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Unlike their Hermitian counterparts, non-Hermitian (NH) systems may display an exponential
sensitivity to boundary conditions and an extensive number of edge-localized states in systems with
open boundaries, a phenomena dubbed the “non-Hermitian skin effect.” The NH skin effect is one
of the primary challenges to defining a topological theory of NH Hamiltonians, as the sensitivity
to boundary conditions invalidates the traditional bulk-boundary correspondence. The NH skin
effect has recently been connected to the winding number, a topological invariant unique to NH
systems. In this paper, we extend the definition of the winding number to disordered NH systems
by generalizing established results on disordered Hermitian topological insulators. Our real-space
winding number is self-averaging, continuous as a function of the parameters in the problem, and
remains quantized even in the presence of strong disorder. We verify that our real-space formula
still predicts the NH skin effect, allowing for the possibility of predicting and observing the NH skin
effect in strongly disordered NH systems. We use our theory to demonstrate the NH Anderson skin
effect, in which a skin effect is developed as disorder is added to a clean system, as well as explain
recent results in optical funnels.

INTRODUCTION

The topological classification of Hermitian
Hamiltonians[1–8] applies to non-interacting Hamil-
tonians in equivalence classes based on the ten internal
Altland-Zirnbauer (AZ) symmetry classes[9]. The
topological classifications for these symmetry classes
are known for all spatial dimensions, and explicit
forms for the corresponding topological invariants
have been constructed[4–8]. A notable feature of the
Hermitian topological classification is the celebrated
bulk-boundary correspondence, in which topological
invariants of the bulk system predict anomalous states
on the boundary[1–3].

There has been recent interest in the topological prop-
erties of non-Hermitian (NH) Hamiltonians[10–25]. NH
Hamiltonians provide effective models for quantum sys-
tems with gain and loss[26], and can be realized in
atomic[27–31], optical[22–25, 32–40], electronic[41–43]
and mechanical[44–49] systems. Like their Hermitian
counterparts, NH Hamiltonians can display protected
anomalous boundary states[12, 13, 19]. In addition,
they display topological phenomena unique to NH sys-
tems, such as exceptional points[19, 50], half-integer
winding[19], stable 2D semimetallic phases[50–53], and
Weyl exceptional rings[27, 37]. All of these phenomena
are tied to a richer set of symmetry classes beyond the
ten AZ classes[52–55].

A challenge for understanding the topological phenom-
ena of NH Hamiltonians is the NH skin effect, in which
systems may display remarkably different eigenspectra
and eigenstates in periodic vs open boundary conditions
(PBC or OBC) [16, 56–59]. In particular, PBC and
OBC systems may become gapless at different points in
their phase diagrams[16, 20, 58–60], topological invari-
ants calculated using PBC may not predict properties of

the OBC system, and topologically protected edge states
in OBC systems may be hidden in an extensive number
of edge-localized eigenstates. To determine topological
properties of OBC systems, one may compute the so-
called generalized Brillouin zone[16, 20, 60], which can
be done only for simplified models, or by use real-space
invariants that directly predict OBC properties[59, 61–
63]. However, in general, a precise understanding of the
NH skin effect is necessary to develop a bulk-boundary
correspondence for NH systems[64]. The NH skin effect
is also interesting in its own right, as systems with the
NH skin effect exhibit exponentially large responses to
perturbations[44, 47], and optical systems exhibiting the
NH skin effect have recently been demonstrated to funnel
light for high-performance optical sensors[40].

While understanding the NH skin effect and its rela-
tionship to the bulk-boundary correspondence is still an
outstanding question in general dimensions, in 1D it has
recently been shown that the NH skin effect is determined
by the winding number around a complex energy E:
w(E)[65–67]. The winding number is a topological invari-
ant unique to NH systems[15, 52] and, roughly speaking,
regions of the complex energy plane with nonzero w(E)
under PBC have dramatically different spectra and local-
ization properties under OBC. Thus, determining w(E)
predicts the presence or absence of a NH skin effect in
the neighborhood around E.

