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We present a new method for calculating the time-dependent many-body wavefunction that follows
a local quench. We apply the method to the voltage-driven nonequilibrium Kondo model to find
the exact time-evolving wavefunction following a quench where the dot is suddenly attached to
the leads at t = 0. The method, which does not use Bethe Ansatz, also works in other quantum
impurity models (we include results for the interacting resonant level and the Anderson impurity
model) and may be of wider applicability. In the particular case of the Kondo model, we show that
the long time limit (with the system size taken to infinity first) of the time-evolving wavefunction
is a current-carrying nonequilibrium steady state that satisfies the Lippmann-Schwinger equation.
We show that the electric current in the time-evolving wavefunction is given by a series expression
that can be expanded either in weak coupling or in strong coupling, converging to all orders in
the steady state limit in either case. The series agrees to leading order with known results in the
well-studied regime of weak antiferromagnetic coupling and also reveals a new universal regime of
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strong ferromagnetic coupling, with Kondo temperature T&F) = De= "5 el (J <0, plJ| = o0). In
this regime, the differential conductance dI/dV reaches the unitarity limit 2e®/h asymptotically at

large voltage or temperature.

Introduction.—The Kondo model, which describes a
localized spin interacting via spin exchange with one or
more reservoirs of electrons, has long been a source of
new ideas in theoretical physics [1]. Its nonequilibrium
physics became of great interest when the model was re-
alized in quantum dot systems in the Coulomb blockade
regime, with attached leads serving as reservoirs. When
a voltage difference is imposed between two leads, an
electric current is driven through the dot [2-5]. The cor-
responding nonequilibrium theory has been studied by
a variety of approaches, both in the Kondo model itself
[6-11] and in the more general Anderson impurity model
[12-21] (see the references of Ref. [11] for a more com-
plete list).

In this Letter, we probe the nonequilibrium physics
via a quantum quench, a protocol in which the ground
state of an initial Hamiltonian H; is evolved in time by
a final Hamiltonian H following a sudden change of pa-
rameters. Here the initial state of the quench consists
of a free Fermi sea in each of the two leads — with the
applied voltage appearing as the difference in chemical
potentials — and the quench protocol consists of evolving
this state by the full Kondo Hamiltonian (see Fig. 1).
This quench allows us to access the steady state regime
of the nonequilibrium Kondo model in the long time limit
(we first take the limit of infinite system size so that the
leads serve as thermal baths [8]).

We present here the results of a new method for
calculating the many-body wavefunction following this
quench. This method is also applicable to other quan-
tum impurity problems and may have wider applicability.
We concentrate on the steady state current as a function
of the source-drain voltage and the temperatures of the
leads. We first calculate the current in the much-studied
weak coupling antiferromagnetic regime and find, as ex-
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FIG. 1. Schematic of the quench process. Prior to ¢ = 0, the
leads are filled with free electrons, with no tunneling to the
dot allowed. From ¢t = 0 onward, the system evolves with the
many-body Hamiltonian H, with tunneling to and from the
leads resulting in an electric current.

pected, that at energy scales much smaller than the band-
width, the current is a universal function governed by an
emergent scale: the Kondo temperature Tx. We then
proceed to identify another universal regime: strong fer-
romagnetic coupling, with its own scale TI(<F). Further
details on our calculations are available in Refs. [22-24].

With universality in mind, we study the two lead
Kondo model in the wide-band limit [§]:
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Formally, the initial density matrix is p = p; ® p2, where
py = €xp [—T% ki<l — IUJ’Y)CI/kaC'Yka:| is the Fermi
distribution (cut off by the bandwidth D) inlead v = 1, 2,
and p(t) = e Htpeiflt is the time-evolving density ma-
trix following the quench at ¢t = 0.

Our method provides the explicit and exact solution
for p(t). The solution applies for 0 < ¢ < L/2, which is
the regime of interest: in the calculation of the current,
we take the steady state limit (¢ — oo) after the ther-
modynamic limit (L — oo with D fixed, hence a fixed



density of electrons). The thermodynamic limit is taken
order-by-order either in .J or 1/J.

Ezxact wavefunction.—It suffices to find the time evo-
lution of an N-electron state (rather than density
matrix) with arbitrary quantum numbers: |[¥(¢)) =

—iHt .t T : : :
e ) wknax -+ Cyikra, [00), Where ag is the impurity

spin. Our method yields [25]:
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(the T-matrix for a single electron crossing the impurity).
With minor modifications, the solution can be ex-
tended to a more general model with anisotropic Kondo
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with Sl = gh1gbo — 7210 [26]. It can be shown that
the nth term of the current series (3) is of order J" ! as
J — 0 and (for n > 2) of order 1/J"* ! as |J| — oo ; this
means that the series applies for both weak and strong

coupling.

