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We present a microscopic theory for quantum thermoelectric and heat transport in the Schwarzian
regime of the Sachdev-Ye-Kitaev (SYK) model. As a charged fermion realization of the SYK model
in nanostructures we assume a setup based on Quantum Dot connected to the charge reservoirs
through weak tunnel barriers. We analyze particle-hole symmetry breaking effects crucial for both
Seebeck and Peltier coefficients. We show that the quantum charge and heat transport at low tem-
peratures is defined by the interplay between elastic and inelastic processes such that the inelastic
processes provide a leading contribution to the transport coefficients at the temperatures smaller
compared to charging energy. We demonstrate that both electric and thermal conductance obey
power law in temperature behavior while thermoelectric, Seebeck and Peltier coefficients are expo-
nentially suppressed. This selective suppression of only non-diagonal transport coefficients have not
been previously reported. We discuss validity of Kelvin formula in the presence of strong Coulomb
blockade.

Introduction. – In recent years, the Sachdev-Ye-
Kitaev (SYK) model [1, 2] became a hot spot for nu-
merous studies due to its unique features. This model,
which can be formulated in terms of Majorana fermions
or conventional complex fermions (cSYK) in (0 + 1)
dimensions, has solvable non-trivial limits with absent
quasiparticles, saturates the bound for quantum chaos
[3, 4] and is connected holographically to black holes
with AdS2 (1 + 1 dimensional anti-de-Sitter) horizons
[5]. Extensions of the model to the coupled cSYK clus-
ters reproduce the benchmark properties of strange met-
als [6, 7], such as linear in temperate resistivity [8] and
thermal diffusivity [9], observed in cuprates [10], pnic-
tides [11] and twisted bilayer graphene [12]. The cSYK
model allows a non-trivial analytic saddle-point solution
if the dynamics of the model can be neglected. This
solution possesses both conformal SL(2,R) and gauge
U(1) symmetries. The low-energy limit of the SYK
model is governed by the symmetry breaking mecha-
nism of Goldstone reparametrization modes [13, 14],
known as the Schwarzian regime in theories of gravity
in a nearly AdS2 space-time [4, 5, 15]. The cSYK model
with charge density Q is shown to possess the residual
zero-temperature entropy S per particle proportional
to the parameter controlling particle-hole asymmetry
E in the system, ∂S

∂Q = 2πE , ([16]) and identified as
the Bekenstein-Hawking entropy of the charged black
hole [17–19]. The finite Bekenstein-Hawking entropy
is present in both conformal and Schwarzian regimes of
the theory [20]. Various experimental realizations of the
SYK model are proposed in quantum gases [21], Majo-
rana wires [22] and topological superconductor [23] de-
vices. Possible experimental realization of the cSYK
model in irregularly shaped graphene flake quantum
dots [24, 25] opens possibilities for direct studies of ther-
moelectric transport properties of the model.

The thermoelectric transport through quantum dots
is a subject of extensive theoretical [26–29] and exper-
imental [30–33] studies, as it opens broad possibilities

for technological advancements in thermoelectric and
microelectronic industries [34–36] and provides tools
for better understanding of strongly correlated systems
[37, 38]. Among all thermoelectric coefficients, the ther-
mopower S is a subject of a particular interest due to
its high sensitivity to the particle-hole asymmetry of the
system. The thermopower measurements allow probing
of particle-hole asymmetry related effects and provide
information about low-energy excitations in the system
[28, 39, 40]. These properties of the thermopower make
it a useful tool for capturing Fermi liquid - non-Fermi
liquid transitions (FL-NFL) by accessing NFL regime
[41, 42].

Substantial progress was recently made in entropy
measurement of mesoscopic quantum systems [43] of size
up to a few particles [44, 45]. One of the most interesting
and promising developments in these fields is studying
the entropy via the thermoelectric properties of the sys-
tem [46–49]. This approach employs the fact that under
certain conditions the thermopower can be regarded as
the entropy per particle [50]. The thermoelectric trans-
port coefficients relate the charge and heat current, Ie
and Ih, to applied voltage and temperature differences,
∆V and ∆T , in the linear response regime as

Ie = G∆V +GT∆T,
Ih = GT∆V +K∆T.

(1)

G is the electric conductance, GT is the thermoelectric
coefficient, S = GT /G is the thermopower, κ = K −
GS2/T is the thermal conductance [51–53].