In this work, we generalize the winding number w(E)
to disordered NH systems. We accomplish this by map-
ping the the NH problem to a disordered Hermitian sys-
tem, for which previous results have been established.
We propose a real-space formula for w(E) that is self-
averaging, continuous as a function of the parameters in
the problem, and remains quantized even in the pres-
ence of strong disorder. We verify the stability of our
invariant in simple models of NH systems with nontrivial
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winding. We also demonstrate that our invariant w(E)
determines the existence of the NH skin effect and, when
non-vanishing, also predicts the existence of an entire
band of delocalized states in our system. Indeed, the
non-zero winding essentially protects these states from
localization, in striking contrast to disordered 1D Hermi-
tian systems which are always localized (unless tuned to a
critical point)[68, 69]. Our work is distinct from previous
work on topological properties of disordered NH systems
[61–63], which studied the chiral winding ν rather than
the NH winding w(E).

The NH skin effect has already been observed in
optical[39], electronic[41, 42], and mechanical[44–46] sys-
tems, so our results can be experimentally realized in
multiple contexts. In addition, our results have posi-
tive implications for the stability of the recently demon-
strated optical funnel[40] to disorder. Finally, since our
method holds at arbitrary disorder strength, our re-
sults predict the possibility of observing a “NH Anderson
skin effect,” a NH analogue of the topological Anderson
insulator[61, 63, 68–72], in which the skin effect is in-
duced entirely by disorder from a clean system with no
skin effect.

BACKGROUND: THE NH WINDING NUMBER
AND THE SKIN EFFECT

As in the Hermitian case, the eigenstates of a trans-
lationally invariant NH Hamiltonian can be written via

Bloch’s theorem as |ψnk 〉 = eikX̂ |unk 〉, with Ĥ|ψnk 〉 =
Enk |ψnk 〉, k ∈ [0, 2π]. Unlike in the Hermitian case, the
eigenvalues Enk can in general be complex. Fig. 1(a)
illustrates possible curves Enk for a two band model. Be-
cause the spectrum is complex, we can distinguish two
types of gaps. Point gaps are values E ∈ C such that
the bands Enk never intersect E, while line gaps are lines
` ⊂ C such that the bands never intersect `[15, 54]. These
gaps coincide for Hermitian systems, but are distinct for
NH systems.

For any point gap E, we can define a topological in-
variant w(E) that counts how many times the bands Enk
wind around E. Note that w(E) cannot change unless
the gap closes at E. We can write a formula for the
winding number[15]:

w(E) =
1

2πi

∫ 2π

0

∂k log
(
|Ĥk − E|

)
dk. (1)

This counts the number of times the determinant of
(Ĥk − E) winds around the origin, which is equivalent
to counting the total winding of the bands Enk around
E. The winding numbers are indicated by the integers
in Fig. 1(a).

It has recently been proven that w(E) predicts the
NH skin effect[65–67]. Concretely, when transitioning
between PBC and OBC, the PBC eigenvalues enclosing

.

FIG. 1. An example of a NH band structure with +1 and −1
winding. (a) The PBC bands in the complex plane, with the
winding numbers marked. (b) The same diagram, with the
OBC spectrum overlaid. Red denotes states in a region with
w(E) > 0, blue denotes states in a region with w(E) < 0. We
see that the regions with positive/negative winding collapse
onto lines. (c) The density |ψn(x)|2 of all OBC eigenstates
{ψn}. We see that eigenstates in regions with negative wind-
ing (blue) are localized at the left edge, while eigenstates in
regions with positive winding (red) are localized at the right
edge.

a region with w 6= 0 collapse onto 1D arcs within the
region. An example is shown in Fig. 1(b), where the
OBC eigenvalues appear in the interior of the regions
having w = ±1. Moreover Refs. [66, 67] proved that the
OBC eigenvalues located in the interior of regions having
w > 0 correspond to eigenstates localized at the right
edge of the system, and the OBC eigenvalues located in
the interior of regions where w < 0 correspond to eigen-
states localized at the left edge of the system, as is shown
in Fig. 1(c). The number of eigenvalues in each arc is
proportional to the system size, leading to an extensive
number of states at the corresponding edge. The marked
difference between OBC and PBC spectra and the ex-
tensive number of edge states always occur together, and
collectively make up the NH skin effect[16].

