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We propose a method for controlling the exchange interactions of Mott insulators with the strong
spin-orbit coupling. We consider a multiorbital system with the strong spin-orbit coupling and a
circularly polarized light field and derive its effective Hamiltonian in the strong-interaction limit.
Applying this theory to a minimal model of α-RuCl3, we show that the magnitudes and signs of
three exchange interactions J , K, and Γ can be changed simultaneously. Then, considering another
case, in which one of the hopping integrals has a different value and the other parameters are the
same as those for α-RuCl3, we show that the Heisenberg interaction J can be made much smaller
than the anisotropic exchange interactions K and Γ.

Periodic driving enables us to control the magnetic
properties of solids. The solution to the Schrödinger
equation for a periodically driven system satisfies the Flo-
quet theorem because of time periodicity of the driving
field [1, 2]. In particular, the time evolution in steps
of the driving period T can be described by a time-
independent Hamiltonian [3]. Since its parameters usu-
ally depend on the amplitude and frequency of the driv-
ing field, the properties could be controlled by tuning
the driving field; such control is called Floquet engineer-
ing [4–6]. For example, by applying E(t) = E0 cosωt
to a single-orbital Mott insulator and tuning E0 and ω,
we can change the magnitude and sign of the antiferro-
magnetic Heisenberg interaction between magnetic mo-
ments [7, 8]. Moreover, for a multiorbital Mott insulator
without the spin-orbit coupling (SOC), we can control
the antiferromagnetic and the ferromagnetic contribu-
tions to the Heisenberg interaction via a time-periodic
electric field [9, 10]. Such control could be used to en-
gineer the magnetic properties of solids because the ex-
change interactions are key quantities describing magne-
tization dynamics [11] and spintronics phenomena [12].

Although the magnetic properties of solids are affected
by the SOC, the Floquet engineering of Mott insulators
with the strong SOC is lacking. The magnetic proper-
ties of Mott insulators with the strong SOC are described
by spin and orbital coupled degrees of freedom [13, 14].
As a result, not only the Heisenberg interaction but also
the anisotropic exchange interactions contribute to the
effective Hamiltonian [15–19]. For example, the effective
Hamiltonians for α-RuCl3 and the honeycomb iridates
possess the Heisenberg interaction, the Kitaev interac-
tion, and the off-diagonal symmetric exchange interac-
tion [18, 20–22]. Then the combinations of the Heisen-
berg interaction and the anisotropic exchange interac-
tions cause various types of magnetic order [18, 22–27]; if
the Kitaev interaction is dominant, the spin-liquid states
are stabilized [28]. Controlling the exchange interactions
via a time-periodic field may provide a new opportunity
to engineer their properties. Nevertheless, it is unclear
how a time-periodic field changes the exchange interac-

tions of Mott insulators with the strong SOC.
In this work, we study the exchange interactions of

periodically driven Mott insulators with the strong SOC.
We use a t2g-orbital Hubbard model in the presence of the
strong SOC and a circularly polarized light field on the
honeycomb lattice and derive its effective Hamiltonian in
the strong-interaction limit. Applying this theory to the
case of α-RuCl3, we show that the magnitudes and signs
of three exchange interactions can be changed. Then,
studying another case of our model, we show that the
Heisenberg interaction can be made much smaller than
the anisotropic exchange interactions.
Setup.—We consider a periodically driven multiorbital

system described by

H = HKE +HSOC +Hint, (1)

where HKE, HSOC, and Hint represent the kinetic energy,
the atomic SOC [14], and the local multiorbital Coulomb
interactions [29], respectively. The kinetic energy is given
by the hopping integrals of the t2g-orbital electrons on the
honeycomb lattice (Fig. 1) in the presence of a circularly
polarized light field E(t) = t(E0 cosωt −E0 sinωt). The
effects of E(t) are treated as the Peierls phase factors:

