermal phase
(although N , not shown, goes to zero with system size).
One can understand this as follows. The operator O = Zi
has some overlap with the total conserved charge, I1 ≡∑
i Zi, which is conserved (and is a two-fermion opera-

tor), and also with the Hamiltonian I2 = H (which con-
tains two- and four-point operators). More generally, in
a system of size L, there are 2L nonlocal conserved oper-
ators, i.e., projectors onto eigenstates, while the operator
Hilbert space is 4L-dimensional. Since the operator O at
late times under chaotic dynamics is essentially random,
its projection onto the conserved eigenstates would be ex-
ponentially small in L if it were not for local conservation
laws. Neglecting these exponentially small components,
one can write Ō in the thermal phase as its projection
onto hydrodynamic modes using the (super)projector

P =
∑

l,k=1,2

|Ik〉〉C−1kl 〈〈Il|, (5)

where I1 =
∑
i Zi and I2 = H the conserved charges,

acting on a Hilbert space H, are now viewed as states
on the doubled Hilbert space H⊗H, and Ckl = 〈〈Ik|Il〉〉
the susceptibility matrix with 〈〈A|B〉〉 ≡ 2−Ltr(A†B).

Since H and Q are both composed of two- and four-
body operators, f2 remains of order unity throughout
the thermal phase.

Since the hydrodynamic modes exist on both sides of
the transition and the projection of an operator onto
these modes is a property of the t = 0 operator that
is insensitive to critical properties, we subtract the pro-
jection onto this hydrodynamic subspace and define the
“subtracted operator”

Ōsub ≡
Ō − P(O)

‖O − P(O)‖ . (6)

The denominator in Eq. (6) corrects for the fact that the
hydrodynamic projection of O smoothly increases with
increasing disorder, since the Hamiltonian is dominated
by single-site potential terms. (Empirically, we find that
not fixing the normalization of Ōsub leads to spurious
finite-size drifts in small-system numerics.) The norm
Nsub is defined as for the full operator. We also introduce
the subtracted two body component, f̃2sub, defined as

f̃2,sub ≡
∑
i<j |tr(Ōsubwiwj)|2∑

i<j |tr(Osub(0)wiwj)|2
. (7)

The rationale behind this normalization is, once again,
to correct for the changes in the four-fermion weight of
the subtracted operator as a function of h.

Results.—Our results are summarized in Fig. 1.
Fig. 1(a) shows the two-body weight f2 of the full time-
averaged operator (which, as noted above, is always
ZL/2); as we expect, this is non-monotonic because it is
dominated by hydrodynamic modes on the thermal side
of the transition and by single-site operators deep on the
MBL side of the transition. The sample-to-sample (or,
equivalently, site-to-site) fluctuations of this quantity are
large and size-independent deep in the MBL phase, neg-
ligible deep in the thermal phase, and intermediate in
magnitude near the transition. Note that there is clear
finite-size drift of f2 for fields as large as h = 4, which
previous literature [65–67] has assumed to be deep in the
MBL phase.

We now turn to the properties of the subtracted op-
erator (6). Fig. 1(b) shows its norm, which decreases
with system size in the thermal phase but saturates in
the MBL phase. The decrease in the thermal phase is
consistent with an exponential [79], which is what we
would expect since we projected out hydrodynamic con-
tributions. Similarly, the subtracted two-body compo-
nent f̃2,sub decreases continuously in the thermal phase
and saturates in the MBL phase: this is, again, expected
since the residual finite-size contributions to Ōsub in the
thermal phase are highly nonlocal and have negligible
two-body components.

While both quantities vanish identically in the ther-
modynamic limit throughout the thermal phase, it is not
a priori obvious whether they should rise continuously
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from zero or jump discontinuously at the MBL transi-
tion. Our numerical results strongly suggest the latter:
the curves for both Nsub and f2,sub vs. system size cross
in the interval h ∈ (4, 4.5); moreover, the crossing shifts
weakly to larger h with increasing system size, suggest-
ing that there are relatively “simple” LIOMs (with large
two-body component) all the way up to the transition.
This is consistent with a picture where the QP-MBL
phase becomes unstable to thermalization at some criti-
cal value of the QP potential, but remains deeply local-
ized all the way up to the transition. In the random case,
“avalanche”-based theories of the MBL transition gener-
ally predict this behavior, and it is also consistent with
the available numerical evidence [57, 59, 85–87]. How-
ever, since avalanches do not obviously occur in QP sys-
tems, this behavior is unexpected (and had not previ-
ously been numerically observed to our knowledge).

