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Scrambling of information in a quantum many-body system, quantified by the out-of-time-ordered
correlator (OTOC), is a key manifestation of quantum chaos. A regime of exponential growth in the
OTOC, characterized by a Lyapunov exponent, has so far mostly been observed in systems with a
high-dimensional local Hilbert space and in weakly-coupled systems. Here, we propose a general
criterion for the existence of a well-defined regime of exponential growth of the OTOC in spatially
extended systems with local interactions. In such systems, we show that a parametrically long
period of exponential growth requires the butterfly velocity to be much larger than the Lyapunov
exponent times a microscopic length scale, such as the lattice spacing. As an explicit example, we
study a random unitary circuit with tunable interactions. In this model, we show that in the weakly
interacting limit the above criterion is satisfied, and there is a prolonged window of exponential
growth. Our results are based on numerical simulations of both Clifford and universal random

circuits supported by an analytical treatment.

Introduction.- Many-body quantum chaos has recently
attracted an increasing amount of attention thanks to its
connections with quantum thermalization [1, 2], many-
body localization [3, 4], and black hole physics [5-8].
Among the many operational diagnostics of quantum
chaos [8-18], the scrambling of local quantum informa-
tion, typically quantified by out-of-time-ordered correla-
tors (OTOC) [5-7, 19-29], aims to capture the growth of
complexity of local operators under Heisenberg time evo-
lution. In large-N systems such as the Sachdev-Ye-Kitaev
model and conformal field theories with large central
charge and holographic duals, the OTOC has been shown
to exhibit a regime of exponential growth characterized
by the quantum Lyapunov exponent Ar, [5, 7, 30-32].
The scrambling time, which determines the time window
for the exponential growth, is parametrically long in the
large-N limit.

OTOCs in quantum many-body lattice systems with
a finite-dimensional Hilbert space and local interactions
have also been studied extensively [19-21, 27, 33-38]. In
generic situations, no regime of exponential growth was
found [19, 21, 37]. A special case which does exhibit
exponential growth is the weak coupling regime [24, 39—
42]. However, it remained unclear what controls the
scrambling time in systems with a local structure.

In this work, we propose a general criterion for the exis-
tence of a time period of exponential growth of the OTOC,
which is applicable for any system with spatial structure
and local interactions. We argue that a parametrically
long scrambling time can arise as a result of a competition
between the exponential growth of the OTOC locally, and
the rapid growth of the number of accessible degrees of
freedom. The latter growth rate is set by the butterfly
velocity vg [43], which is defined as the velocity of the

propagation of the operator front. The existence of a
parametrically long regime of exponential growth is thus
possible in the limit of large v /(Ara) ratio [see Eq. (3)],
where a is a microscopic length scale, to be discussed
below.

We demonstrate this principle using a random unitary
circuit model. Such models have been employed to draw
insights into the dynamical properties of deterministic
quantum systems [9, 11, 14, 19-22, 44, 45]. Previous
works on (141)D random unitary circuits showed that
the front of the OTOC travels ballistically with a dif-
fusive broadening, and no extended exponential regime
was found [19, 21]. Here, we introduce a random circuit
model with a tunable parameter, that plays the role of
the interaction strength. We provide both analytical re-
sults and numerical verifications of the existence of an
extended exponential growth regime in the limit of weak
interaction. Our analysis further reveals the full structure
of the OTOC during the entire evolution, including a
crossover to a saturated regime at late times. In the limit
of strong interactions, we recover the behavior observed
in previous studies [21].

Below, we start by defining the integrated OTOC, which
is suitable to characterize operator growth in systems with
spatial structure. We then introduce our random unitary
circuit model with tunable interactions. Focusing on a
special type of a Clifford circuit, we demonstrate the exis-
tence of a regime of exponential growth, and characterize
the crossover time to the saturated regime. Numerical
results for this model are complemented by analytic rate
equations. We then consider more generic circuits, and
show that our main results remain unchanged.