HKE =
∑

i,j

∑

a,b

∑

σ

tiajbe
−ie(Ri−Rj)·A(t)c†iaσcjbσ, (2)

where A(t) = t(−E0

ω
sinωt − E0

ω
cosωt); hereafter we use

~ = 1. Then the atomic SOC of HSOC is given by the
LS coupling for the t2g-orbital electrons [14]. The terms
of Hint consist of the following interactions [29]:

Hint =
∑

i

{

∑

a,b

c†ia↑c
†
ia↓[Uδa,b + J ′(1− δa,b)]cib↓cib↑

+
∑

a,b
a>b

∑

σ,σ′

c†iaσc
†
ibσ′ (U

′cibσ′ciaσ − JHcibσciaσ′ )
}

. (3)

As a specific example, we consider a minimal model
of α-RuCl3 [18]: tiajb’s in HKE can be parametrized by
three hopping integrals between nearest-neighbor sites on
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FIG. 1. Structure of the honeycomb lattice. X, Y , Z de-
note three different nearest-neighbor bonds. Black and white
circles represent A and B sublattices, respectively.

the honeycomb lattice (Fig. 1). Namely, for the Z bond,
the finite tiajb’s are given by tidyzjdyz

= tidzxjdzx
= t1,

tidyzjdzx
= tidzxjdyz

= t2, and tidxyjdxy
= t3; for the X or

Y bond, similar relations can be obtained from symmetry
arguments [18]. Then the low-energy properties can be
described by the jeff = 1/2 states [18, 30, 31], |+〉i =
1√
3
(c†idyz↓ + ic†idzx↓ + c†idxy↑)|0〉 and |−〉i = 1√

3
(c†idyz↑ −

ic†idzx↑ − c†idxy↓)|0〉, in which the spin and the orbital are
entangled by the strong SOC. Since such entanglement
is the key property of the strong SOC [14], this model
will be sufficient for analyzing essential physics in the
presence of the strong SOC.

Floquet theory of Mott insulators.—We derive an ef-
fective Hamiltonian for a periodically driven Mott in-
sulator using the Floquet theory [10]. To derive it, we
consider the strong-interaction limit in which tiajb’s are
much smaller than the energies of doubly occupied states,
U + 2J ′, U − J ′, U ′ − JH, and U ′ + JH [19, 32]. In this
limit, we can approximately express the solution to the
Schrödinger equation, |Ψ〉t, as |Ψ〉t ≈ |Ψ0〉t + |Ψ1〉t [10],
where |Ψ0〉t and |Ψ1〉t denote the states without and
with, respectively, a doubly occupied site. As a result,
the Schrödinger equation reduces to a set of simultaneous
equations:

i∂t|Ψ0〉t = P0HKE|Ψ1〉t +HSOC|Ψ0〉t, (4)

i∂t|Ψ1〉t = HKE|Ψ0〉t + (P1HKEP1 + H̃int)|Ψ1〉t, (5)

where H̃int = Hint + HSOC; P0 and P1 denote the pro-
jections onto the subspaces without and with, respec-
tively, a doubly occupied site. Hereafter we concentrate
on the high-frequency case in which ω is much larger than
tiajb’s. In this case, we could replace the time-dependent
operator P1HKEP1 in Eq. (5) by its time-averaged

one H̄KE =
∑

i,j

∑

a,b

∑

σ tiajbJ0(uij)P1c
†
iaσcjbσP1 [10],

where Jn(uij) is the nth Bessel function of the first
kind and uij = eE0

ω
sgn(i − j) [33]; the distance between

nearest-neighbor sites is set to unity. By using this re-

placement, we can solve Eq. (5); the result [34] is

|Ψ1〉t =
∑

i,j,a,b,σ

∞
∑

n=−∞

tiajbJ̃−n(uij)e
−inωt

nω − H̄KE − H̃int

c†iaσcjbσ |Ψ0〉t,

(6)