Another unexpected feature of these results is that the
transition point and its critical properties differ quite
strongly from those seen in previous numerical studies
[Fig. 1(d-f)]. Collapsing our finite-size data to the single-
parameter scaling form φ(L, h−hc) = φ(L1/ν |h−hc|/hc),
where ν is the correlation-length exponent, we find that
the data collapses well in the parameter range hc ∈
(4, 4.5), with values of ν ∈ (2, 3). These results are
very different from the expectation (gleaned, e.g., from
studying the level statistics) that hc ≈ 3 and ν ≈ 1. In
Fig. 1(d) we have plotted the figure of merit [specifically,
the log quality factor | logQ| extracted from the Python
package pyfssa [88]] for attempted data collapses with
various possible combinations of hc and ν: our numerical
data for the transition in the LIOMs are evidently incon-
sistent with previous predictions for the critical point. If
anything, our scaling collapses show weak drift to larger
values of hc, suggesting that the transition might occur
even deeper in the apparent MBL phase than our esti-
mates above.

A clue as to why our results look so different from pre-
vious studies can be gleaned from the inset to Fig. 1(b).
For h = 3, 3.5 (which would conventionally be regarded
as critical and localized respectively) Nsub remains large
for all the system sizes we study. However, it decreases
with system size in a way that is accelerating at larger
L. This pattern is not consistent with the expected
finite-size effects in the MBL phase, which should scale
as e−L/ξ, where ξ is the correlation length, and should
therefore flatten out at larger sizes. Rather, these results
support a scenario in which the system seems localized
on short scales, but then (beyond some critical scale ξ)
realizes it is unstable. The scale ξ diverges as h is in-
creased toward hc, and can be regarded as a correlation
length.

Discussion.— In this work we studied the properties
of LIOMs across the quasiperiodic many-body localiza-
tion transition, constructing them as time-averaged local
operators. In the thermal phase, these time-averaged op-

erators are just projectors onto global conserved quanti-
ties like the total energy and charge; once these hydro-
dynamic parts are subtracted out, the remainder of the
operator vanishes rapidly. In the MBL phase, instead, a
time-averaged local operator retains a finite norm, since
it has non-hydrodynamic projections onto the LIOMs.
There is a transition at which these LIOMs cease to exist
and the norm of the subtracted time-averaged operator
vanishes. This apparent transition has a critical point
and critical exponents that are inconsistent with the ap-
parent transition in observables such as eigenstate entan-
glement and nearest-neighbor level statistics. Notably,
the apparent correlation-length exponent ν ∈ (2, 2.5)
that we extract from the finite-size scaling of the LIOMs
is much larger than the Luck bound ν ≥ 1 (whereas pre-
vious results had ν = 1, saturating the Luck bound).
Indeed, we should emphasize that the results we have
presented do not constitute strong evidence for the exis-
tence of an MBL phase at all, and are in principle con-
sistent with a transition that occurs at hc = ∞; how-
ever, the MBL phase is perturbatively stable for suffi-
ciently large h, and no nonperturbative instabilities have
yet been identified, so we take the point of view that
there is a transition in the window where we see one.
A counterintuitive implication of our results is that if
ν ≥ 2, the QP-MBL critical point is perturbatively sta-
ble against weak randomness by the Harris criterion [89].
(We note that a similar result was found using a real-
space RG scheme in Ref. [68].) This could suggest, ei-
ther that there is a critical value of randomness required
to change the universality class of the QP-MBL transi-
tion, or that both the QP-MBL critical point and some
part of the QP-MBL phase undergo a nonperturbative
instability for infinitesimal randomness.

How can we reconcile our observations with the results
on level statistics and entanglement? One possibility is
that there are two separate transitions with distinct crit-
ical properties, one at which the level statistics changes
its character and another at which LIOMs cease to exist.
This could happen, for example, if there were an inter-
mediate phase with a many-body mobility edge [90, 91].
However, it is unclear whether such many-body mobility
edges can exist [91], and even if they do, the transition
in entanglement should occur once the entire spectrum
is localized. Thus it is not clear how this scenario could
apply to our case. A second possibility is that the LI-
OMs we study here have weaker finite-size effects than
the level statistics, because they are less affected by state-
to-state fluctuations that are large in finite systems [66].
(All known finite-size effects favor the MBL phase, so a
higher hc value is more plausible, assuming there is a
single transition.)

Our results shed light on the nature of this transition
at which LIOMs cease to exist, which we tentatively iden-
tify with the MBL transition. In particular, we find that
LIOMs even slightly on the MBL side are mostly fermion
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bilinears with large norm; thus they overlap strongly with
microscopic spins. The QP transition, like the random
one, appears to be an instability of the MBL phase that
sets in at some critical localization length as one increases
the system size. In random systems, such an instabil-
ity is thought to be seeded by rare regions that are lo-
cally thermal. Although rare regions do not exist, strictly
speaking, in QP systems, one might still expect the in-
stability to occur first in some parts of the sample. One
might expect LIOMs to be unusually delocalized in sam-
ples that contain these parts. However, we do not see
much evidence of enhanced heterogeneity at the transi-
tion (Fig. 1). It therefore seems that the instability we
are seeing is due to the proliferation of many-body res-
onances in typical regions of the sample. The origin of
these resonances remains to be identified.