Steady state—A basic question in quench problems is
the existence of the steady state limit of observable
quantities, such as the current: Isteady state(11, 72, V) =
limyyoo I(Th, i1 = 0;T9, 2 = —V;t). We have shown
that all orders of our series (in J or in 1/.J) converge in
the steady state limit, and we have verified that the same
series for the steady state current is obtained by directly
evaluating the current operator in the NESS. Our results

interaction, a potential scattering term, and a magnetic
field on the impurity [22, 24].

In the long time limit (with the system size always
larger), |¥(¢)) becomes a nonequilibrium steady state
(NESS): an energy eigenstate of H with the boundary
condition of incoming plane waves with the quantum
numbers v;kja; (i.e. a many-body Lippmann-Schwinger
“in” state). The NESS can be found directly using a
time-independent version of our method.

The current—Using our exact answer for p(t),
we proceed to calculate the average electric cur-

I(t) = %Tr [p(t)ﬁl} /Trp, where Nl =
S5 de gl (@)ina ().

bandwidth D, we can write the current as a finite sum;
however, taking the thermodynamic limit (L — o) is a
formidable task. We take the limit order-by-order in an
expansion parameter which can be either J or 1/J. In
this way, we arrive at a series answer that probes both
the usual weak coupling regime of the model and a new
strongly coupled regime.

rent:

For a fixed system size L and

In the thermodynamic limit, sums over momenta be-
come integrals involving the Fermi functions f,(k) =
1/(etfF=1)/Tx 4 1) of the leads, resulting in a series ex-
pression for the current:
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complement those of Doyon and Andrei [8], who showed
that the Keldysh perturbation series for the current con-
verges in time to all orders in J.

We proceed to investigate the steady state current in
the scaling regime, in which the bandwidth is much larger
than any other scale (11, T, V). We express our answers
in terms of the usual g = pJ = 5J [27].

First, we review what is expected. In the regime of
small |g|, the perturbative renormalizability of the Kondo

model constrains the steady state current to the form
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where M = \/% (T2 +T2)+ V2 and where the co-




efficients ay,, depend only on the ratios T;/V and
T>/V. (This is shown in a very general setting by
Delamotte in [28]; our choice of V' for the dimensionful
prefactor and 2D/M for the argument of the log is
one of convenience.) Our calculation indeed produces a
series of this form (see Supplemental Material), which
we use as a check by comparing to known results in the
universal antiferromagnetic regime. To obtain a univer-
sal answer, we use the RG scaling (or Callan-Symanzik)

D% +B(g)aiq +’7(g) Isteady state = 0.
takes the form I(Tl, V) =

funiversal (Tl /TK7 T2/TK7 V/TK) fU s ng ) where
the g-dependent scale factor goes to unity in the scaling
limit (¢ — 07, D — oo with Tk fixed) because v(g), we
find, starts at the same order in g as 5(g). (Such a scale
factor has been seen before in the Kondo problem; see
Ref. [29].)

Let us consider the differential conductance G =
Olsteady state/OV in the scaling limit, focusing on the case
of equal lead temperatures (77 = T5). At the leading or-
der, we obtain the standard result G = GO% [6],
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equation

The solution
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where the coefficients Cf, 6’1, Csy, and C4 are func-
tions of the ratios 77/V and T/V (another function
C3 appears in the series for small g; see Supplemen-
tal Material). In the case of equal lead tempera-
tures (17 = T3), we find that the RG scaling equa-

tion holds with 8(g) = — 33 {1 + 5 (1/92 )] and
9) = ginigs [1 +52%-+0(1/g° )}, and thus the fol-

lowing Kondo temperature TI((F) = De
this regime [34]:
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Notice that we can take the scaling limit D — oo,
g — —oo with TI((F) held fixed, indicating that the strong
ferromagnetic regime is universal.

Resumming the leading logs of the current series, we
find that the conductance approaches the unitarity limit

where Gy = 2€2/h is the unitarity limit of conductance
and Tx = De~'/(29) is the Kondo temperature. The next
order corrections to G and Tk are affected by our cutoff
scheme (see [22, 24] for further discussion); however, the
first correction beyond the leading order in the quantity
AG(T,V)=G(T,V)—G(T =0,V) agrees with the one-
loop results of Ref. [8] after correcting some minor errors
in [8].

Universal strong ferromagnetic regime. Our approach
reveals a new universal regime of the Kondo model:
strong ferromagnetic coupling (g < 0, |g| > 1). We note
that there proposals for mesoscopic realizations [30, 31]
of the weak ferromagnetic model (see also [32]); it may
be possible to realize the strong ferromagnetic model by

modifying these proposals to use the charge Kondo effect
[33].

For strong coupling of either sign (]g| > 1), we obtain
the following result at large bandwidth presented in rows
with decreasing powers of In 22 (1ead1ng logs, sub-leading

logs, etc.):
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asymptotically at high voltage or temperature (Fig. 2):
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T

In analogy to the antiferromagnetic case, we expect that
the coefficient —3 of In|g| in Eq. (6) is affected by our
cutoff scheme; however, any change of this coefficient
would only affect higher order corrections to Eq. (7). We
expect that in the first correction, the difference AG is
reliable (see inset of Fig. 2), as this quantity was verified
in the antiferromagnetic case.

