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We present a new method for calculating the time-dependent many-body wavefunction that follows
a local quench. We apply the method to the voltage-driven nonequilibrium Kondo model to find
the exact time-evolving wavefunction following a quench where the dot is suddenly attached to
the leads at t = 0. The method, which does not use Bethe Ansatz, also works in other quantum
impurity models (we include results for the interacting resonant level and the Anderson impurity
model) and may be of wider applicability. In the particular case of the Kondo model, we show that
the long time limit (with the system size taken to infinity first) of the time-evolving wavefunction
is a current-carrying nonequilibrium steady state that satisfies the Lippmann-Schwinger equation.
We show that the electric current in the time-evolving wavefunction is given by a series expression
that can be expanded either in weak coupling or in strong coupling, converging to all orders in
the steady state limit in either case. The series agrees to leading order with known results in the
well-studied regime of weak antiferromagnetic coupling and also reveals a new universal regime of

strong ferromagnetic coupling, with Kondo temperature T
(F )
K = De−

3π2

8
ρ|J| (J < 0, ρ|J | → ∞). In

this regime, the differential conductance dI/dV reaches the unitarity limit 2e2/h asymptotically at
large voltage or temperature.

Introduction.—The Kondo model, which describes a
localized spin interacting via spin exchange with one or
more reservoirs of electrons, has long been a source of
new ideas in theoretical physics [1]. Its nonequilibrium
physics became of great interest when the model was re-
alized in quantum dot systems in the Coulomb blockade
regime, with attached leads serving as reservoirs. When
a voltage difference is imposed between two leads, an
electric current is driven through the dot [2–5]. The cor-
responding nonequilibrium theory has been studied by
a variety of approaches, both in the Kondo model itself
[6–11] and in the more general Anderson impurity model
[12–21] (see the references of Ref. [11] for a more com-
plete list).

In this Letter, we probe the nonequilibrium physics
via a quantum quench, a protocol in which the ground
state of an initial Hamiltonian Hi is evolved in time by
a final Hamiltonian Hf following a sudden change of pa-
rameters. Here the initial state of the quench consists
of a free Fermi sea in each of the two leads – with the
applied voltage appearing as the difference in chemical
potentials – and the quench protocol consists of evolving
this state by the full Kondo Hamiltonian (see Fig. 1).
This quench allows us to access the steady state regime
of the nonequilibrium Kondo model in the long time limit
(we first take the limit of infinite system size so that the
leads serve as thermal baths [8]).

We present here the results of a new method for
calculating the many-body wavefunction following this
quench. This method is also applicable to other quan-
tum impurity problems and may have wider applicability.
We concentrate on the steady state current as a function
of the source-drain voltage and the temperatures of the
leads. We first calculate the current in the much-studied
weak coupling antiferromagnetic regime and find, as ex-

FIG. 1. Schematic of the quench process. Prior to t = 0, the
leads are filled with free electrons, with no tunneling to the
dot allowed. From t = 0 onward, the system evolves with the
many-body Hamiltonian H , with tunneling to and from the
leads resulting in an electric current.

pected, that at energy scales much smaller than the band-
width, the current is a universal function governed by an
emergent scale: the Kondo temperature TK . We then
proceed to identify another universal regime: strong fer-

romagnetic coupling, with its own scale T
(F)
K . Further

details on our calculations are available in Refs. [22–24].
With universality in mind, we study the two lead

Kondo model in the wide-band limit [8]:

H = −i
∫ L/2

−L/2
dx

∑

γ=1,2

ψ†
γa(x)

d

dx
ψγa(x)

+
∑

γ,γ′=1,2

1

2
Jψ†

γa(0)σaa′ψγ′a′(0) · S. (1)

Formally, the initial density matrix is ρ = ρ1 ⊗ ρ2, where

ργ = exp
[
− 1
Tγ

∑
|k|<D(k − µγ)c

†
γkacγka

]
is the Fermi

distribution (cut off by the bandwidthD) in lead γ = 1, 2,
and ρ(t) = e−iHtρeiHt is the time-evolving density ma-
trix following the quench at t = 0.
Our method provides the explicit and exact solution

for ρ(t). The solution applies for 0 ≤ t < L/2, which is
the regime of interest: in the calculation of the current,
we take the steady state limit (t → ∞) after the ther-
modynamic limit (L → ∞ with D fixed, hence a fixed
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density of electrons). The thermodynamic limit is taken
order-by-order either in J or 1/J .
Exact wavefunction.—It suffices to find the time evo-

lution of an N -electron state (rather than density
matrix) with arbitrary quantum numbers: |Ψ(t)〉 ≡
e−iHtc†γNkNaN . . . c

