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The development of nanomaterials with a large nonlinear susceptibility is essential for nonlinear
nanophotonics. We show that transition-metal-dichalcogenide (TMD) nanotriangles have a large

effective second-order susceptibility [χ(2)] at mid-infrared to near-infrared frequencies owing to their

broken centrosymmetry. χ(2) is calculated within the density-matrix formalism that accounts for
dissipation and screening. χ(2) peaks in the vicinity of both two-photon resonances (specified by
the geometry) and plasmon resonances (tunable via the carrier density). Aligning the resonances

yields the values of χ(2) as high as 10−6 m/V. These findings underscore the potential of TMD
nanotriangles for nonlinear nanophotonics, particularly second-harmonic generation.

Nonlinear frequency conversion processes, such as
second-harmonic generation (SHG) and third-harmonic
generation, have many applications in nanophotonics [1–
6]. These phenomena rely on intrinsically weak matter-
mediated photon–photon interactions [7–9], which can
can be enhanced through a number of techniques, such
as dielectric confinement through Mie resonances [10, 11],
quantum confinement [12–17], and surface-plasmonic
field enhancement [9, 18–24].

The nonlinear and plasmonic response of two-
dimensional materials, such as graphene [25–40] and
transition-metal dichalcogenides (TMDs) [41–46], has
been attracting interest for nonlinear optical applica-
tions [47, 48]. In TMDs with an odd number of layers,
there is weak SHG owing to the material’s broken cen-
trosymmetry [44, 46]. In recent years, excitonic effects in
TMDs [49] have been shown to greatly amplify SHG [50–
52].

It is challenging to achieve plasmonic-field enhance-
ment in two-dimensional materials because the plasmon
wave vector far exceeds that of light at the same fre-
quency. One solution is to lower the system dimension-
ality, from two to zero. Indeed, quasi-zero-dimensional
structures support standing plasmonic resonances that
can be easily excited and have been shown to yield
an enhanced nonlinear response of graphene nanoislands
and nanotriangles [9, 18–20]. It is important to note
that noncentrosymmetric shapes, such as triangles, aid
SHG [16, 17].

In this Letter, we show that equilateral nanotriangles
made of single-layer TMDs such as MoS2, WS2, and
WSe2, whose growth has already been demonstrated [53–
57], have a strong and electrically tunable second-order
nonlinear optical response at midinfrared (mid-IR) to
near-infrared (near-IR) frequencies. We calculate [58]
the second-order nonlinear optical response of these sys-
tems within the density-matrix framework that accounts
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for screening and disspation [1] (excitonic effects are not
considered). We show that the second-order susceptibil-
ity peaks in the vicinity of both two-photon intersubband
resonances (whose positions are fixed by the nanotriangle
geometry) and plasmon resonances (dynamically tunable
by the carrier density). By tuning the carrier density
to bring the plasmon and two-photon resonances into
alignment, second-order susceptibility χ(2) can become
as high as 10−6 m/V, orders of magnitude higher than
the intrinsic SHG of single-layer TMDs (∼ 10−9 m/V) or
the second-order susceptibility of bulk LiNbO3 (∼ 10−11

m/V) at near-IR frequencies [48, 59]. The second-order
optical response increases as the triangle size decreases.
These findings underscore the suitability of single-layer
TMD nanotriangles as elements for nonlinear nanopho-
tonics.

Density-Matrix Calculation. TMDs have the general
formula of MX2, with M and X representing a transition
metal and a chalcogen, respectively. Single-layer MX2

(M=Mo, W; X=S, Se) are direct-bandgap semiconduc-
tors [60]. Since these TMDs have very similar electron
effective masses (between 0.46 and 0.55 me), same-size
nanotriangles of them are expected to have similar op-
tical responses. Therefore, in this paper, we only study
the second-order nonlinear response of MoS2 nanotrian-
gles (effective mass 0.55 me [60]).

Using the density-matrix method [1], we calculate [58]
the loss function and second-order susceptibility for an
MoS2 equilateral nanotriangle with the side length L,
area A, thickness d, and sheet carrier density ns. The
nanotriangle lies on the z = 0 plane upon a substrate
that fills the z < 0 half-space and has an absolute dielec-
tric permittivity εb = ε0κb. We assume the nanotriangle
is illuminated with TM-polarized light with the electric
field along the y-direction [Fig. 1(a)]. A similar theo-
retical approach was successfully employed for graphene
nanoflakes [9, 18].