Our work, like all ED studies, is inherently limited
to small system sizes. An important question for future
work is whether one can construct LIOMs for much larger
systems. We attempted to do so by time evolving lo-
cal operators via time-evolving block decimation (TEBD)
applied to matrix-product operators [79], and averaging
over finite time windows. Unfortunately, to get a good
approximation to the LIOMs away from the deeply lo-
calized limit, one must average over such long time win-
dows (comparable to the Heisenberg time) that TEBD is
impractical [79], because the bond dimension needed to
describe the operator grows intractably large. Whether
other forms of explicit time-averaging, e.g., based on
Krylov-space methods [61, 92], can provide access to
larger systems and sufficiently long times is an interesting
question for future work.
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Phys. Rev. B 100, 104203 (2019).

[71] E. V. Doggen, I. V. Gornyi, A. D. Mirlin, and
D. G. Polyakov, Many-body localization in large sys-
tems: Matrix-product-state approach, arXiv preprint
arXiv:2101.05651 (2021).
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I. COMPUTATION OF THE k-BODY FERMION WEIGHT

Here we provide a formula to compute the k-body fermion weight. To start we write an operator, O, in the basis
of Majorana fermions

O =
∑

α

cαw
α1
1 wα2

2 · · ·wα2L

2L , (S1)

where wi are hermitian operators which satisfty {wi, wj} = 2δij . The k-body fermion weight is given by,

fk =
1

N
∑

|α|=k
|cα|2 , N =

∑

α

|cα|2. (S2)

It is straightforward to show that,

∑

|α|=k
|cα|2 =

1

4L

∑

|α|=k
|tr(O†wα1

1 wα2
2 · · ·wα2L

2L )|2, (S3)

where |α| ≡∑i αi, and it is also straightforward to see that

∑

α

|cα|2 =
1

2L
tr(O†O). (S4)

Plugging in the above relations into Eq. (S2), one finds

fk =
1

2Ltr(O†O)

∑

|α|=k
|tr(O†wα1

1 wα2
2 · · ·wα2L

2L )|2. (S5)

II. CONSTRUCTING L-BITS WITH TEBD

As discussed in the main text the l-bits are obtained through time averaging, i.e.

Ō = lim
T→∞

1

T

∫ T

0

dtO(t). (S6)

Ō is expected to be approximately local (starting from a local operator) deep in the MBL phase, so Ō can be
efficiently represented as an MPO [S1]. Our main text suggests that deep in the thermal phase Ō is dominated by
the hydrodynamic modes of our system and so it should be well described by an MPO since the only (dominant)
hydrodynamic modes are H and M . Near the transition it is less clear how accurate an MPO description is of Ō.
Denoting ξ as the characteristic length over which the l-bits have support (this is only well defined in the MBL
phase) then intuition from the random case suggests that ξ should remain finite as one approaches the delocalization
transition from the MBL phase (see Section VII). Motivated by this idea we attempted to construct the l-bits using
TEBD.



2

A. Method Description

Proceeding with the discussion of Ō’s construction, we define the finite time average Ō(T ) ≡ 1
T

∫ T
0
dtO(t). Dis-

cretizing time into intervals of ∆t and denoting M ≡ T/∆t , then

Ō(T ) ≈ 1

M

M∑

n=1

O(n∆t) +O((∆t)2). (S7)

Using this approximation we have the following relation,

Ō(T ) =
1

M
((M − 1)Ō(T −∆t) +O(T )). (S8)

Keeping track of the finite time average, we can use this formula to construct Ō(T ) by adding the two MPO repre-
sentations of Ō(T −∆t) and O(T ). If Ō(T −∆t) is described by a bond dimension ψ MPO and O(T ) is described
by a bond dimension χ MPO then Ō(T ) is described by a bond dimension χ + ψ MPO. Since the enlarged bond
dimension, χ+ψ, may not be the optimal bond dimension for Ō(T ) or it may be too large to handle numerically, one
generally needs a compression scheme to lower the bond dimension.

The standard method of compressing an MPO is done by applying an SVD to each tensor in the MPO and discarding
the appropriate number of singular values until either we are below some error threshold, ε, or above some maximal
bond dimension, D. This method will give the optimal tensor of bond dimension D to use for a given site but this
may not be the best global representation of Ō at bond dimension D. An improvement to this method is to use
an iterative compression scheme [S2] which takes an initial guess for the globally best MPO and then minimizes the
Frobenious norm between the truncated average, Ō(T )approx, and the exact average, i.e. we iteratively minimize
||Ō(T )− Ō(T )approx||2 where ||A||2 = tr(A†A).

Let us summarize the above steps: we calculate O(T ), then using Ō(T − ∆t) we construct Ō(T ) using Eq. (S8)
and using the SVD compressed approximation of Ō(T ) as our initial guess, we employ iterative compression to bring
Ō(T ) down to a lower bond dimension.