THE DISORDERED NH WINDING NUMBER

Ref. 15 previously introduced a formula for the wind-
ing number in the presence of disorder. Adding flux φ
through the periodic system, they define the winding
number by

w(E) =
1

2πi

∫ 2π

0

∂φ log
(
|Ĥ(φ)− E|

)
dφ. (2)

This formula has been successfully applied to a NH ver-
sion of the quasiperiodic Aubry-Andr-Harper model[73,
74] to predict topological localization transitions[75, 76],
mobility edges[76], and the NH skin effect[43]. However,
for models at strong disorder this formula has a few draw-
backs. Most notably, it requires evaluating the integrand
at many values of φ to estimate the integral. In addi-
tion, it is not clear that this formula is self-averaging for
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large systems. Finally, it is not obvious that this formula
is well-behaved at strong disorder when eigenvalues will
exist near E so that the phase of |Ĥ(φ)−E| is sensitive
to rounding errors.

In this paper, we instead define a real-space formula
for the winding number w(E) using techniques from non-
commutative geometry. Our formula relies on mapping a
NH Hamiltonian Ĥ to a doubled Hermitian Hamiltonian
Ĥ = σ̂+⊗(Ĥ−E)+ σ̂−⊗(H−E)† with chiral symmetry
Ŝ = σ̂z ⊗ 1[15], and applying known results from non-
commutative geometry to Ĥ [68, 69, 77, 78]. Concretely,
we define an operator Q̂ by the polar decomposition (Ĥ−
E) = Q̂P̂ , where Q̂ is unitary and P̂ is positive. Refs.
15 and 79 have previously used Q̂ to define topological
properties of clean NH systems. Given Q̂, we define

w(E) = T (Q̂†[Q̂, X̂]), (3)

where T is the trace per unit volume and X̂ is the po-
sition operator. This reduces to Eq. 1 when the system
is translationally invariant. In addition, w(E) is quan-
tized, self-averaging, continuous as a function of E and
parameters in the Hamiltonian, and only changes when
there are states with diverging localization length Λ(E)
at E. Furthermore, a semi-infinite system has an eigen-
state with eigenvalue E localized at the boundary when-
ever w(E) 6= 0, which provides a justification of Eq. 3
as the real-space generalization of the winding number
(see Supplement[80] for more details). Our formula for
w(E) is a real-space NH invariant in the spirit of Refs.
61–63, although unlike those works our invariant has no
Hermitian counterpart.

HATANO-NELSON MODEL WITH DISORDER

To illustrate the properties of w(E), we consider the
Hatano-Nelson model [81–83]:

Ĥ =
∑
i

J iRĉ
†
i+1ĉi + J iLĉ

†
i ĉi+1 + hiĉ†i ĉi. (4)

This model describes a uniform chain with independent
hoppings J iL and J iR in the left and right directions, and
an on-site potential hi (which we take to be real). This
model is non-Hermitian when J iL 6= J iR. To model disor-
der we choose the hopping parameters via

J iR = JR+WRω
i
R, J iL = JL+WLω

i
L, hi = Wωi, (5)

where ωi(L/R) ∈ [−.5, .5] are uniformly distributed inde-
pendent random variables.

We can illustrate the behavior of w(E) in multiple
ways. First, if we consider the winding only around
E = 0 and set the onsite disorder W = 0, then we can
use the method of Ref. 69 to analytically compute the

.