The Hamiltonian describing electrons in a TMD nan-
otriangle is H = P2/2me + UL + UW . UL is the lattice
potential and UW denotes a mesoscopic-scale potential
defining the triangle (zero within and infinite elsewhere).
The details of the tight-binding representation of the lat-
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FIG. 1. (a) Schematic of an equilateral TMD nanotriangle with the side length L. TM-polarized incident light causes linear as
well as second-order nonlinear optical response. (b) One-photon, two-photon, and plasmon resonances. One- and two-photon
resonances are due to intersubband optical transitions, whereas plasmon resonances are due to collective oscillations of electrons.
(c) The loss function and (d) second-order susceptibility in response to external field (solid) and total field (dashed) of a 5-nm
TMD nanotriangle with the sheet density ns = 3× 1012 cm−2 for different values of the electron mobility. The peaks marked
by arrows correspond to two different plasmon resonances.

tice potential UL can be found in Refs. [61–63], while the
database presented in Ref. [60] provides details on the
TMD electronic structure, including effective masses. In
this paper, we use the envelope-function approximation
(EFA), which, given the size of the nanotriangles of in-
terest, is an accurate approximation. Using the EFA, the
energies and eigenstates of the Hamiltonian are, respec-
tively, εnm,ν = εν + 8π2~2/(9m∗νL2)(n2 +m2 + nm) and
〈r|nm, ν〉 = fnm(r)uν(r). m∗ν is the electron effective
mass near the extremum of the bulk single-layer TMD’s
νth band, with the extremum energy εν and the periodic
part of the Bloch wave function uν(r). fnm(r) is a so-
lution to the Schrödinger equation for a particle in an
equilateral triangle, which can be obtained analytically,
as detailed in Refs. [64, 65]. The fnm(r) eigenfunctions
fall into two classes:

f (1)nm(x, y) = N1

{
sin[β(n+ 2m)x̃] sin[

√
3βnỹ]

+ sin[β(m− n)x̃] sin[
√

3β(n+m)ỹ]

− sin[β(2n+m)x̃] sin[
√

3βmỹ]
}
,

(1a)

f (2)nm(x, y) = N2

{
− cos[β(n+ 2m)x̃] sin[

√
3βnỹ]

+ cos[β(m− n)x̃] sin[
√

3β(n+m)ỹ]

− cos[β(2n+m)x̃] sin[
√

3βmỹ]
}
,

(1b)

where β = 2π/3L, x̃ = x + L/2, ỹ = y +
√

3L/2,
and the origin of the Cartesian coordinate system is
at the triangle’s center. For the eigenfunctions of the
first class, m ≥ n > 0. N1 = 2(16/27)1/4/L and
N1 = 2(4/27)1/4/L for m 6= n and m = n, respectively.
For the eigenfunctions of the second class, m > n > 0
and N2 = 2(16/27)1/4/L. It should be noted that the
EFA is a valid approximation as long as the number of
local maxima of a relevant wave function is much smaller
than the number of unit cells in the nanotriangle.

Now, once we know the electronic energies and eigen-
states in the TMD nanotriangle, we use the density-
matrix method to calculate the linear and second-order
nonlinear optical susceptibility [1, 9, 18]. The linear op-
tical susceptibility can be obtained from

χ̃
(1)
ij (ω) =

ns
ε0d

∑
ss′

(ρ
(0)
s′s′ − ρ(0)ss )

µjss′µis′s

εs − εs′ − ~ω − i~γ
, (2)

where s denotes a set of quantum numbers {n,m, ν}, ijk
refer to the Cartesian coordinates, and γ represents the
relaxation rate of electrons. µss′ is the electric dipole
transition moment and equals to 〈s|(−e)r|s′〉. Since
f(r) varies much slower than u(r), the expression of µ
can be simplified. For interband transitions (ν 6= ν′),
〈s|(−e)r|s′〉 ≈ 〈ν|(−e)r|ν′〉; for intraband transitions,
(ν = ν′), 〈s|(−e)r|s′〉 ≈ 〈nm|(−e)r|n′m′〉. In Eq. (2),

ρ
(0)
ss′ = δs,s′F (εs) denotes the elements of the unper-



3

turbed density matrix. F is the Fermi-Dirac distribu-
tion function and satisfies

∑
s F (εs) = Ans. [We neglect

the spatial variation of the response functions because
there is little spatial variation in the induced charge den-
sity. Namely, a triangle is a type of quantum dot, so
its envelope functions are standing waves. For the low-
est few energy levels that stem from confinement, the
wavelengths of the propagating waves that make up the
standing waves are on the order of the size of the triangle,
which is large on crystalline length scales (see the justi-
fication for using the EFA above), meaning that their
wave vectors would be very small (near the center of
the Brillouin zone of the underlying crystalline lattice).
Consequently, the associated charge density and screen-
ing strength vary slowly with position. We take this weak
spatial variation into account in an average sense through
the dipole transition moments between confined states.]