To perform the standard TEBD step we pick ∆t = 0.05 and use a fourth order trotterization scheme of the time
evolution operator given by [S3, S4],

e−iH∆t ≈ U(τ1)U(τ1)U(τ2)U(τ1)U(τ1) +O((∆t)5), (S9)

where

U(t) = e−iHoddt/2e−iHevente−iHoddt/2, (S10)

τ1 = ∆t
4−41/3 , τ2 = ∆t−4τ1 and Heven/odd are the terms in the Hamiltonian acting on even/odd bonds in the chain. As

we perform time evolution we keep track of the operator norm square of Ō(T ) and the two body weight of Ō(T ). While
the former quantity is easily computable via standard matrix-product techniques, the fact that f2 can be efficiently
computed is less trivial. Not only do we show how this can be done in Section IV for f2 but also for all fk where k is
even.

B. Results

Unfortunately we found two big computation walls to this method: convergence time of observables and bond
dimension. In Fig. (S1) we demonstrate that already at L = 8 we see a long convergence time is required for f2 and
when we are closer to the transition this time scale increases. Furthermore, we see that when we are deeper into the
MBL phase we have fairly good convergence with bond dimension-seeing convergence occuring close to χ = 32. On
the other hand when we are near the transition even for χ = 64 (25% of the Hilbert space dimension) we are unable
to converge at long times which suggests that we cannot get near the transition if we were to increase system size. In
addition we remark that the inaccuracy that develops in the description of Ō(T ) is due to the truncation error from
O(T ) which is a well known issue in performing long time simulations with TEBD. We also note that it may be the
case that Ō still has an approximate MPO representation but it is not practical to construct it using TEBD. Thus
we find that using matrix-product methods is not a practical tool to study the MBL transition but could be used to
examine quantities deep within the MBL phase as previous studies have done [S1, S5]. We will however use MPO
techniques to compute the k-body weight even for system sizes accessible to exact diagonalization (see below).
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FIG. S1. The (left) and (middle) plots show the time evolution for f2 with L = 8, zero global phase shift, and h = 4.5 or
h = 5 respectively. It is evident from these two plots that convergence with bond dimension is exceedingly better when we are
deeper inside the MBL phase rather than near the transition. The color scheme for both the (left) and (middle) are the same.
(right) The four body weight averaged over 200 phases uniformly spaced in the interval [0, 2π) and the error bars signify the
standard deviation. Clear strong finite size effects can be seen in f4 and based on the maximum of f4 the critical point seems
to be closer to h ≈ 3.

III. ED COMPUTATION OF fk

While MPOs are not a viable route to study the full phase diagram, the MPO construction of fk turned out to
be a useful way to compute fk using ED. The standard brute force method would require using Eq. (S5) which is
not very efficient even though the wi are sparse matrices. An improvement to this would be to utilize the U(1)

symmetry present in the problem and compute the overlap with normal ordered fermion operators c†i cj , c†i c
†
jckcl.,

etc. Another way we found that was not extremely expensive was to utilize Eq. (S16) (in the next section) and create
O+ by arranging all the blocks in a 2L × 2L matrix and build Hk by contracting the tensors. The cost of matrix
multiplication is O(4L(2k + 1)2) but in practice we found that diagonalization was still the dominant computation.

In Fig. (S1) we present the average of f4 and its behavior as a function of quasiperiodic modulation. Contrary to

f̃2,sub, this suffers from much larger finite size effects, which accounts for the smaller critical point value. Further finite
size effects do not weaken if we consider its subtracted counterpart (not shown), f4,sub, which is defined in Section V.

IV. EXTENDING THE k-BODY WEIGHT CALCULATION FOR MATRIX PRODUCT OPERATORS

Here we show that the k-body weight can be efficiently computed for matrix product operators. We first write an
operator, O, in the pauli basis,

O =
∑

β

bβσ
β1

1 σβ2

2 · · ·σβL

L . (S11)

Using the Jordan-Wigner transformation,

w2j−1 =
∏

k<j

ZkXj , w2j = −
∏

k<j

ZkYj , (S12)

one can show that Majorana strings and pauli strings are related to each other by a phase, i.e. wα1
1 wα2

2 · · ·wα2L

2L =

eiθ(α)S(α). Applying this fact to the numerator of Eq. (S5), we see that
∑

|α|=k
|tr(O†wα1

1 wα2
2 · · ·wα2L

2L )|2 =
∑

|α|=k
|
∑

β

b∗βtr(σβ1

1 σβ2

2 · · ·σβL

L S(α))|2

= 4L
∑

|α|=k
|bβ(α)|2.