Scrambling time in systems with local interactions.- We
consider a finite-dimensional system defined on a lattice,



FIG. 1. Time evolution of the (a) local and (b) integrated
OTOC in the Clifford circuit (see text), demonstrating the
behavior expected in a generic system. The early time growth
is characterized by a Lyapunov exponent Ar,, while at late times
the growth of the iOTOC is linear, with a rate proportional to
the butterfly velocity vg and the saturation value, Csat. The
crossover time between the two regimes (the scrambling time)
is indicated by t..

where each lattice site contains a degree of freedom with
a finite-dimensional Hilbert space. The OTOC of two
local operators, W;, V;, acting on sites ¢, j respectively, is
given by

Ci(t) = = ((Wi(8), Vi) M

Under random unitary circuit evolution, temperature is
ill-defined, and therefore we take the expectation value
above with respect to an infinite temperature distribution.
For simplicity, we will focus on the one-dimensional case
and address higher dimensions later. In a generic scenario,
upon time evolution, the support of the operator W;(¢)
grows ballistically, forming a light cone with the front
propagating at the butterfly velocity vg. The OTOC
above becomes non-zero once the site j enters this light
cone. Following an early exponential growth regime, the
value of C; ;(t) must saturate at late times, since it is
bounded due to the finite dimension of the local Hilbert
space. This behavior is shown in Fig. 1(a), for a random
circuit model to be described below.

While the structure and dynamics of the local OTOC (1)
are interesting on their own right, here we focus on the
global properties of the scrambling dynamics. To this
end, we introduce the integrated OTOC (i0TOC),
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where a summation is performed over all the lattice
sites [46]. The i0TOC measures the expectation value of
the “size” of the operator [47, 48], washing out any tran-
sients and details of spatial structure, and thus simplifying
the identification and characterization of the scrambling
time. Similarly to the local OTOC, at early times, iOTOC
may exhibit an exponential growth with a Lyapunov ex-
ponent f (t) ~ e . At late times, when the OTOC in
the bulk of the system reaches its saturation value Cgag,
the iIOTOC crosses over to a linear growth regime (due
to the linear growth of the light cone), f(t) ~ Csavpt.

FIG. 2. (a) Schematic representation of the Clifford unitary
circuit (see text). (b) Density of o* operators in the operator
string o (t), for a single realization of the circuit with p =
0.9, = 0.05.

Assuming a single crossover time ¢, (the scrambling time)
between these two regimes, t, can be obtained from

e)\Lt* CsatUB (3)

~ CsatUBLsx = Ty ~ % log N
where we introduced the OTOC density at saturation
Csat = Csat/a (a is the lattice spacing) and dropped cor-
rections to ¢, that are of higher order in cguyvp/AL. We
thus find that a parametrically long scrambling time is
expected when vg/A;, diverges. Note that in the limit of
AL — 0, both 1/A, and t, diverge, however there still is a
parametric separation between the two time scales due to
the logarithmic enhancement of the latter with respect to
the former, allowing for a clear exponential regime to be
present. The iOTOC, exhibiting this behavior, is plotted
in Fig. 1(b).

Random Clifford circuit model.- To demonstrate the
arguments above, we study the scrambling dynamics in
a random unitary circuit. We start with the simplest
model in which the general behavior discussed above can
be observed, and which is amenable to both analytical
and large scale numerical analysis. A study of a more
generic version of the circuit, which concurs with the
results obtained here, is presented later. The structure of
the circuit is shown in Fig. 2(a). Every site hosts a single
qubit. At every odd (even) time step a set of SWAP
gates is applied on the odd (even) bonds, with probability
0 <p <1 on each bond. A SWAP gate interchanges the
state of the two qubits it acts on, and can be written
explicitly as o705 + 0y of + (14 0f03)/2, where 0% and
o* are Pauli operators. Then, a set of CNOT gates is
applied on a fraction 0 < r < 1/2 of all the bonds. The
bonds are chosen such that only configurations where
no two bonds share a site are allowed and each such
configuration is equally probable. The role of each qubit
(control or target) is chosen randomly and independently
for each CNOT gate.