The second-order (nonlinear optical) susceptibility is
given by

χ̃
(2)
ijk(2ω) =

ns
2ε0d

∑
s′ss′′

(ρ
(0)
s′′s′′ − ρ(0)ss )×

[ µis′′s′µ
j
s′sµ

k
ss′′

(εs′ − εs′′ − 2~ω − i~γ)(εs − εs′′ − ~ω − i~γ)

+
µis′′s′µks′sµ

j
ss′′

(εs′ − εs′′ − 2~ω − i~γ)(εs − εs′′ − ~ω − i~γ)

+
µjs′′s′µis′sµ

k
ss′′

(εs′ − εs + 2~ω + i~γ)(εs − εs′′ − ~ω − i~γ)

+
µks′′s′µis′sµ

j
ss′′

(εs′ − εs + 2~ω + i~γ)(εs − εs′′ − ~ω − i~γ)

]
.

(3)

Because of the particle-hole symmetry in single-layer
TMDs, the contributions from interband transitions in
Eq. (3) add up to zero. In contrast, intraband opti-
cal transitions result in a nonzero χ̃(2). Therefore, we
pick all eigenstates ν in the first conduction band of the
single-layer TMD, within which the Fermi level lies.

Moreover, owing to the D3 symmetry of equilateral

triangles, χ̃
(1)
ij and χ̃

(2)
ijk tensors of the TMD nanotriangles

can be simplified [1]. The only nonzero elements of χ̃(1)

are χ̃
(1)
xx = χ̃

(1)
yy and the only nonzero elements of χ̃(2) are

χ̃
(1)
yyy = −χ̃(1)

yxx = −χ̃(1)
xxy = −χ̃(1)

xyx. In this paper, we only

calculate χ̃
(1)
yy and χ̃

(2)
yyy and, to simplify the notation, we

drop the y indices henceforth.
There are two types of intersubband optical transitions

contributing to the second-order optical response: one-
photon transitions corresponding to the terms with ~ω
in Eq. (3) and two-photon transitions corresponding to
the terms with 2~ω in Eq. (3) [Fig. 1(b)]. The second-
order susceptibility peaks when either one-photon or two-
photon transitions are nearly resonant. The second-order
susceptibility also peaks at the vicinity of the plasmon
resonances. Unlike the one- and two-photon resonances,
which stem from intersubband optical transitions, plas-

mon resonances are due to collective electron oscillations.
In a confined quantum system with considerable energy-
level spacing, like TMD nanotriangles, each one-photon
resonance is succeeded by a plasmon resonances, as il-
lustrated in Fig. 1(b). Plasmon resonance are weaker
at higher subbands owing to the lower subband carrier
densities. Unfortunately, χ̃(2) does not capture plasmon
resonances, because it is calculated in response to the to-
tal field acting on electrons, which consists of the external
field and the induced field. In order to capture the plas-
monic effect and understand the optical response to the
external field rather than the total field, we introduce two
quantities that are relevant in experiment [18, 22, 35]:

χ(2) = χ̃(2)/(1 + χ̃(1))2,

σabs = −Im{(1 + χ̃(1))−1},
(4)

σabs denotes the loss function, which peaks near the plas-
mon resonances. χ(2) is also referred to as the second-
order susceptibility with respect to the external field.
(Note that we have used ∼ to denote the susceptibil-
ity with respect to the total field.) Unlike χ̃(2), χ(2) does
not peak near one-photon resonances and only peaks in
the vicinity of plasmon and two-photon resonances. The
strength of these resonances are critically dependent on
the electron relaxation rate. For small γ, the resonances
are sharp. For large γ, scattering-induced broadening
practically quenches the resonance. In this paper, we
use the electron mobility [µe = e/(m∗γ)] as a proxy for
the characteristic relaxation rate γ due to phonons and
impurities within the density-matrix formalism [1, 9, 18].

Results and discussion. Figures 1(c) and 1(d) show the
loss function (σabs) and the second-order susceptibility in
response to the external field (χ(2)) as well as to the total
field (χ̃(2)). For a fixed side length L, the optical response
of a nanotriangle is dependent on the electron mobil-
ity, or, equivalently, the electron relaxation rate. The
measured room-temperature electron mobility of bulk
single-layer MoS2 is in the range of 0.5–200 cm2/Vs [66–
68]. The lower density of electron states in the nano-
triangle with respect to bulk leads to reduced scatter-
ing rates; this is a well-known feature of low-dimensional
systems [69]. To capture this reduction in the scatter-
ing rates, we choose an enhanced value of the maximal
effective mobility to be 400 cm2/Vs (twice the highest
value measured in bulk) as a representative of the high-
carrier-mobility range. By increasing the electron mobil-
ity, the effect of optical resonances on the second-order
optical response becomes more pronounced.(At low elec-
tron mobilities [Figs. 1(c) and 1(d)], spectral broadening
weakens the optical resonances and χ(2) varies smoothly
as a function of frequency, i.e., is devoid of resonances.)
Henceforth, we focus only on the 400 cm2/Vs mobility
results, where the interesting features are most promi-
nent.