Going to from the first to the last line, I used the orthonormality of pauli strings and used β(α) to denote the pauli
string corresponding to the Majorana string with occupation number α. The above calculation illustrates another
way we can compute the numerator of Eq. (S5). Defining the two operators,

O+ =
∑

β

|bβ|2σβ1

1 σβ2

2 · · ·σβL

L , (S13)
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and

Hk =
∑

|α|=k
S(α), (S14)

one can see that
∑

|α|=k
tr(O†+S(α)) = 2L

∑

|α|=k
|bβ(α)|2, (S15)

which shows

fk =
tr(O†+Hk)

tr(O†O)
. (S16)

Next, we show that Eq. (S16) can be computed efficiently when O and Hk have MPO representations. Writing down
the MPO representation of O in the pauli basis,

O =
∑

β,a

Aβ1[1]
a0,a1A

β2[2]
a1,a2 · · ·AβL[L]

aL−1,aLσ
β1

1 σβ2

2 · · ·σβL

L , (S17)

one can see that

|bβ|2 =
∑

a,a′
(Aβ1[1]

a0,a1A
β1[1]∗
a′0,a

′
1

) · · · (AβL[L]
aL−1,aLA

βL[L]∗
a′L−1,a

′
L

). (S18)

Denoting the tensors for the MPO representation of Hk as W
βj [j]

a′′j−1,a
′′
j

and using the above expression one finds

tr(O†+Hk) =
∑

β,β′,a,a′,a′′
(Aβ1[1]

a0,a1W
β′1[1]

a′′0 ,a
′′
1
A
β1[1]∗
a′0,a

′
1

) · · · (AβL[L]
aL−1,aLW

β′L[L]

a′′L−1,a
′′
L
A
βL−1[L]∗
a′L−1,a

′
L

)tr(σβ1

1 σ
β′1
1 σβ2

2 σ
β′2
2 · · ·σβL

L σ
β′L
L )

= 2L
∑

β,a,a′,a′′
(Aβ1[1]

a0,a1W
β1[1]
a′′0 ,a

′′
1
A
β1[1]∗
a′0,a

′
1

) · · · (AβL[L]
aL−1,aLW

βL[L]
a′′L−1,a

′′
L
A
βL−1[L]∗
a′L−1,a

′
L

)

= 2L
∑

β,β′,a,a′,a′′
(Aβ1[1]

a0,a1W
β′1[1]

a′′0 ,a
′′
1
δβ1,β

′
1A

β′1[1]∗
a′0,a

′
1

) · · · (AβL[L]
aL−1,aLW

β′L[L]

a′′L−1,a
′′
L
δβ1,β

′
1A

β′L−1[L]∗
a′L−1,a

′
L

).

The last line illustrates that this is an expectation value of a superoperator MPO whose tensors are given byWβjβ
′
j [j]

aj−1,aj =

W
β′j
aj−1,ajδ

βj ,β
′
j and so the complexity of the calculation scales polynomially with the bond dimension of O and Hk. In

the following subsection we show that Hk can be represented by an MPO whose bond dimension only depends on k.

A. MPO construction of Hk

In order to construct the MPO representation of H2, we need to first identify all the Majorana strings with |α| = 2.
Using Eq. (S12), the two body fermion operators up to a phase are given by,

Xj

k−1∏

i=j+1

ZiYk, Yj

k−1∏

i=j+1

ZiYk, Xj

k−1∏

i=j+1

ZiXk, Yj

k−1∏

i=j+1

ZiXk, Zj , (S19)

where X,Y, Z denote the standard Pauli matrices. We can now use the method described in Ref. [S6], where one
constructs a weighted finite automaton to generate the operator whose summands are those above. The diagram
which constructs this weighted finite automaton is given in Fig. (S2).

To construct the MPO for H4 we have to identify all the Majorana strings with |α| = 4. To find such strings, it is
useful to introduce the following diagrammatic notation for the Majorana strings:

←→ single site Xj or Yj

←→ strings of Zj with length greater than or equal to 2,
∏

j

Zj

←→ single siteZj

←→ single site identity,1j .
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FIG. S2. Diagrams which construct the weighted finite automata for the (left) two body hamiltonian and (right) the four body
hamiltonian.

Using this diagrammatic notation and Eq. (S19), one finds that only two diagrams correspond to the two body
operators:

←→ Xj

k−1∏

i=j+1

ZiYk, Yj

k−1∏

i=j+1

ZiYk, Xj

k−1∏

i=j+1

ZiXk, Yj

k−1∏

i=j+1

ZiXk

←→ Zj .

This suggests the following interpretation: two vertical lines connected by a horizontal line contributes two fermion
operators and an ”X” contributes two fermion operators.One can now write down the diagrams for the four body
operators,

←→ two non-overlapping two body strings

←→ a single site Zj with a non-overlapping two body string

←→ two non-overlapping single site Zj

←→ a two body string broken by an insertion of a Zj .

The last diagram tells us that a circle contributes two fermion operators while a vertical line with a horizontal line
attached contributes one fermion operator. Accounting for the possible spatial orderings of the diagrams and the fact
that a vertical line can either be Xj or Yj , one arrives at the diagram that constructs the weighted finite automaton
shown in Fig. (S2).