FIG. 2. (a) w(0) as a function of (WR,WL) for (JL, JR,W ) =
(1, 1, 0). The black line denotes the points where Λ(0) di-
verges. (b) Same plot for (JL, JR,W ) = (1, .5, 0). (c,d) w(E)
as a function of (WR,WL) for (JL, JR,W ) = (1, 1, 1) and
(JL, JR,W ) = (1, .5, 1). (e,f) Numerically computed Λ(0). In
all cases, w(0) transitions when Λ(0) diverges.

localization length Λ(0):

1

Λ(0)
= log

 |JR − WR

2 |
JR
WR
− 1

2 |JL + WL

2 |
JL
WL

+ 1
2

|JR + WR

2 |
JR
WR

+ 1
2 |JL − WL

2 |
JL
WL
− 1

2

 . (6)

In Figs. 2(a,b), we plot the numerically computed w(0)
and the analytically predicted curves where Λ(0) = ∞
as a function of the disorder parameters (WL,WR), at
fixed model parameters (a) (JL, JR,W ) = (1, 1, 0) and
(b) (JL, JR,W ) = (1, .5, 0). We find w(0) is quantized,
and only changes when Λ(0) diverges. At more general E
and/or nonzero W , we cannot analytically determine the
phase boundaries. However, for a general (JR, JL,W )
and general E, we can compute Λ(E) numerically us-
ing transfer matrices[84]. In Figs. 2(c-f), we plot w(0)
and Λ(0) for systems with (c,e) (JL, JR,W ) = (1, 1, 1)
and (d,f) (JL, JR,W ) = (1, .5, 1). We again find w(E) is
quantized and transitions only when Λ(E) diverges.

To illustrate the localization properties of the spec-
trum we consider a system at fixed disorder, and calculate
w(E) as a function of E. If we assume (WL,WR) = 0
and let hi follow a Cauchy distribution rather than a
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FIG. 3. (a) w(E) for a system with WL = WR = 0 and hi dis-
tributed according to a Cauchy distribution. The black line
denotes the values where Λ(E) diverges. (b) w(E) for a sys-
tem with (JL, JR,WL,WR,W ) = (1, .5, 1, 1, 1). (c) Numeri-
cally computed λ(E). In each case, the region with w(E) 6= 0
is surrounded by a wall of delocalized states, and w(E) only
transitions when Λ(E) diverges.

uniform distribution, we can compute Λ(E) analytically
at any E[85, 86]; this is shown in Fig. 3(a). For more
general disorder, we can again use the transfer matrix;
an example with (JL, JR,WL,WR,W ) = (1, .5, 1, 1, 1) is
shown in Fig. 3(b,c). In both cases, a region with non-
vanishing winding is completely surrounded by delocal-
ized states. These examples reveal a notable distinction
between the NH winding number w(E) and Hermitian
topological invariants such as the chiral winding num-
ber ν and the Chern number C. Indeed, ν is a stable
topological invariant that is carried by entirely localized
states[69], while the Chern number can be carried by a
single delocalized state[87–89]. The NH winding, by con-
trast, can be nonzero only when an extensive number of
delocalized states exist in the spectrum. This is because
w(E) only changes when E passes through a delocalized
state, and w(E) → 0 as |E| → ∞ since in this limit Q̂
approaches the identity matrix. This implies that any E
with a nonzero winding must be surrounded by a “wall”

FIG. 4. (a) w(0) as a function of WR for (JL, JR,W,WL) =
(1, 1, 0, 0). This corresponds to the x-axis in Fig. 2(a). (b)
The same for (JL, JR,W,WL) = (1, .5, 1, 0), corresponding to
the x-axis in Fig. 2(e). (c,d) The corresponding slopes Γ in
the relation ρedge = ΓN for the left (blue solid) and right (red
dashed) edges. We see that the NH skin effect occurs at the
left edge when w < 0 and at the right edge when w > 0.

of delocalized states, and the nonzero winding prevents
these states from localizing. Intuitively, an extensive sen-
sitivity to boundary conditions should require an exten-
sive number of delocalized states, and this is precisely
what we find.

w(E) AND THE NH SKIN EFFECT

In clean systems, a region having winding w > 0 leads
to an extensive number of states at the right edge of
the system, and a region having winding w < 0 leads
to an extensive number of states at the left edge of the
system[66, 67]. We can characterize this NH skin effect
by examining the density

∑
n |ψn(x)|2 of all modes {ψn}

in the system. If there is a NH skin effect, the density
at the corresponding edge should be proportional to the
system size N , ρedge = ΓN .