†
γ1k1a1

|a0〉, where a0 is the impurity
spin. Our method yields [25]:

|Ψ(t)〉 =
N∑

n=0

2−n/2
∑

1≤m1<···<mn≤N
(−1)m1+···+mn+1

×




N∏

j=1,j 6=mℓ ∀ℓ
e−ikjtc†γjkjaj


 ∑

σ∈Sym(n)

(sgn σ)

× |χkmσ(1)
amσ(1)

...kmσ(n)
amσ(n)

,a0(t)〉, (2)

where c†γka =
∫ L/2
−L/2 dx

eikxψ†
γa(x)√
L

, |χk1a1...knan,a0(t)〉 =
∫ t
0
dx1· · ·

∫ x1

0
dx2· · ·

∫ xn−1

0
dxn δ

c0
a0δ

b0
cn [

∏n
j=1

e−ikj (t−xj)√
L

×
(
−iT bjcjajcj−1

)
ψ†
ebj

(xj)]|b0〉, ψ†
ea =

ψ†
1a+ψ

†
2a√

2
, and T b1b0

a1a0 =
[
− 1

2J
(
1 + i 34J

)
δb1a1δ

b0
a0 − 1

2J
2δb0a1δ

b1
a0

]
/(1 − i 12J + 3

16J
2)

(the T -matrix for a single electron crossing the impurity).
With minor modifications, the solution can be ex-

tended to a more general model with anisotropic Kondo

interaction, a potential scattering term, and a magnetic
field on the impurity [22, 24].

In the long time limit (with the system size always
larger), |Ψ(t)〉 becomes a nonequilibrium steady state
(NESS): an energy eigenstate of H with the boundary
condition of incoming plane waves with the quantum
numbers γjkjaj (i.e. a many-body Lippmann-Schwinger
“in” state). The NESS can be found directly using a
time-independent version of our method.

The current.—Using our exact answer for ρ(t),
we proceed to calculate the average electric cur-

rent: I(t) = − d
dtTr

[
ρ(t)N̂1

]
/Trρ, where N̂1 =

∫ L/2
−L/2 dx ψ†

1a(x)ψ1a(x). For a fixed system size L and

bandwidth D, we can write the current as a finite sum;
however, taking the thermodynamic limit (L → ∞) is a
formidable task. We take the limit order-by-order in an
expansion parameter which can be either J or 1/J . In
this way, we arrive at a series answer that probes both
the usual weak coupling regime of the model and a new
strongly coupled regime.

In the thermodynamic limit, sums over momenta be-
come integrals involving the Fermi functions fγ(k) ≡
1/(e(k−µγ)/Tγ + 1) of the leads, resulting in a series ex-
pression for the current:

I(T1, µ1;T2, µ2; t) = Re

{
∂

∂t

∞∑

n=1

∑

σ∈Sym(n)

W (σ)(J)

∫ D

−D

dk1 . . . dkn
(2π)n

∫ t

0

dx1· · ·
∫ x1

0

dx2· · ·
∫ xn−1

0

dxn

×



n−1∏

j=1

[f1(kj) + f2(kj)] e
i(kσj

−kj)xj


 [f1(kn)− f2(kn)] e

i(kσn−kn)xn

}
, (3)

where: W (σ)(J) = (sgn σ)
i

2n+1

∑

a1,...,an
b1,...,bn−1

c0,c
′
0...,cn−1,c

′
n−1

δ
c′0
c0T

anc
′
n−1

aσncn−1

n−1∏

j=1

(
S∗bjc′j
ajc′j−1

Sbjcjaσj
cj−1

− δbjajδ
c′j
c′j−1

δbjaσj
δcjcj−1

)
, (4)

with Sb1b0a1a0 ≡ δb1a1δ
b0
a0 − iT b1b0

a1a0 [26]. It can be shown that
the nth term of the current series (3) is of order Jn+1 as
J → 0 and (for n ≥ 2) of order 1/Jn+1 as |J | → ∞ ; this
means that the series applies for both weak and strong
coupling.

Steady state–A basic question in quench problems is
the existence of the steady state limit of observable
quantities, such as the current: Isteady state(T1, T2, V ) =
limt→∞ I(T1, µ1 = 0;T2, µ2 = −V ; t). We have shown
that all orders of our series (in J or in 1/J) converge in
the steady state limit, and we have verified that the same
series for the steady state current is obtained by directly
evaluating the current operator in the NESS. Our results

complement those of Doyon and Andrei [8], who showed
that the Keldysh perturbation series for the current con-
verges in time to all orders in J .