The entropy and thermopower are connected by the
Kelvin formula S=

(
∂S
∂N

)
T,V

, where N is the number of

particles [54] (we use units e=~=kB=1 for the electron
charge, Planck’s and Boltzmann constants). This re-
lation is an empirical approximation of thermopower
given in terms of the transport coefficients Eq.(1). It is
considered to be applicable in the thermodynamic limit
of the transport [55], but does not necessarily hold in a
general case [56, 57]. While approximate in most cases,



2

the Kelvin formula is shown to be exact in systems with
the SL(2,R) symmetry [9]. One of the most well-studied
examples of the systems realizing this symmetry is the
SYK model in the conformal regime [19].

The transport properties of the cSYK dots are exten-
sively studied in the conformal regime [19, 25, 58, 59].
It is shown that the system exhibits FL-NFL transitions
governed by the parameters of the dot. In a recent study
[60], its authors examine the Schwarzian regime of the
SYK model realized in a quantum dot with addition of
the finite charging energy, EC , and argue that the re-
lation between the entropy and the thermopower holds
there as well, which opens possibilities for direct mea-
surements of the residual Bekenstein-Hawking entropy
in proposed experimental realization of the cSYK model
[24, 25]. However, these studies account for only di-
rect tunneling (aka ”elastic tunneling” [61]) in quantum
transport, while the inelastic co-tunneling transport can
significantly affect transport properties of quantum sys-
tems [27, 28], including the transport through the cSYK
quantum dot [62].

In the present Letter, we examine the low temperature
limit of quantum transport through the cSYK quantum
dot and address the violation of the relation between
thermopower and entropy due to the dominant role of
inelastic processes in presence of the Coulomb blockade.
Model. – We consider a cSYK quantum dot (QD)

coupled to two identical metallic leads, in a set-up sim-
ilar to [58, 60]. Fermions of the cSYK dot and the lead
are coupled via the tunneling term.

The Hamiltonian of the cSYK dot with i=1...N
electronic orbitals represented by N complex spinless
fermions [63] is given by

HSYK =
1

(2N)3/2

N∑
ijkl=1

Jij;klc
†
i c
†
jckcl − µ

N∑
i=1

c†i ci, (2)

where Ji,j;k,l is the random Gaussian interaction con-
stant with zero mean value 〈Jij;kl〉 = 0 and nonzero
variance 〈|Jij;kl|2〉 = J2, µ is the chemical potential of
fermions inside the dot. Since the leads are identical,
we consider QD coupled to symmetric superposition of
the electronic states (one ”effective” contact). The full
Hamiltonian, which takes the lead into account, reads

H = HSYK +E
(0)
C n̂2 +

∑
q

εqa
†
qaq+

∑
i

(
λic
†
iaq +H.c.

)
,

(3)
λi is the random tunneling constant, we assume that it
is Gaussian with zero mean 〈λi〉 = 0 and non-zero vari-
ance 〈|λi|2〉 = λ2. Operators a, a† represent a symmet-
ric combination of fermions in the leads with dispersion

relation εq. E
(0)
C is the charging energy and n̂ =

∑N
i c
†
i ci

is the charge on the dot [64].
The average tunneling term 〈λi〉 = 0, so the direct
tunneling does not contribute to the system’s currents.
Since both the elastic and inelastic co-tunnelings are

present, this situation resembles tunneling through a
barrier randomly fluctuating in time [65]. For an ar-
bitrary tunneling constant variance λ2, the fermion
Green’s function (GF) of the dot is effectively renor-
malized in the presence of the lead. In the confor-
mal limit of the cSYK model [2, 19], this renormaliza-
tion of the Green’s function was discussed in [58, 60].
Physics of an isolated SYK dot in the low temperature
regime Je−N/2 � T � J/[N logN ] (we denote further
T ∗ ≡ J/[N logN ]) is defined by the Schwarzian action
(derived in [13, 14]), which appears due to breaking
of conformal symmetry SL(2,R) group with an addi-
tional contribution to the the cSYK model from break-
ing U(1) symmetry (discussed in [62]). The inequality
Je−N/2 � T in the limit of large N ensures that effects
of mean-level spacing can be neglected [13] , all further
results are discussed within this assumption. The ap-
pearing Goldstone modes renormalize the saddle point
solution for the conformal GF [66]. We assume that the
dot-lead coupling λ is the smallest energy scale of the
system (λ � min{T, T ∗)}). It allows consideration of
the system in the vicinity of the original saddle point of
the isolated cSYK dot, similar to [25, 62]. This assump-
tion is not related to the effects of breaking particle-hole
symmetry in the conformal and Schwarzian limits of the
model, that we are interested in the scope of this Letter.