This behavior persists in the presence of disorder. For
the Hatano-Nelson model, there is only one region of
nonzero winding, centered at E = 0, so w(0) determines
the NH skin effect. In Fig. 4(a,b), we plot the wind-
ing w(0) as a function of WR for (a) (JL, JR,W,WL) =
(1, 1, 0, 0) and (b) (JL, JR,W,WL) = (1, .5, 1, 0). This
corresponds to the x-axis of Figs. 2(a) and (e). In Fig.
4(c,d) we plot the coefficient Γ for each edge. Any Γ > 0
indicates a NH skin effect. We see that, identical to the
clean case, the NH skin effect occurs at the left edge when
w < 0 and at the right edge when w > 0, and no skin
effect occurs when w = 0. More intricate models can
have regions with both w > 0 and w < 0, and thus have
a skin effect at both boundaries.

The connection between the NH skin effect and w(E)
allows us to predict a new phenomenon: the NH An-
derson skin effect, in which a system without a NH skin
effect develops a skin effect at a critical value of disorder.
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Such an effect can already be seen in Fig. 2c, in which
the system near (WL,WR) = (0, 0) has w(0) = 0 and
thus no NH skin effect, but transitions to w(0) = ±1 at
non-vanishing critical values of WL or WR (for example,
by tuning one of WL or WR and keeping the other zero).
Such an effect should be readily observable in experimen-
tal platforms[39, 41, 44–46]. This effect is distinct from
and independent of the NH topological Anderson insula-
tors explored in Refs. [61, 63], which are NH generaliza-
tions of Hermitian topological Anderson insulators. In
contrast, the NH Anderson skin effect is unique to NH
systems.

As an immediate application, the connection between
the NH skin effect and the winding number allows us to
understand the stability of the recently demonstrated op-
tical funnel based on the NH skin effect[40]. The optical
funnel is a NH optical system in which all eigenmodes
are localized at an interface; the effect of this localiza-
tion is to “funnel” all excitations (incident light) towards
the interface. It was noted that for weak disorder numer-
ics show weak funnelling still occurred, while at strong
disorder it disappeared. Our formalism allows us to di-
rectly predict this phenomena by computing w(E). In
the clean limit the entire PBC spectrum surrounds a
region with w(E) 6= 0, so that all OBC states are lo-
calized at the interface. As the disorder increases, the
region with w(E) 6= 0 shrinks, so that the number of
states localized at the interface decreases, leading to re-
duced funnelling. Finally, at a critical value of disorder,
w(E) = 0 everywhere and no funnelling occurs. Our for-
malism not only allows us to understand the stability of
the funnelling to weak disorder, but provides a method to
compute the critical value of disorder at which funnelling
breaks down.

DISCUSSION

We extended the definition of the NH winding number
w(E) to disordered systems by relating it to the chiral
winding number ν of a doubled Hermitian system. Our
extension of w(E) has several desirable properties. It is
quantized, self-averaging, continuous as a function of pa-
rameters, and changes only when the localization length
at E diverges. Additionally, our w(E) successfully pre-
dicts the NH skin effect in disordered systems just as
it does for clean systems. Unlike Hermitian topological
invariants, a nonzero w(E) stabilizes an entire band of
delocalized states surrounding the nonzero w(E).

Our prediction of a NH skin effect in strongly disor-
dered systems, including the NH Anderson skin effect,
should be experimentally verifiable on existing experi-
mental platforms. In the future, it would be interesting
to extend our results to higher dimensions, as the NH
skin effect is not fully understood in higher dimensions
even for clean systems[41, 90, 91].
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[38] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and
L. Yang, Exceptional points enhance sensing in an op-
tical microcavity, Nature 548, 192 (2017).

[39] L. Xiao, T. Deng, K. Wang, G. Zhu, Z. Wang, W. Yi, and
P. Xue, Non-hermitian bulk–boundary correspondence in
quantum dynamics, Nat. Phys. , 1 (2020).

[40] S. Weidemann, M. Kremer, T. Helbig, T. Hofmann,
A. Stegmaier, M. Greiter, R. Thomale, and A. Szameit,
Topological funneling of light, Science 368, 311 (2020).

[41] T. Hofmann, T. Helbig, F. Schindler, N. Salgo,
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