The diagrams can be used to construct the matrices as shown in Ref. [S6]. Denoting W
σjσ
′
j [j]

2/4 the matrices in the
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MPO representation of H2/4, then

W
σ1σ
′
1[1]

2 =
(
1 X Y Z 0

)
, (S20)

W
σjσ
′
j [j]

2 =




1 X Y Z 0
0 Z 0 X Y
0 0 Z Y X
0 0 0 1 0
0 0 0 0 1


 , 1 < j < L, (S21)

W
σLσ

′
L[L]

2 =




Z
X + Y
X + Y
1

1


 , (S22)

and

W
σ1σ
′
1[1]

4 =
(
1 X Y Z 0 0 0 0 0

)
, (S23)

W
σjσ
′
j [j]

4 =




1 X Y Z 0 0 0 0 0
0 Z 0 X Y 1 0 0 0
0 0 Z Y X 0 1 0 0
0 0 0 1 0 X Y Z 0
0 0 0 0 1 X Y Z 0
0 0 0 0 0 Z 0 X Y
0 0 0 0 0 0 Z Y X
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




, 1 < j < L, (S24)

W
σLσ

′
L[L]

4 =




0
0
0
Z
Z

X + Y
X + Y
1

1




. (S25)

One can see in Fig. (S2) that the four body diagram is essentially two two body diagrams (the first two body
diagram is with states A−D and the second is formed with states E−I) joined together by extra transitions between
states. This extends to arbitrary k body weight for k even and the matrices for the k body weight with k even have
bond dimension 2k+1 and the initial and final MPO tensors are the same but with 0s padding to the right of the first
tensor and the top of the last tensor. The bulk MPO tensor is given by repeating the first four rows of eq. (S24) for
2k− 4 times and then the last 5× 5 block is given by the the corner 5× 5 block in the lower right corner of eq. (S24).

V. COMPUTATION OF THE k-BODY WEIGHT FOR THE SUBTRACTED L-BIT

Here we calculate the k-body weight of the subtracted l-bit. Given a Hamiltonian with conserved quantities, Ik,
which are not necessarily linearly independent, then the (super)projector onto the subspace spanned by the Ik is given
by

P =
∑

lk

|Ik〉〉C−1
kl 〈〈Il|, (S26)

where the Ik, acting on a Hilbert space H, are now viewed as states on the Hilbert space H⊗H and Ckl = 〈〈Ik|Il〉〉
with 〈〈A|B〉〉 ≡ 2−Ltr(A†B). Using Eq. (S5), the k-body weight for the subtracted l-bit, denoted as fk,sub is given by,

fk,sub =
1

2Ltr(Z̄2
sub)

∑

|α|=k
|tr(Z̄subw

α1
1 wα2

2 · · ·wα2L

2L )|2, Z̄sub = Z̄k − P(Z̄k). (S27)
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In this section we heavily abuse notation and will usually replace Z̄k with Z̄ and Zk with Z. We first calculate the
subtracted norm, i.e. the denominator of Eq. (S27).

tr(Z̄2
sub) = tr(Z̄2) + tr(P(Z̄)2)− 2 tr(Z̄P(Z̄))

= tr(Z̄2) + tr(P(Z̄)2)− 2 tr((P(Z̄) +Q(Z̄))P(Z̄))

= tr(Z̄2)− yTC−1y.

Going from the second to the third line we wrote Z̄ = P(Z̄) + Q(Z̄) where Q is the (super)projector onto the
orthogonal complement of the hydrodynamic subspace and the fact that 〈〈Ik|Z̄〉〉 = 〈〈Ik|Z〉〉. In the last line we
introduced the vector yk ≡ 〈〈Ik|Z〉〉. Using the fact that H and the magnetization, M ≡ ∑

i Zi, are the only
(dominant) hydrodynamic modes, we find

CHM =

L∑

k=1

hk, CHH = 2(L− 1) + V 2(L− 1) +

L∑

k=1

h2
k, CMM = L, (S28)

yH = hk, yM = 1. (S29)

Before calculating the numerator we remark that since P(Z̄) only contains operators with only two or four body
fermion operators (in our model) then the numerator of with Z̄sub is the same as Z̄. Thus we only need to calculate
the numerator for k = 2 and k = 4.

A. Computation of the subtracted 2-body weight

Straightforward computation shows that,

∑

|α|=2

|tr(Z̄subw
α1
1 · · ·wα2L

2L )|2 =
∑

i<j

|tr(Z̄subwiwj)|2

=
∑

i<j

|tr(Z̄wiwj)|2 + |tr(P(Z̄)wiwj)|2 − 2 Re(tr(Z̄wiwj)
∗tr(P(Z̄)wiwj)).