As discussed above, χ̃(2) (the second-order susceptibil-
ity with respect to the total field) peaks in the vicinity of
one- and two-photon resonances while χ(2) (the second-
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order susceptibility with respect to external field) peaks
in the vicinity of two-photon and plasmon resonances.
The arrow-marked peaks in Fig. 1(c) correspond to the
plasmon resonances. The positions of two-photon reso-
nances are dependent on the single-particle energies in
the nanotriangle and are fixed for a given nanotrian-
gle size [Fig. 1(c)]. On the other hand, the positions
of plasmon resonances depend on electron energies, but
also on the carrier density in the nanotriangle. There-
fore, we could dynamically tune the plasmon resonances
by changing the carrier density (for example, by using
back gating), which suggests that, by aligning the plas-
mon and two-photon resonances, we could amplify the
second-order optical susceptibility.

Figures 2(a)–(b) show the loss function σabs and the
second-order susceptibility χ(2) for different carrier den-
sities. The carrier density at which a plasmon reso-
nance and a two-photon resonance are aligned with each
other, χ(2) increases to as large as 10−6 m/V. TMD
nanotriangles can therefore have almost five orders of
magnitude stronger second-order nonlinearity than bulk
LiNbO3 at near-IR frequencies (∼ 10−11 m/V) or the
intrinsic second-order response of single-layer SHG (∼
10−9 m/V) [48, 59]. The gray shaded areas in Figs.
2(a) and 2(b) show σabs and χ(2) calculated for the car-
rier densities in the range of 1011–3×1013 cm−2. Plasmon
and one-photon resonances never happen at the same fre-
quency, so there are no-plasmon regions at the vicinity
of one-photon resonances [Fig. 1(b)], and, consequently,
second-order optical susceptibility χ(2) decreases in the
vicinity of one-photon resonances.

To understand the interplay between these resonances,
we define ωmax as the frequency at which the maximum
second-order susceptibility [|χ(2)|max] happens in a nan-
otriangle with a given side length, carrier mobility, and
carrier density. It can be seen that ωmax [black squares
in Figs. 2(c)–(d)] are in close proximity of a plasmon
resonance. In Fig. 2(c), filled circles denote the plas-
mon resonances and the color bar represents their corre-
sponding loss function. By lowering the carrier density,
ωmax asymptotically decreases to the first one-photon
resonance of the nanotriangle. By decreasing the car-
rier density, the plasmon resonances also weaken and
|χ(2)|max decreases. Correspondingly, the critical elec-
tric field, which is defined as Ec ≡ |χ(1)|max/|χ(2)|max

[red triangles in Fig. 2(d)], decreases with increasing
carrier density. The lower the critical electric field, the
stronger the second-order nonlinear optical response. At
high carrier densities, Ec can be as low as ∼ 0.1 kVcm−1,
which corresponds to an optical field intensity as low as
0.1 kW/cm2.

Finally, we study the effect of the TMD nanotrian-
gle’s size on its second-order optical nonlinear response.
Figure 3 shows |χ(2)(ω)| as a function of frequency and
carrier density for nanotriangles with different sizes. By
increasing the side length L, the maximum value of χ(2)

decreases. Increasing L has a twofold effect. On one
hand, the magnitude of the dipole moments grows with

increasing L. On the other hand, the spacing between a
nanotriangle’s energies drops with increasing L and re-
sults in more one- and two-photon processes contributing
to the second-order nonlinear response. Since these one-
and two-photon processes have different phases, the net
effect of these competing phenomena results in the lower
|χ(2)(ω)| for larger L. Also, owing to the smaller energy
spacing, the first horizontal asymptote of ωmax occurs at
a lower frequency in large nanotriangles.
Conclusion. We showed that, in the mid-IR to

near-IR frequency range, TMD nanotriangles have a
large and tunable second-order susceptibility, which
makes them promising materials for integrated nonlinear-
nanophotonics applications. Using the density-matrix
method with an account of screening and dissipation, we
calculated the linear and second-order optical response
of TMD nanotriangles. We showed that second-order
susceptibility peaks at the vicinity of plasmon and two-
photon resonances. For a given material, the two-photon
resonances are fixed by the nanotriangle’s size while the
plasmon resonances can be tuned via the carrier den-
sity. By aligning the plasmon and two-photon reso-
nances, second-order susceptibility can become as high
as 10−6 m/V, with higher magnitudes found in smaller
triangles.

If a triangle deviates from perfect D3 symmetry, which
is relevant in experiment, the second-order nonlinear sus-
ceptibility tensor will have more than four nonzero ele-
ments. There will be many more nonzero dipole transi-
tion moments, meaning more one- and two-photon pro-
cesses with different phases, which might reduce the
second-order nonlinear susceptibility.
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