Note that the circuit consists of Clifford gates only, and
therefore it can be simulated classically [49], allowing us
to explore large systems and long times. Upon Clifford
evolution, an operator & (t = 0) = o8, with a = z,y, 2
remains a single operator string of Pauli operators. In
particular, for the circuit structure described above, when



the operator o7 (t) is considered, the corresponding oper-
ator string at times ¢ > 0 consists only of ¢* and identity
operators. Fig. 2(b) shows the density of o* operators as
a function of time, for a single realization of the circuit.

To understand the evolution of operators consider first
the limit of » = 0 (no CNOT gates), and p =1 (SWAP
gates are applied on all odd / even bonds at each time
step). In this case, a single-site operator located on an
odd (even) site propagates ballistically to the right (left)
with velocity vg,o = 1. Decreasing p can be thought of as
introducing disorder, as a missing SWAP gate results in a
back-scattering of an operator, flipping its velocity. This
gives rise to a diffusive propagation with diffusion constant
D ~ vg Ty, where 7, ~ (1 —p)~! is the characteristic
time between consecutive back-scatterings.

Next, consider r > 0, and for concreteness focus on the
evolution of a ¢* operator. The action of a CNOT gate
on operators (when the first qubit is the control qubit
and the second one is the target) is given by

c*®1 — c*®1, 1Q0* = 0°®0%, 0°®c” — 1®c”. (4)

This process can be thought of as a scattering event due
to interactions, which increases the support of a local
operator. Denoting the scattering time due to the CNOT
gates as 7, ~ r ', we note that in the diffusive case
(p < 1), a finite r gives rise to a finite butterfly velocity
vp ~ /D/7 ~\/r/(1 —p) [40].

We are interested in the evolution of the OTOC. Writ-
ing the operator string corresponding to o*(t) explic-
()

(

itly as ®ka,?k where k£ runs over all the sites, and

0¥ is identity), the commutator [af‘ (1), Uﬂ is given by
(®k¢j0,?’“(t)) ® [cr?"(t),aﬂ. Since (ag’“(t)f = 1, the
2
commutator squared is simply {U?](t), aﬂ = 4(6ﬁ,a]~(t) —
1)1 for a;(t) # 0 (i.e. a;-xj(t) # 1). In particular, the
expectation value is state independent. Performing the
summation over j in Eq. (2) with W; = 0%/v/2 and
V; =0} /v/2, we find f(t) = 3 (1= 6g.0,1))(1 = 6a,(1).0),
i.e. the number of (non-identity) Pauli operators in o (t)
which are different from o”. Below, we consider the
OTOC between o7 (t) and of , so that f(¢) amounts to
the number of 0% operators in the string o7 (t) at time ¢.
Note that the commutator [o7(t), 07| vanishes identically
for any realization of the circuit. In fact, any product
state in the z basis remains un-entangled upon evolution
with the circuit above. However, as shown later, our main
results hold also in more generic circuit models.
Numerical results for integrated OTOCs and crossover
time.- We now study the behavior of the iOTOC in this
model as function of the circuit parameters. To this
end, we perform numerical simulations of the operator
dynamics, calculating the local and integrated OTOC.
As was already mentioned, the density of the CNOT
gates, r, is the parameter that sets the growth rate of
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FIG. 3. Numerical results for the OTOC in the Clifford circuit,
for the ballistic case (p = 1) in (a,b), and for the diffusive case
(p=10.9) in (c,d). (a,c) The OTOC density, f(t)/(2vst), for
different values of r as function of time. The crossover time,
t«, when the OTOC density reaches half of the saturation
value, is indicated by a star. Insets: f(¢) on a log scale. (b,d)
Scaling of t. with AL (extracted as the slope of log[f(t)] vs.
t at early times) and v (extracted from the spatial profile
of the operator density at late times). Data points shown
correspond to r = 0.003,0.006,0.012,0.024,0.048 in (b) and
r = 0.002,0.004, 0.008,0.016,0.032 in (d).