(S30)

The second term can also be straightforwardly computed,

∑

i<j

|tr(P(Z̄)wiwj)|2 =
∑

i<j

|
∑

kl

C−1
kl 〈〈Il|Z〉〉tr(Ikwiwj)|2

=
∑

klmn

C−1
kl C

−1
mn〈〈Il|Z〉〉〈〈In|Z〉〉

∑

i<j

tr(Ikwiwj)
∗tr(Imwiwj)

= yTC−1FC−1y,

(S31)

where Fkm =
∑
i<j tr(Ikwiwj)

∗tr(Imwiwj). To calculate Fkm we first write H and M in the Majorana basis. Using

Eq. (S12), we get

H =
L−1∑

k=1

−iw2kw2k+1 + iw2k−1w2k+2 − V w2k−1w2kw2k+1w2k+2 − i
L∑

k=1

hkw2k−1w2k (S32)

M =

L∑

k=1

−iw2k−1w2k, (S33)

and so

tr(Hwiwj) = 2L
( L−1∑

k=1

iδ2k 2k+1,ij − iδ2k−1 2k+2,ij + i
L∑

k=1

hkδ2k−1 2k,ij

)
(S34)

tr(Mwiwj) = 2L
L∑

k=1

iδ2k−1 2k,ij . (S35)
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Using the above results we can compute Fkm and find

FHM = 4L
L∑

k=1

hk, FHH = 4L(2(L− 1) +
L∑

k=1

h2
k), FMM = 4LL. (S36)

We now calculate the third term in Eq. (S30). Plugging in the expression for P(Z̄), we find
∑

i<j

Re(tr(Z̄wiwj)
∗tr(P(Z̄)wiwj)) =

∑

lm

C−1
lm ylRe(

∑

i<j

tr(Z̄wiwj)
∗tr(Imwiwj))

= −
∑

lm

C−1
lm ylRe(

∑

i<j

tr(Z̄wiwj)tr(Imwiwj))

= −yTC−1z,

where zm = Re(
∑
i<j tr(Z̄wiwj)tr(Imwiwj)). Using Eq. (S34), we find that

zH = 2Ltr(Z̄(−Hfree))

= 2L(−tr(ZH) + V
L−1∑

i=1

tr(Z̄ZiZi+1)),

zM = 2Ltr(−ZM),

(S37)

where Hfree refers to the part of H which only contains two body operators. Defining the vector dk =

(V tr(Z̄
∑L−1
i=1 ZiZi+1), 0), then zk = 2L(dk − yk) and the third term in Eq. (S30) becomes,

∑

i<j

Re(tr(Z̄wiwj)
∗tr(P(Z̄)wiwj)) = 2LyTC−1y − 2LyTC−1d (S38)

Plugging Eq. (S31) and Eq. (S38) into Eq. (S30),we get
∑

|α|=2

|tr(Z̄subw
α1
1 · · ·wα2L

2L )|2 =
∑

i<j

|tr(Z̄wiwj)|2 + yTC−1FC−1y − 2L+1(yTC−1y − yTC−1d). (S39)

B. Computation of the subtracted 4-body weight

The calculation is carried out in a similar fashion as the 2-body weight.
∑

|α|=4

|tr(Z̄subw
α1
1 · · ·wα2L

2L )|2 =
∑

i<j

|tr(Z̄subwiwj)|2

=
∑

i<j<k<l

|tr(Z̄wiwjwkwl)|2 + |tr(P(Z̄)wiwjwkwl)|2

− 2 Re(tr(Z̄wiwjwkwl)
∗tr(P(Z̄)wiwjwkwl)).

(S40)

The second term will have the same form as Eq. (S31), but with with a new F which we call F 4 =∑
i<j<k<l tr(Ikwiwjwkwl)

∗tr(Imwiwjwkwl). Notice F 4 will only have F 4
HH 6= 0. We find that

tr(Hwiwjwkwl) = −2L
L−1∑

p=1

V δ2p−1 2p 2p+1 2p+1,ijkl, (S41)

thus

F 4
HH = 4LV 2(L− 1). (S42)

The third term in Eq. (S40) also has the same form except there is no minus coming from the conjugate transpose of
the four fermion operator and now the vector z is redefined as z4 and only z4

H 6= 0. We find,

z4
H = 2LV tr(Z̄

L−1∑

i=1

ZiZi+1), (S43)
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FIG. S3. (top left) IPR and (bottom left) PR of the singular values of 〈`jk〉φ averaged over 176 phase realizations uniformly
distributed between [0, 2π). The (top right) average IPR and (bottom right) average PR of the singular values `jk.

which means z4
k = dk. Putting the results together we have

∑

|α|=4

|tr(Z̄subw
α1
1 · · ·wα2L

2L )|2 =
∑

i<j<k<l

|tr(Z̄wiwjwkwl)|2 + yTC−1F 4C−1y − 2L+1yTC−1d). (S44)

VI. LINEAR INDEPENDENCE OF THE L-BITS

The l-bits we used were constructed by performing time evolution on a local operator followed by a time average.
These l-bits are different than the usual ταi

i which are orthonormal and only exist in the MBL phase. First, they
are not necessarily orthonormal but as was shown in Ref. [S5] the overlaps between l-bits exponentially decay as one
goes deep into the MBL phase for the random case. Second, our l-bits are conserved operators regardless of where
we sit in the phase diagram. Here we numerically demonstrate that the l-bits are indeed linearly independent in the
quasiperiodic case by computing the inverse participation ratio (IPR) and participation ratio (PR) of the singular
values of the matrix `jk ≡ 〈〈Z̄j |Z̄k〉〉, i.e. IPR =