At temperatures above the charging energy, E
(0)
C �

T � J , the effects of the Coulomb blockade are re-
duced and the direct tunneling dominates the transport
properties. This case was studied in details in [60]. In
the present Letter, we focus on transport properties at
low energy scales, where inelastic co-tunneling processes
give crucial contribution to the currents. So, we are in-

terested in two energy scales, T ∗ � T � min{E(0)
C , J}

and T � T ∗ � min{EC , J}. The former corresponds
to the conformal regime, while the latter is described
by the Schwarzian physics. The relevance of the latter
case was additionally addressed in [62], as the charg-
ing energy is effectively renormalized by the Goldstone

modes, EC = E
(0)
C + K with the additional contribu-

tion to the charging energy K ∼ T ∗. It ensures that
the effective charging energy is always EC > T ∗. We
suppose further that EC includes this renormalization
of the charging energy.

The thermoelectric properties of the system are ex-
pressed via the electric Ie and heat Ih currents, given in
the weak tunneling limit by the Fermi golden rule [35]

Ie = −2π

∫ ∞
−∞

dερa(ε)ρc(ε)∆f(ε, T ),

Ih = −2π

∫ ∞
−∞

dεερa(ε)ρc(ε)∆f(ε, T ), (4)

where ρa and ρc are density of states (DoS) in the lead
and the dot correspondingly, f(ε, T ) is the Fermi dis-
tribution function at temperature T , ∆V is the applied
voltage and ∆f(ε, T ) = f(ε + ∆V, T + ∆T ) − f(ε, T ).



3

Free fermion DoS in metal has weak energy dependence
around the Fermi level, so it can be put to a constant
ρa = (2πvF )−1 [25, 58, 60], vF is the Fermi velocity.

Eqs.(1) and (4) allow us to find the system’s elec-
tric conductance G, thermoelectric coefficient GT and
thermal conductance κ [67]. Following the approach of
[27, 28], we express these entities through the T -matrix
in the Matsubara representation T [38] (the T -matrix
is supposed to be momentum independent, which is the
case for short-range interactions).

G =
1

2vF

∫ ∞
−∞

dt
1

cosh (πTt)
T
(

1

2T
+ it

)
, (5)

GT = − iπ

2vF

∫ ∞
−∞

dt
sinh (πTt)

cosh2 (πTt)
T
(

1

2T
+ it

)
, (6)

K =
π2T

vF

∫ ∞
−∞

dt
1

cosh3 (πTt)
T
(

1

2T
+ it

)
− Tπ2G. (7)

As follows from Eqs. (5)-(7), the thermoelectric
transport properties of the considered system are com-
pletely defined by the T -matrix T . For direct tun-
neling (dt), the leading term contributing to the T -
matrix is proportional to the two-point finite temper-
ature Matsubara GF GT (τ), Tdt(τ) ' λ2GT (τ). In the
inelastic co-tunneling case (in), it is expressed via the
four-point finite temperature cSYK correlator FT (τ),
Tin(τ) ' λ4 T

sin(πTτ)FT (τ) [68].

Reparametrization modes. – The Hamiltonian
(2) is invariant under U(1) and SL(2,R) symmetry
reparametrizations [19]. It does not change after

the transformation ci(τ) → e−iφ(τ)
[
ḣ(τ)

]1/4
ci(h(τ)),

where h(τ) is a monotonic time reparameterization with
winding number 1, φ is a phase fluctuation with possibly
arbitrary integer winding number [20, 62].

These symmetries are broken by both time derivative
in the action and by additional terms in Eq.(3). This
leads to an effective action associated with energy costs
of φ(τ) and h(τ) fluctuations. As is shown in [62], the ef-
fective action Seff splits into two independent parts for
the corresponding fluctuations up to 1/N -corrections,
Seff = Sh+Sφ, where Sh = −m

∫
dτSch(h(τ), τ));Sφ =

16m
∫
dτ [φ′(τ)]

2
. Sch(h, τ) ≡ (h′′/h′)′ − 1

2 (h′′/h′)2 is

the Schwarzian operator, m = N logN
64J

√
cos 2θ

2π is the ef-

fective mass appearing during the renormalizaton pro-
cedure [62], θ is related to the average hole occupation

Q as Q ≡ 〈n〉N = 1
2 −

θ
π −

sin(2θ)
4 [19, 69].

Conformal regime. – Here we consider tunneling in
the conformal case of the cSYK model, valid at temper-
atures T ∗ � T � J . The tunneling in the system is a
sum of the elastic and inelastic processes.