We proceed to investigate the steady state current in
the scaling regime, in which the bandwidth is much larger
than any other scale (T1, T2, V ). We express our answers
in terms of the usual g ≡ ρJ = 1

2πJ [27].

First, we review what is expected. In the regime of
small |g|, the perturbative renormalizability of the Kondo
model constrains the steady state current to the form
Isteady state(T1, T2, V ) → V

∑∞
n=2,0≤m<n anmg

n lnm 2D
M ,

where M =
√

1
2 (T

2
1 + T 2

2 ) + V 2 and where the co-
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efficients anm depend only on the ratios T1/V and
T2/V . (This is shown in a very general setting by
Delamotte in [28]; our choice of V for the dimensionful
prefactor and 2D/M for the argument of the log is
one of convenience.) Our calculation indeed produces a
series of this form (see Supplemental Material), which
we use as a check by comparing to known results in the
universal antiferromagnetic regime. To obtain a univer-
sal answer, we use the RG scaling (or Callan-Symanzik)

equation
[
D ∂
∂D + β(g) ∂∂g + γ(g)

]
Isteady state = 0.

The solution takes the form I(T1, T2, V ) =

funiversal(T1/TK , T2/TK , V/TK)e
−

∫
g

0
dg′ γ(g′)

β(g′) , where
the g-dependent scale factor goes to unity in the scaling
limit (g → 0+, D → ∞ with TK fixed) because γ(g), we
find, starts at the same order in g as β(g). (Such a scale
factor has been seen before in the Kondo problem; see
Ref. [29].)
Let us consider the differential conductance G ≡

∂Isteady state/∂V in the scaling limit, focusing on the case
of equal lead temperatures (T1 = T2). At the leading or-

der, we obtain the standard result G = G0
3π2/16

ln2

√
T2+V 2

TK

[6],

where G0 = 2e2/h is the unitarity limit of conductance
and TK = De−1/(2g) is the Kondo temperature. The next
order corrections to G and TK are affected by our cutoff
scheme (see [22, 24] for further discussion); however, the
first correction beyond the leading order in the quantity
∆G(T, V ) ≡ G(T, V )−G(T = 0, V ) agrees with the one-
loop results of Ref. [8] after correcting some minor errors
in [8].

Universal strong ferromagnetic regime. Our approach
reveals a new universal regime of the Kondo model:
strong ferromagnetic coupling (g < 0, |g| ≫ 1). We note
that there proposals for mesoscopic realizations [30, 31]
of the weak ferromagnetic model (see also [32]); it may
be possible to realize the strong ferromagnetic model by
modifying these proposals to use the charge Kondo effect
[33].

For strong coupling of either sign (|g| ≫ 1), we obtain
the following result at large bandwidth, presented in rows
with decreasing powers of ln 2D

M (leading logs, sub-leading
logs, etc.):

I(T1, T2, V ) =
1

π
V

{
1−

4

9π2

[
7

g2
−

16

π2g3
ln

2D

M
+

64

π4g4
ln2 2D

M
−

2048

9π6g5
ln3 2D

M

− C1
16

π2g3
+ C1

128

π4g4
ln

2D

M
+ (4− 12C1)

512

π6g5
ln2 2D

M

+
(
3C2 + 6πC̃1 − 22π2

) 16

9π4g4
+

(
32− 8C2 + 16C1

−12πC̃1 + 11π2

)
64

9π6g5
ln

2D

M

+ C4
1

g5
+O

(
1

g6

)]}
(5)

where the coefficients C1, C̃1, C2, and C4 are func-
tions of the ratios T1/V and T2/V (another function
C3 appears in the series for small g; see Supplemen-
tal Material). In the case of equal lead tempera-
tures (T1 = T2), we find that the RG scaling equa-

tion holds with β(g) = − 8
3π2

[
1 + 32

9π2g +O
(
1/g2

)]
and

γ(g) = 256
27π4g3

[
1 + 56

9π2g +O
(
1/g2

)]
, and thus the fol-

lowing Kondo temperature T
(F )
K = De

−
∫

g dg′ 1
β(g′) for

this regime [34]:

T
(F)
K ≡ De

3π2

8 g− 4
3 ln |g|. (6)

Notice that we can take the scaling limit D → ∞,

g → −∞ with T
(F)
K held fixed, indicating that the strong

ferromagnetic regime is universal.