where J̃−n(uij) = J−n(uij)e
−inθij , and θij = θji = π

3 ,
π, or 5π

3 for the Y , Z, or X bond, respectively. Fur-
thermore, since Hint gives the largest contribution of
the terms of H̄KE and H̃int(= Hint +HSOC), we replace
nω−H̄KE−H̃int in Eq. (6) by nω−Hint; this replacement
may be sufficient if ω is non-resonant, i.e., the denomi-
nator of Eq. (6) does not diverge. By using Eq. (6) with
this replacement and omitting the constant term (i.e.,
HSOC|Ψ0〉t), we can rewrite Eq. (4) as

i∂t|Ψ0〉t = Heff(t)|Ψ0〉t, (7)

where

Heff(t) =
∑

i,j

∑

a,b,c,d

∑

σ,σ′

∞
∑

n,m=−∞
tjcidtiajbP0c

†
jcσ′cidσ′

×
J̃m(uji)J̃−n(uij)e

i(m−n)ωt

nω −Hint
c†iaσcjbσP0. (8)

The leading term of Heff(t) is given by the time-
independent Floquet Hamiltonian. Since Heff(t) is time-
periodic, it can be expressed as the Fourier series
Heff(t) =

∑

l e
ilωtHl. Furthermore, by using a high-

frequency expansion of the Floquet theory [4–6], Heff(t)
can be written in the formHeff(t) = H0+O(ω−1). There-
fore the time-averaged Heff(t), H̄eff, gives the leading
term of Eq. (8); H̄eff is given by

H̄eff =
∑

i,j

∑

a,b,c,d

∑

σ,σ′

∞
∑

n=−∞
tjcidtiajbP0c

†
jcσ′cidσ′

Jn(uij)
2

nω −Hint

× c†iaσcjbσP0. (9)

Application to periodically driven α-RuCl3.—Applying
the above theory to the minimal model of α-RuCl3, we
derive its Floquet Hamiltonian. This derivation can be
performed in a way similar to the derivation in the ab-
sence of a driving field. Here we describe the main
points of the derivation (for the details, see Supplemen-
tal Material [34]). To derive the expression of H̄eff for
the minimal model of α-RuCl3, we suppose that in the
subspace of |Ψ0〉t a single hole occupies the jeff = 1/2
states per site. We also rewrite Hint using the irreducible
representations of doubly occupied states [19]: Hint =
∑

i

∑

Γ,gΓ
UΓ|i; Γ, gΓ〉〈i; Γ, gΓ|, where UA1

= U + 2J ′,
UE = U − J ′, UT1

= U ′ − JH, and UT2
= U ′ + JH;

|i; Γ, gΓ〉’s are expressed in Supplemental Material [34].
Then, by calculating the contributions of possible hop-
ping processes to H̄eff, we obtain [34]

H̄eff =
∑

〈i,j〉
[JSi · Sj +KSγ

i S
γ
j + Γ(Sα

i S
β
j + Sβ

i S
α
j )], (10)
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FIG. 2. The |uij |(= | eE0

ω
|) dependences of J , K, and Γ in the case of α-RuCl3 [panels (a) and (b)] and another case [panels

(c) and (d)].

where

J =

∞
∑

n=−∞

4Jn(uij)
2

27

{ (2t1 + t3)
2

U + 2J ′ − nω
+

6t22
U ′ + JH − nω

+
2[(t1 − t3)

2 − 3t22]

U − J ′ − nω
+

6t1(t1 + 2t3)

U ′ − JH − nω

}

, (11)

K =

∞
∑

n=−∞

4Jn(uij)
2

9

{ 4t22
U − J ′ − nω

−
[(t1 − t3)

2 + t22]

U ′ + JH − nω

+
[(t1 − t3)

2 − 3t22]

U ′ − JH − nω

}

, (12)

Γ =

∞
∑

n=−∞

16Jn(uij)
2t2(t1 − t3)JH

9(U ′ − JH − nω)(U ′ + JH − nω)
, (13)

and (α, β, γ) = (x, y, z), (y, z, x), (z, x, y) for the Z, X ,
Y bond, respectively; J , K, and Γ are the Heisenberg
interaction, the Kitaev interaction, and the off-diagonal
symmetric exchange interaction, respectively. [These ex-
pressions hold also for E(t) = t(E0 cosωt E0 sinωt).]