∑
i s

4
i and PR = 1/IPR. In Fig. S3 we show the average IPR and

average PR as well as the IPR and PR from the singular values of the averaged matrix 〈`jk〉φ. Recall the number of
non-zero singular values directly translates to the rank of `jk (or its averaged counterpart). This means deep in the
thermal phase we expect the time averaged operators to be linearly dependent so the rank should be close to 1 and so
the IPR should be close to 1. In the MBL phase we expect the time averaged operators to be linearly independent and

so all the singular values should be of the same order. Since we normalize the singular values to satisfy
∑L
i=1 s

2
i = 1

then each s2
i should approximately scale as 1/L and so the IPR should vanish in the MBL phase. As one can see in

Fig. S3 both of these limiting behaviors are exhibited in the IPR and in the PR (since it is just the reciprocal of the
IPR). In addition, a crossing seems to occur for h ∈ (2, 3) which is considerably lower than the estimate in the main
text but this is due to stronger finite size effects in the IPR than to our observables in the main text.
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FIG. S4. Operator locator density averaged over 176 phase realizations uniformly distributed between [0, 2π). x is the lattice
site shifted by half the system size so that all system sizes have the same origin. One can see that the l-bit remains fairly
localized even as we are approaching the vicnity of the critical point given by either the subtracted norm or subtracted two
body component.
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FIG. S5. [(left) and (right) Average half entanglement entropy divided by the page value, ST , and the average level statistics
ratio, r for the quasiperiodic case (left) and the random case (right). One can see that a crossing occurs around h ≈ 3 for
the quasiperiodic case while the crossing occurs closer to h ≈ 4 in the random case. The quasiperiodic case was averaged over
500 phase realizations and the random case was averaged over 1000 realizations. In both cases the average half entanglement
entropy and the level statistics ratio were computed in the M = 0 sector removing 10% of the eigenstates from the extremes of
the spectrum.
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with previous studies. (middle) Here is the average subtracted norm squared of Z̄L/2 which seems to exhibit a crossing near
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unsubtracted norm squared of ZL/2 which does not exhibit a crossing. Overall there is qualitatively similar behavior between
the random case and the quasiperiodic case but quantitatively the subtracted norm squared is lower than the quasiperiodic
case. (right) Here we perform a collapse of the subtracted norm squared data for ν = 2. Although the low sample size does
not make this estimate precise, we did find that ν = 1 does not gives a worse collapse than ν = 2.

VII. SPATIAL STRUCTURE OF THE L-BITS

Here we present a characterization of the spatial structure of our l-bits. To do so, we decompose our l-bit in the
Pauli basis given by Eq. (S11). One can then compute the left-right weight distribution given by,

ρ(z, y) =
1

N
∑

|β|=|z−y|
|bβ|2, N =

∑

β

|bβ|2, (S45)

which gives us the fraction of weight the l-bit has in Pauli strings which start at site z and end at site y. Finally, one
can define another quantity called the operator locator density defined as,

L(x) =
∑

z≤x≤y

ρ(z, y)

y − z + 1
, (S46)

which gives a weighted average of Pauli strings which have support on site x. This quantity gives a picture of where
the support of the l-bit is. As can be seen in Fig. (S4), at large h the l-bit only has support near the center of the
chain since we constructed our l-bit from ZL/2, while at small h the l-bit has support across the whole chain since the
l-bit becomes a random operator in the ergodic phase. As we go towards the transition 4 < h < 4.6 from the MBL
phase, the l-bit still remains localized near the center of the chain suggesting that the size of the l-bit remains finite
even at the transition similar to the random case.

VIII. COMPARISON TO THE RANDOM CASE

In this section we show how the random case deviates from the quasiperiodic case. We first show in Fig. (S5) the
average half entanglement entropy, S, divided by the Page value for a random pure state, ST = 1/2(Llog 2− 1), and
the average level statistics ratio, r ≡ min(∆n,∆n+1)/max(∆n,∆n+1) where ∆n = En −En+1 is the spacing between
energy eigenvalues for the M = 0 sector. Examining Fig. (S5), we observe a crossing at h ≈ 3 for the quasiperiodic
case and h ≈ 4 for the random case.

In Fig. (S6) we present our new observables f2 and Nsub. Similar to Refs. [S7, S8] we see broader distributions
in f2 compared to the quasiperiodic case as well as stronger finite size effects. While we only averaged over a small
sample size of 899 disorder realizations, one can see that a crossing seems to occur at higher disorder strengths than
previously seen before and with a critical exponent of ν ≈ 2 which satisfies the Chayes bound. Another feature is
that the norm squared of the operator is smaller in the localized phase than in the quasiperiodic case which another
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reassuring signal that the MBL transition sits at higher disorder strength.
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