Resumming the leading logs of the current series, we
find that the conductance approaches the unitarity limit

asymptotically at high voltage or temperature (Fig. 2):

G(T, V ) = G0


1− 3π2

16 ln
√
T 2+V 2

T
(F)
K

+ . . .


 . (7)

In analogy to the antiferromagnetic case, we expect that
the coefficient − 4

3 of ln |g| in Eq. (6) is affected by our
cutoff scheme; however, any change of this coefficient
would only affect higher order corrections to Eq. (7). We
expect that in the first correction, the difference ∆G is
reliable (see inset of Fig. 2), as this quantity was verified
in the antiferromagnetic case.
Models with charge fluctuations.—We briefly

summarize the results of applying our method
to the interacting resonant level model (IRL),

HIRL = Hleads + ǫd†d + Re
{
2
√
∆[ψ†

1(0) + ψ†
2(0)]d

}
+

U [ψ†
1(0)ψ1(0) + ψ†

2(0)ψ2(0)]d
†d, and the Anderson

impurity model (AIM), HAIM = Hleads + ǫd†ada +
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FIG. 2. The universal conductance G ≡ ∂Isteady state/∂V in
the strong ferromagnetic regime at leading log approximation.
In contrast to the antiferromagnetic case in which G is known
to reach the unitarity limit G0 ≡ 2e2/h at T = V = 0 [35],
here the unitarity limit is reached asymptotically at large volt-

age or temperature. As the external scale is lowered to T
(F)
K

and below, our series in 1/g breaks down and another method
is needed. Inset: the first correction beyond leading logs in

the quantity ∆G ≡ G(T, V ) − G(T = 0, V ) for V ≫ T
(F)
K ,

with various values of T .

Re
{
2
√
∆[ψ†

1a(0) + ψ†
2a(0)]da

}
+ Ud†↑d↑d

†
↓d↓ [where

Hleads is the same kinetic term as in Eq. (1), omit-
ting the spin index in the IRL case]. Details of our
calculations are reported in [23, 24].
In the IRL, we find the exact time-evolving wavefunc-

tion after a quench that switches on ǫ, ∆, and U at t = 0.
We evaluate the steady state occupancy 〈d†d〉 to lead-
ing order in U , and show that it is universal with the

standard scale T
(IRL)
K ∼ D

(
∆
D

)1/(1+U/π)
. In the equilib-

rium limit (i.e. zero temperature and voltage), our result
agrees with the Bethe ansatz result from the literature
(Ref. [36], see also [37] and [38]). Out of equilibrium, we
find that that the series in U breaks down at a very large

voltage V0 ∼ T
(IRL)
K e2/(ρU) (where ρ = 1/2π is the d.o.s.).

This scale V0 could also be significant in the lattice model
if it lies in the universal regime, i.e. if V0 ≪ Dlattice.
In the AIM, we calculate the NESS wavefunction di-

rectly either for small U or infinite U . The small U
expansion of the steady state current is found to be

Is.s. = I
(0)
s.s.+I

(1)
s.s.+. . . , where I

(0)
s.s. is the standard resonant

level current and:

I(1)s.s. =
U

8∆2

∫ D

−D

dk1
2π

dk2
2π

[f1(k1) + f2(k1)]

× [f1(k2)− f2(k2)] |T (k1)|2|T (k2)|2Re [T (k2)] , (8)

where T (k) = 2∆/(k − ǫ + i∆) is the single-electron T -

matrix of this model. We verify I
(1)
s.s. by Keldysh pertur-

bation theory. For infinite U , we find an expansion for
the steady state current in powers of ∆, with the stan-
dard scaling invariant ǫd ≡ ǫ+ ∆

π ln D
∆ [1, 39].

Discussion.—We provided an exact, explicit solution
for the time-evolving wavefunction in the nonequilibrium
Kondo model. We obtained a series expression for the
current which can be expanded either for weak coupling
or strong coupling, and used it to explore a new universal
regime. It still should be checked that this regime exists
in the lattice model. To see the predicted rise of the
conductance towards the unitarity limit, one would need

a hierarchy of scales T
(F)
K ≪ V ≪ Emax or T

(F)
K ≪ T ≪

Emax, where Emax is the energy scale beyond which the
Kondo model is no longer an accurate description of the
system.
We have the following picture of the RG flow in the

strong ferromagnetic regime (Fig. 3). Starting at the

FIG. 3. Kondo scaling picture. The two universal regimes
are weak antiferromagnetic bare coupling (0 < g ≪ 1,