We now show how J , K, and Γ vary with ω and uij .
To do it, we numerically evaluate Eqs. (11)–(13). We
set t1 = 47 meV, t2 = 160 meV, t3 = −129 meV [35],
J ′ = JH, U

′ = U − 2JH, U = 3 eV, and JH = 0.5 eV; we
replace

∑∞
n=−∞’s by

∑nmax

n=−nmax
’s and set nmax = 500.

Figures 2(a) and 2(b) show the |uij | dependences of J ,
K, and Γ at ω = 3 and 2.2 eV. We see that by changing
|uij |, the magnitudes of J , K, and Γ can be changed at
ω = 3 and 2.2 eV; and that at ω = 2.2 eV it is possible
to change not only their magnitudes but also their signs.

For a deeper understanding of the above results,
we perform some analyses of Eqs. (11)–(13). Since
J ′ = JH and U ′ = U − 2JH, J , K, and Γ can
be rewritten as follows: J = J1 + J2 + J3, where

J1 =
∑

n
4Jn(uij)

2(2t1+t3)
2

27(U+2JH−nω) , J2 =
∑

n
8Jn(uij)

2(t1−t3)
2

27(U−JH−nω) ,

and J3 =
∑

n
8Jn(uij)

2t1(t1+2t3)
9(U−3JH−nω) ; K = K1 + K2,

where K1 =
∑

n
4Jn(uij)

2[3t2
2
−(t1−t3)

2]
9(U−JH−nω) and K2 =

∑

n
4Jn(uij)

2[(t1−t3)
2−3t2

2
]

9(U−3JH−nω) ; and Γ = Γ1 + Γ2, where Γ1 =
∑

n
8Jn(uij)

2t2(t1−t3)
9(U−3JH−nω) and Γ2 =

∑

n
8Jn(uij)

2t2(t3−t1)
9(U−JH−nω) . For

the hopping parameters of α-RuCl3, J1 is much smaller
than J2 and J3; as a result, J ≈ J2 + J3. This is the

origin of the in-phase |uij | dependences of J , K, and Γ
[Figs. 2(a) and 2(b)]. Then we can understand the sign
changes of J , K, and Γ at |uij | ∼ 0.4, 3.5 [Fig. 2(b)]
by estimating the dominant contributions. We make the
estimate of J because the sign changes of K and Γ can
be understood similarly. For ω = 2.2 eV, the dominant
contributions are given by

J ≈ (J0
2 + J0

3 )J0(uij)
2 + (J0

2 c2 − J0
3 c3)J1(uij)

2, (14)

where J0
2 = 8(t1−t3)

2

27(U−JH) , J
0
3 = 8t1(t1+2t3)

9(U−3JH) , c2 = U−JH

δω2

, c3 =
U−3JH

δω3

, and ω = U − 3JH + δω3 = U − JH − δω2 (i.e.,
δω2 = 0.3 eV and δω3 = 0.7 eV). At |uij | = 0, J is
ferromagnetic, i.e., negative, because J0

2 and J0
3 satisfy

J0
2 > 0, J0

3 < 0, and J0
2 + J0

3 < 0. As |uij | increases,
the term including J1(uij)

2 in Eq. (14), the positive-
sign contribution, becomes considerable and causes a sign
change of J . With further increases in |uij |, J1(uij)

2

approaches zero, and the sign of J changes again.