Models  with  charge  fluctuations.—We  briefly
summarize the results of applying our method
to the interacting resonant level model (IRL),

Hint = Hicaas + edid + Re {2VA[W](0) + v}(0)]d} +

U] (0)11(0) + 95(0)¢(0)]d'd, and the Anderson
impurity model (AIM), Hami = Hieads + edida +
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FIG. 2. The universal conductance G = Olsteady state/OV in
the strong ferromagnetic regime at leading log approximation.
In contrast to the antiferromagnetic case in which G is known
to reach the unitarity limit Go = 2¢*/h at T =V = 0 [35],
here the unitarity limit is reached asymptotically at large volt-
age or temperature. As the external scale is lowered to TI(<F)
and below, our series in 1/g breaks down and another method
is needed. Inset: the first correction beyond leading logs in

the quantity AG = G(T,V) — G(T = 0,V) for V> T\,
with various values of T

Re {2\/5[1/4@(0) + ¢§a(0)]da} + Udldidld,  [where
Hjeadgs is the same kinetic term as in Eq. (1), omit-
ting the spin index in the IRL case]. Details of our
calculations are reported in [23, 24].

In the IRL, we find the exact time-evolving wavefunc-
tion after a quench that switches on e, A, and U at t = 0.
We evaluate the steady state occupancy (d'd) to lead-
ing order in U, and show that it is universal with the
standard scale TERL) ~ D (%)Uuﬂ]/ﬂ). In the equilib-
rium limit (i.e. zero temperature and voltage), our result
agrees with the Bethe ansatz result from the literature
(Ref. [36], see also [37] and [38]). Out of equilibrium, we
find that that the series in U breaks down at a very large
voltage Vj ~ TI((IRL)eW(pU) (where p = 1/27 is the d.o.s.).
This scale Vj could also be significant in the lattice model
if it lies in the universal regime, i.e. if Vj < Diattice-

In the AIM, we calculate the NESS wavefunction di-
rectly either for small U or infinite U. The small U
expansion of the steady state current is found to be
Iy = Is(.os).—i-l(.ls).—i—. .., Where Is(g)_ is the standard resonant
level current and:

U [P dky dk
IO =~ Zv 2 k k
= 3AZ |, o 2n [f1(k1) + fa(k1)]

% [f1(ka) = fa(k)] [T (k)P T (k2) "Re [T (k2)],  (8)

where T (k) = 2A/(k — e 4+ iA) is the single-electron T-
matrix of this model. We verify Is(ls) by Keldysh pertur-
bation theory. For infinite U, we find an expansion for
the steady state current in powers of A, with the stan-
dard scaling invariant ¢; = e + £ In 2 [1, 39].

Discussion.—We provided an exact, explicit solution
for the time-evolving wavefunction in the nonequilibrium
Kondo model. We obtained a series expression for the
current which can be expanded either for weak coupling
or strong coupling, and used it to explore a new universal
regime. It still should be checked that this regime exists
in the lattice model. To see the predicted rise of the
conductance towards the unitarity limit, one would need
a hierarchy of scales TI(<F) KLV < Epax o1 TI(<F) LT K
Finax, where Epax is the energy scale beyond which the
Kondo model is no longer an accurate description of the
system.

We have the following picture of the RG flow in the
strong ferromagnetic regime (Fig. 3). Starting at the
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FIG. 3. Kondo scaling picture. The two universal regimes
are weak antiferromagnetic bare coupling (0 < g < 1,
Tx = De (29)), and strong ferromagnetic bare coupling
(9 <0, lg] >1, T}((F) = D673”2‘9V8). The former has been
much studied, and the latter is predicted by our calculations.
In either case, the running coupling gr is close to the bare
coupling if the system is probed at a high energy scale (high

relative to T’k or T1(<F)7 though always small compared to the
bandwidth), and moves away from the bare coupling as the
energy scale is reduced.

unstable fixed point gr = —oo, the running coupling
gr becomes smaller in magnitude according to gr =
8 T

—3z1n T (at leading order). As T approaches TI(‘{F)
K

from above, |gr| becomes too small for our calculation
to be valid. We expect, though, that gr continues to
flow to the stable fixed point gr = 0~ without any other
fixed points in between (much like the corresponding an-
tiferromagnetic flow from gr = 07 to ggp = o). The
ground state of the system would flow from a triplet at
high energy, with entropy In 3, to a free spin at low en-
ergy, with entropy In 2.

It would be interesting to see if our method for calcu-
lating local quenches and nonequilibrium steady states
can be useful in a wider class of problems. We note that
the usual signatures of integrability in the Kondo model,
such as the Yang-Baxter equation, do not appear in any
obvious way in our calculations.
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