Direct tunneling dominates at high temperatures
T � EC [25, 62]. The T -matrix for elastic processes
in the leading order is T (τ) = λ2Gc(τ)D(τ). The con-

formal cSYK GF Gc(τ) is

Gc(τ) = −Csgn(τ) sin (π/4− sgn(τ)θ)

(
TJ

sin(πT |τ |)

)1/2

,

(8)

C = [(8/π) cos(2θ)]
−1/4

, the spectral asymmetry pa-
rameter E defines θ as e2πE = tan(θ + π/4) [20, 70].
The two-point Coulomb correlator D(τ) reads

D(τ) =
θ3

(
−iECτ − iEπ, e−

EC
T

)
θ3

(
−iEπ, e−

EC
T

) e−EC |τ |, (9)

θ3(•, ∗) is the Jacobi theta function [67, 71].
In this regime, the electric conductance G is sup-

pressed with T by the Arrhenius exponential factor

G∼e−
EC
T at T�EC , while G∼ 1√

T
at T�EC [62, 72–

76]. Thermopower S in this regime grows at small
temperatures, while it saturates to a constant propor-
tional to the spectral asymmetry parameter E at large T
[19]. In the pure SYK system without charging energy
of the dot, the Lorenz ratio L = limT→0

κ
TG at zero

temperature is modified in accordance with [9]. The
Wiedemann-Franz law breaks down at finite tempera-
tures if the Coulomb blockade effect is present in the
system (T � EC), similar to [53].

Inelastic co-tunneling process dominates at low tem-
peratures T ∗ � T � EC , where the direct tunneling
is exponentially suppressed by the Coulomb blockade.
The leading term in inelastic component of the T -matrix
Tin(τ) consists of the two-point free fermionic correla-
tor, four-point SYK, FSYK, and Coulomb, FC , correla-
tors: FT (τ) ' FSYK(τ)FC(τ) [67]. As shown in [14], the
leading term in the 1/N orders of the SYK four-point
function in the conformal limit is a factorization of the
two-point functions Eq. (8), FSYK(τ) ' Gc(τ)Gc(−τ) .

Evaluation of Eq. (5) in this case gives that the elec-
tric conductance G is linear in temperature G ∼ T .

Electric conductance G of both elastic and inelastic
processes were analyzed in [60, 62, 67]. In the conformal
regime, G is linear in temperature in the T � EC limit,
but the direct tunneling quickly becomes dominant with
increase of temperature [77].

The thermoelectric coefficient GT is exponentially
small in the T � EC limit for both elastic and inelas-
tic processes, the leading contribution is elastic, it gives

GT ∼ e−
EC
T .

Schwarzian regime. – In this section we study the
transport properties away from the conformal regime.
This case is realized at T � T ∗. The physics of the di-
rect tunneling is defined by the two-point Green’s func-
tion. The two-point Coulomb correlator in this case is
again given by Eq.(9). In this region of parameters,
the SYK GF is strongly renormalized by the soft mode
h(τ). The exact form of the temperature dependent GF
in time representation was found in [78]. In the low-
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temperature limit, the renormalized GF is

Gr(τ)→ −sgn(τ)
β3/2

(4π)
1
4

Γ4( 1
4 )

π

me−
π2

βm

|τ |3/2(β − |τ |)3/2
, (10)

β≡1/T . The contribution from the direct tunneling is

strongly suppressed by the Arrhenius exponent e−
EC
T

from the Coulomb correlator.
In the inelastic co-tunneling case, the four-point SYK

correlator is renormalized by the h(τ)-modes. Follow-
ing [78, 79], one can express this correlator FSYK(τ) =
〈Gτ [h]G−τ [h]〉h in the limit of low temperature as

F r(τ)→ β
3
2πm

1
2 e−

π2

βm

2
3
2 |τ | 32 (β − |τ |) 3

2

. (11)

This correlator defines the scaling law of the the elec-
tric conductance as G ∼ T 3/2. The four point Coulomb
correlator does not depend on T and E in the leading or-
der, so the electric conductance G retain the power-law
scaling. In contrast, the thermoelectric coefficient GT is
always exponentially suppressed at T�EC . It follows
from the symmetries of Eq.(6), since the exponentially
small corrections to FC(τ) give the only non-vanishing
contribution in this case. In the Schwarzian regime,

the leading contribution is elastic, GT ∼ T−2e−
EC
T

(same as in the conformal regime). This fact changes
the thermopower S below EC both in conformal and
Schwarzian regimes. The resulting thermopower is de-
picted in Fig.1. It saturates to S= 4π

3 E at T�EC , ap-
proaching this limit as ∼ 1√

T
, but it is exponentially

suppressed at T�EC , so it reaches zero instead of hav-
ing divergence, which were expected if one considered
only the direct tunneling in the system.