Application to another case.—We consider another
case and study the effects of the driving field on the ex-
change interactions. In this case, we set t3 = 129 meV
and use the same values of the other parameters as those
used in the case of α-RuCl3; in a set of these values, J1
is comparable to J2 and J3. Although it may be difficult
to change the value of t3 in α-RuCl3, we study this case
to clarify how the driving field changes J in the presence
of non-negligible J1. Figures 2(c) and 2(d) show the |uij |
dependences of J , K, and Γ in this additional case. We
see that the |uij | dependence of J differs from that of K
or Γ. In particular, J can be very small in magnitude,
while K and Γ are finite [see, for example, their values
at |uij | = 1.6 in Fig. 2 (d)].

Discussion.—We comment on the validity of our the-
ory. First, the hopping integrals of our model are simpli-
fied compared with those obtained in the first-principles
calculations [21]. However, since the leading terms are t2
and t3 [21], our model may be appropriate for a minimal
model of α-RuCl3. Then the obtained |uij | dependences
of J , K, and Γ might be affected by the doublon-holon
hoppings described by H̄KE. Nevertheless, we believe our
results remain qualitatively unchanged. This is because
the previous studies [9, 10] show that in the frequency
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range where the correction due to J1(uij)
2 is important

and the corrections due to Jn(uij)
2’s for n ≥ 2 are less

important (the range of U −2JH < ω < U in Ref. 9), the
effects of the driving field on the exchange interactions re-
main qualitatively unchanged even if the doublon-holon
hoppings are taken into account.

We also remark on heating effects. The periodi-
cally driven system eventually approaches an infinite-
temperature state [36, 37]. However, at intermediate
times t . τ [38], it can be approximately described by the
Floquet Hamiltonian as long as ω is non-resonant [10] and
much larger than the exchange interactions [3, 39–42].
Since these conditions hold in our study, the properties
similar to our results could be realized experimentally.

We now discuss the implications of our results. First,
our results in the case of α-RuCl3 indicate that by tuning
ω and changing E0, one can change the magnitudes and
signs of the three exchange interactions of periodically
driven α-RuCl3. In particular, by using this method,
the Kitaev interaction can be made ferromagnetic (nega-
tive) or antiferromagnetic (positive). Since its sign dras-
tically affects the magnetic properties of materials with
the strong SOC [22, 43], our results will provide an oppor-
tunity for connecting the ferromagnetic and the antifer-
romagnetic Kitaev physics. Such control of the exchange
interactions could be achieved by pump-probe measure-
ments. Then our results in another case suggest that
if the contribution from the doubly occupied state with
A1 symmetry is non-negligible, it is possible to make the
Kitaev interaction much larger in magnitude than the
Heisenberg interaction. Therefore the periodically driven
Mott insulator with the strong SOC and the hopping in-
tegrals that lead to such a contribution may be suitable
for realizing the Kitaev model [28] and the spin liquid.

Conclusions.—We have studied the exchange interac-
tions of the Mott insulators with the circularly polar-
ized light field and the strong SOC in the two cases. In
the case of α-RuCl3, we have shown that J , K, and Γ
have the similar |uij | dependences, and that their magni-
tudes and signs can be changed by tuning ω and varying
E0. These properties can be utilized for changing the ex-
change interactions of α-RuCl3 and controlling its mag-
netic properties. In another case, we have shown that
the |uij | dependence of J differs from those of K and Γ,
and that J can be made much smaller than K and Γ by
tuning |uij |. The latter property suggests a new possi-
bility of realizing the Kitaev spin liquid. Our results will
provide the first step towards controlling the exchange
interactions and the magnetic properties of periodically
driven Mott insulators with the strong SOC.

This work was supported by JST CREST Grant Num-
ber JPMJCR1901, JSPS KAKENHI Grant Numbers
JP19K14664 and JP16K05459, and MEXT Q-LEAP
Grant Number JP-MXS0118067426.
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