the support of a local operator in the circuit and leads to
scrambling. Therefore, we expect the Lyapunov exponent
AL to be directly determined by r. In the limit r < 1 (and
hence large vg /1), we expect an extended time regime in
which the growth of the iOTOC is exponential with a well-
defined Lyapunov exponent. We find that this is indeed
the case both for the ballistic and the diffusive parameter
regime, as can be seen in the insets of Figs. 3(a,c). To
further analyze the crossover time, and its scaling with Ar,
and vg, we look at the average OTOC density, namely the
iOTOC, f(t), divided by the size of the light cone, 2vpt
(see Figs. 3(a,c)). At late times we expect this quantity to
approach the saturation value of the OTOC in the bulk,
which we find to be 1/2 and independent of r in the regime
r < 1. (This value is in agreement with the expectation
from the analytic rate equation analysis presented later
on.) We define the crossover time ¢, as the time at which
the averaged OTOC density reaches half of its saturation
value. In Figs. 3(b,d) we show that the crossover time
extracted as above, indeed obeys the scaling expected
from Eq. (3) both for the ballistic circuit with p = 1 and
the diffusive one with p = 0.9. The results were obtained
by averaging over 4-10% (10*) realizations for the ballistic
(diffusive) case.

Master equation for integrated OTOC.- To gain fur-
ther insights on the scrambling process in the model

described above, we now derive analytic rate equations
for the iOTOC. We consider the limit of small but finite



r,and 1 —p < 1, such that the scattering events due to
the CNOT gates are dilute and can be assumed to be
uncorrelated [50]. This assumption is analogous to the
molecular chaos hypothesis.

At time step t, the number of CNOT gates applied
within the light cone of an operator o7 (¢) is Nonor =
2rvgt. Consider what happens to the total number of
o” operators in the operator string upon application of a
CNOT gate. From (4), we see that this number increases
by one if the target (but not the control) site hosts a o*
operator, while if both sites host a o* operator, the num-
ber decreases by one. Denote the fraction of non-identity
operators in the operator string of o7 (t), within its light
cone, by g = f(t)/(2vpt). Assuming the probabilities of
different sites to host a ¢ operator are independent, the
probabilities for the processes which increase or decrease
the number of non-identity operators in the string are
given by q(1 — q) and ¢?, respectively. Thus, the change
in the number of o* operators in the operator string in a
single time step is given by Nexor (¢(1 —q) — ¢%). Re-
calling that the iOTOC is given simply by the number of
non-identity operators in the operator string, as discussed
above, we find that the rate equation for the iOTOC is
(treating the time as continuous)

Y i (1- 1), ®)

dt vpt
This equation admits a solution of the form

_ goert
1+ go = [Ei(rt) — Ei(1)]’

f@®) (6)

where Ei(rt) is the exponential integral, and gg is a con-
stant set by the initial conditions. At early times, we
see that indeed f(t) ~ e’  with a Lyapunov exponent
set by the CNOT gates density, A\, = r. At late times,
using the asymptotic expansion for the exponential in-
tegral, we find f(t) ~ vgt/(1 + (rt)~1), i.e. the slope
asymptotically approaches the butterfly velocity. The
average OTOC density, f(¢)/(2vpt) thus tends to 1/2 as
observed numerically (see Figs. 3(a,c)). The crossover
time, t,, at which the OTOC density reaches a finite frac-
tion of the saturation value, is given (to leading order) by
e ~ vpt, in agreement with Eq. (3) and as observed nu-
merically. Although the focus of our discussion here was
on the iOTOC, in which the spatial structure is washed
out, in the Supplementary Material (SM) [50] we discuss
hydrodynamic equations capturing the spatial structure
and discuss their validity. We observe a crossover from a
propagation in which the front maintains its shape to a
regime where the front broadens diffusively.
Generalizations of the random circuit model.- As noted
previously, the circuit model considered above is a special
type of a Clifford circuit, in which both operator entan-
glement and state entanglement do not grow upon time
evolution. We now demonstrate that our results do not
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FIG. 4. (a) Integrated OTOC for the generalized circuit model,
shown on a log-scale, and (b) operator entanglement entropy
across the middle bond in the system, as function of time, for
different bond dimensions M. Averaging over 300 realizations
of the circuit is performed in each case. For pr = 0, the model
becomes a Clifford circuit, for which the operator entanglement
remains zero at all times.