TK = De−1/(2g)), and strong ferromagnetic bare coupling

(g < 0, |g| ≫ 1, T
(F)
K = De−3π2|g|/8). The former has been

much studied, and the latter is predicted by our calculations.
In either case, the running coupling gR is close to the bare
coupling if the system is probed at a high energy scale (high

relative to TK or T
(F )
K , though always small compared to the

bandwidth), and moves away from the bare coupling as the
energy scale is reduced.

unstable fixed point gR = −∞, the running coupling
gR becomes smaller in magnitude according to gR =

− 8
3π2 ln

T

T
(F)
K

(at leading order). As T approaches T
(F)
K

from above, |gR| becomes too small for our calculation
to be valid. We expect, though, that gR continues to
flow to the stable fixed point gR = 0− without any other
fixed points in between (much like the corresponding an-
tiferromagnetic flow from gR = 0+ to gR = ∞). The
ground state of the system would flow from a triplet at
high energy, with entropy ln 3, to a free spin at low en-
ergy, with entropy ln 2.
It would be interesting to see if our method for calcu-

lating local quenches and nonequilibrium steady states
can be useful in a wider class of problems. We note that
the usual signatures of integrability in the Kondo model,
such as the Yang-Baxter equation, do not appear in any
obvious way in our calculations.
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ler, Phys. Rev. B 98, 024103 (2018).
[12] S. Hershfield, J. H. Davies, and J. W. Wilkins,

Phys. Rev. Lett. 67, 3720 (1991).
[13] A. Oguri, Phys. Rev. B 64, 153305 (2001).
[14] R. M. Konik, H. Saleur, and A. Ludwig,

Phys. Rev. B 66, 125304 (2002).
[15] P. Werner, T. Oka, and A. J. Millis,

Phys. Rev. B 79, 035320 (2009).
[16] F. Heidrich-Meisner, A. E. Feiguin, and E. Dagotto,

Phys. Rev. B 79, 235336 (2009).
[17] J. Eckel, F. Heidrich-Meisner, S. G. Jakobs,

M. Thorwart, M. Pletyukhov, and R. Egger,
New Journal of Physics 12, 043042 (2010).

[18] S.-P. Chao and G. Palacios,
Phys. Rev. B 83, 195314 (2011).

[19] A. Dorda, M. Nuss, W. von der Linden, and E. Arrigoni,
Phys. Rev. B 89, 165105 (2014).

[20] R. E. V. Profumo, C. Groth, L. Messio, O. Parcollet, and
X. Waintal, Phys. Rev. B 91, 245154 (2015).

[21] F. Schwarz, I. Weymann, J. von Delft, and A. Weichsel-
baum, Phys. Rev. Lett. 121, 137702 (2018).

[22] A. B. Culver and N. Andrei, (2019), arXiv:1912.00281.
[23] A. B. Culver and N. Andrei, (2020), arXiv:2011.11253.
[24] A. B. Culver, Many-body Wavefunctions for Quantum

Impurities out of Equilibrium, Ph.D. thesis, Rutgers Uni-
versity (2020).

[25] The n = 0 term of the sum is understood to be(∏N
j=1 e

−ikjtc†γjkjaj

)
|a0〉.

[26] Although no Bethe Ansatz technology was applied, we

see here the same bare S-matrix that appears in the
Bethe Ansatz solution of the one lead model in equi-
librium (see [40], for example, bearing in mind that our
convention is related by JBethe Ansatz = 1

2
J).

[27] In our convention, ρ = 1/(2π) is the density of states per
unit length.

[28] B. Delamotte, American Journal of Physics 72, 170 (2004).
[29] V. Barzykin and I. Affleck,

Phys. Rev. Lett. 76, 4959 (1996).
[30] A. K. Mitchell, T. F. Jarrold, and D. E. Logan,

Phys. Rev. B 79, 085124 (2009).
[31] P. P. Baruselli, R. Requist, M. Fabrizio, and E. Tosatti,

Phys. Rev. Lett. 111, 047201 (2013).
[32] I. Kuzmenko, T. Kuzmenko, and Y. Avishai, Optical

Control of Exchange Interaction and Kondo Tempera-
ture in cold Atom Gas (2018), arXiv:1801.00482.

[33] A. K. Mitchell, (private communication).
[34] It is interesting to note that the same Kondo temperature

can be read off from the Bethe Ansatz solution of the
equilibrium problem (with the regularization scheme and
notation used in Ref. [41]). The absence of a ln |g| term in
the exponent of the antiferromagnetic TK is well-known
in the Bethe Ansatz approach [41].

[35] L. I. Glazman and M. É. Răikh,
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