S ∼

{
(T ∗/T )3e−

EC
T , T ∗ � T � EC

(T ∗/T )
7
2 e−

EC
T , T � T ∗

. (12)

The same analysis is applicable to the Peltier coeffi-
cient Π due to its connection to thermopower, Π= TS
[35]. Both the thermopower and the Peltier coefficient
are antisymmetric in the spectral asymmetry parameter
E and exponentially suppressed at low temperature by
the Arrhenius exponent. The exact dependence of S on
E is shown in [67].
Thermal conductance. – As follows from Eq.(7) and

our analysis of the charge conductance and thermoelec-
tric coefficient above, at temperatures below T � EC ,
both in conformal and Schwarzian regimes, contribution
to the thermal conductance κ proportional to G2

T is ex-
ponentially suppressed, the temperature dependence of
κ has the same scaling in the leading order as TG and
stems form the inelastic co-tunneling. The temperature
dependence of κ is shown in Fig.2.

Lorenz ratio. – The authors of [9, 60] have demon-
strated that the Wiedemann-Franz law and the Lorenz
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ratio [35, 36, 81] are violated in the conformal regime

of cSYK model, LSYK = π2

5 . Accounting the inelastic
co-tunneling contribution to the transport coefficients
in this regime, we come to the Lorenz ratio

Lin = lim
T→0

κ(T, E = 0)

TG(T, E = 0)
=
π2

2
.

Considering the same entity in the Schwarzian case,
we come to the Lorenz ratio Lin ' 0.52π2.

Discussion. – We considered effects of inelastic
co-tunneling in thermoelectric transport of the cSYK
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model in conformal and Schwarzian limits. We demon-
strated that even in the weak tunneling limit the related
tunneling process gives the leading order contribution
to electric conductance G, and thermal conductance
κ. The thermoelectric coefficient GT is exponentially
suppressed in both elastic and inelastic co-tunneling
regimes at temperatures below EC , while the electric
and thermal conductances retain the power law behav-
ior. This selective suppression of the thermoelectric co-
efficient appears as a consequence of the particle-hole
symmetry breaking. The diagonal transport coefficients
are not sensitive to small particle-hole asymmetry and
have finite values in the particle-hole symmetric point,
while the off-diagonal coefficient, GT , is non-zero only
when this symmetry is broken. It is proportional to
the asymmetry parameter E (at E � 1). All the terms
contributing to the two-point and four-point Coulomb
correlators that contain E also contain some power of
the Arrhenius exponent, which leads to the reported
low-T suppression of GT . In contrary, the diagonal
transport coefficients stem at low temperatures predom-
inantly from the E-independent term of the four-point
correlator, which does not have the exponential suppres-
sion at low temperatures, so they exhibit power law be-
havior in T . As a direct consequence of this thermoelec-
tric Coulomb blockade, thermopower S is exponentially
suppressed as well. In general, the importance of in-
elastic co-tunneling in the conductance peaks 〈Q〉 = N
was underlined in [28, 82, 83] while in the conductance
valleys 〈Q〉 = N + 1

2 the direct tunneling usually ac-
counts for all relevant contributions [26]. However in the
Schwarzian regime the effective charging energy always
has non-zero value, so the inelastic contribution is cru-
cial here, resulting in the exponential suppression of S.
The selective Coulomb blockade of different transport
coefficients, namely electric and thermal conductances,
were recently observed experimentally in context of the
heat Coulomb blockade [84].

The Kelvin formula for thermopower, rigorous for
the cSYK model at T�EC , is not applicable when the
Coulomb blockade effects cannot be neglected. This dis-
crepancy arises due to the leading role of the inelastic
processes, so the transport coefficients now have differ-
ent energy-dependence from DoS [55].

Even when the transport coefficients of the cSYK
model stem from the inelastic co-tunneling contribution,
the Lorenz ratio of the cSYK model is not sensitive to
the renormalization of the model by reparametrization
modes and the Coulomb blockade effects. The similar
finite temperature relation (the Wiedemann-Franz law)
is violated due to the Coulomb blockade effect.

Conclusion. – In this Letter we analysed tempera-
ture behavior of the charge and heat transport coef-
ficients in the Schwarzian regime of cSYK model. We
showed that both electric and thermal conductance obey
power law in temperature behavior characteristic for

non-Fermi liquid regimes while Seebeck and Peltier coef-
ficients are exponentially suppressed. The leading con-
tribution to the transport coefficients in this regime is
given by the inelastic processes. We suggest to test
the theoretical predictions in quantum transport exper-
iments in semiconductor nanostructures.
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