rely on either of this properties. For simplicity, we restrict
the analysis below to the ballistic case, i.e. p = 1.

First, consider a generalization of the circuit, in which
the standard CNOT gate is replaced by a CNOT opera-
tion where the basis for both the control and the target
qubits is chosen to be the x,y or z basis randomly and
independently for each of the two qubits. Namely

1, +of 1, —of
Uenor = 12 ~® L+ 12 :

® 5%, (7)
where «, 8 € z,y,z. While this remains a Clifford cir-
cuit, the entanglement of a state generically grows with
time in this case. We consider the averaged OTOC
XDy ([0%(t),0%]?). The averaged iOTOC ob-
tained for this model, for CNOT gate density r = 0.01,
is plotted in Fig. 4(a) (dashed blue line). It can be seen
that a prolonged regime of exponential growth is present,
similarly to the simplified model. Additional results for
this model, and in particular a verification of the scaling
in Eq. (3), are given in the SM [50].

We next consider a further generalization to a non-
Clifford circuit. In this circuit operators evolve into su-
perpositions of operators as in a generic quantum system
and the operator entanglement grows with time. In our
non-Clifford circuit, at each time step of the evolution,
following the application of CNOT gates, a T gate (i.e. a
7 /4 phase gate, around a randomly chosen axis) is applied
with probability pr at each site. To calculate the OTOCs
in presence of T gates we perform the time evolution of
operators using a matrix product state (MPS) [51] repre-
sentation of the operator string, employing the ITensor
library [52]. Due to the exponential growth of opera-
tor entanglement exact simulations are limited to short
times. To go to longer times we perform truncation of the
MPS bond dimension. In Fig. 4(a) we plot the iOTOC
for r = 0.01 and T gate density pr = 0.01, for differ-
ent maximal bond dimensions. The respective operator
entanglement that builds up in the system is shown in
Fig. 4(b). We see that although the operator entangle-
ment in the system is now non-zero, the iOTOCs are



essentially unmodified. Note that evolution up to times
t ~ 300 is carried out without any truncation, and is thus
exact.

Discussion.- In this work we proposed a criterion for the
existence of a Lyapunov exponent in many-body systems
with local interactions and a finite dimensional on-site
Hilbert space. Having a parametrically long scrambling
time (where the OTOC is exponentially growing, and
hence Ap, is well-defined) requires the ratio vg/AL to
be large. This condition is naturally fulfilled in weakly
coupled systems. Whether the condition is satisfied in
other situations, e.g., in generic strongly-coupled systems
in the low-temperature limit, remains to be seen.

Our condition is demonstrated in an explicit one-
dimensional random unitary circuit model, where we have
verified the relation between the scrambling time and
vp/AL. However, we expect the results to carry over
to higher dimensions. Since the number of sites in the
light cone grows as (vpt)? in the d-dimensional case, the
late-time iOTOC scales as f(t) ~ t?. Therefore, the
scrambling time is enhanced by a factor of d relative to
the one-dimensional case.

Finally, we note that other probes for scrambling have
been proposed, in particular the growth of state and op-
erator entanglement [9-14, 19, 21, 53, 54]. In our Clifford
circuit, we find an exponential growth of the OTOC de-
spite the fact that the operator entanglement (as well as
the state entanglement in the special circuit described
above) do not grow, indicating that the existence of a
Lyapunov exponent captures a different aspect of scram-
bling.
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