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An atomistic effective Hamiltonian is used to compute electrocaloric (EC) effects in rare-earth substituted

BiFeO3 multiferroics. A phenomenological model is then developed to interpret these computations, with this

model indicating that the EC coefficient is the sum of two terms, that involve electric quantities (polarization,

dielectric response), the antiferromagnetic order parameter, and the coupling between polarization and antifer-

romagnetic order. The first one depends on the polarization and dielectric susceptibility, has the analytical form

previously demonstrated for ferroelectrics, and is thus enhanced at the ferroelectric Curie temperature. The

second one explicitly involves the dielectric response, the magnetic order parameter and a specific magneto-

electric coupling, and generates a peak of the EC response at the Néel temperature. These atomistic results and

phenomenological model may be put in use to optimize EC coefficients.

The electrocaloric (EC) effect is a phenomenon by which

a material exhibits a reversible temperature change under the

application/removal of an electric field [1–5]. It is attracting

attention due to its potential to be an efficient solid-state re-

frigeration technology (see, e.g., Refs. [6–19] and references

therein).

Furthermore, multicaloric effects that are driven simultane-

ously by more than one type of external physical handle, such

as electric and/or magnetic fields, mechanical stress and pres-

sure [20–24], are also promising to enhance change in tem-

perature [23, 24].

Recently, multiferroics, which are materials that possess

coupled long-range-ordered electric and magnetic degrees of

freedom [25–31], have also been mentioned as possible sys-

tems to enhance the EC effects by taking advantage of such

coupling [12, 20, 21, 32–34]. The pioneering work of Ref.

[33] started from a phenomenological Landau-type equation

for which coefficients were determined from first principles to

investigate how magnetoelectric coupling modifies the EC co-

efficient. The main result was that EC effects are significantly

enhanced (by about 60%) thanks to magnetoelectric coupling

in the case that the ferroelectric and magnetic critical temper-

atures coincide. However, one has to be careful when using

a Landau-type approach because fluctuations, which can be

important for responses, are not treated explicitly and may

be underestimated. That is why atomistic approaches incor-

porating couplings between electric dipoles and spins can be

useful to also study EC effects in multiferroics, as the authors

of Ref. [33] indicated. More importantly, it is presently un-

clear how to understand EC coefficients in multiferroics. For

instance, can these coefficients be considered as composed of

two terms, with one corresponding to that occurring in normal

ferroelectrics and the second one related to the coupling be-

tween spins and electric dipoles? If yes, what are the precise

quantities involved in the second term? Are they only mag-

netoelectric, or rather also involve electric and/or magnetic

properties? Answering such questions will help in designing

systems with large EC response.

The aim of this Letter is to resolve all these issues by (1)

conducting atomistic-based simulations; (2) developing a sim-

ple model that can reproduce these simulations; and (3) using

such simulations and model to gain a deep microscopic in-

sight. We demonstrate that the EC coefficient of multiferroics

can be thought as having two parts, each associated with dif-

ferent physical quantities.

Here, we adopt the effective Hamiltonian (Heff ) approach

developed in Ref. [35] to study disordered Bi1−xNdxFeO3

(BNFO) alloys. Heff parameters are provided in the Sup-

plemental Material (SM) [36]. This Heff successfully repro-

duced the temperature-versus-compositional phase diagram

of BNFO. It predicts a R3c ground state for small Nd com-

positions and a Pnma phase for larger concentrations, with

intermediate complex states in-between. Moreover, within the

compositional range for which the R3c phase is the ground

state, the ferroelectric Curie temperature TC was numerically

found to significantly decrease with the Nd composition while

the TN Néel temperature is mostly independent of concentra-

tion, which also agrees with measurements [51–53]. The total

internal energy of this Heff can be expressed as a sum of two

main terms:

Etot = EBFO({ui}, {ηH}, {ηI}, {ωi}, {mi})

+Ealloy({ui}, {ωi}, {mi}, {ηloc}) , (1)

where EBFO is the Heff of pure BiFeO3 [39–42] and Ealloy

characterizes the effect of substituting Bi by Nd ions. The

Heff of BNFO contains four types of degrees of freedom: (i)
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the local soft mode {ui} centered on the A site of Bi or Nd

ions in the 5-atom unit cell i (which is proportional to the local

electric dipole moment of that cell [43, 44]); (ii) the strain ten-

sor gathering homogeneous {ηH} and inhomogeneous {ηI}
contributions [43, 44]; (iii) the pseudovectors {ωi} that repre-

sent the oxygen octahedral tiltings [45]; and (iv) the magnetic

moments {mi} centered on Fe ions [54].

We employ this Heff within Monte Carlo (MC) simulations

on 12× 12× 12 supercells (containing 8 640 atoms) with pe-

riodic boundary conditions and inside which Bi and Nd ions

are randomly distributed over the A sublattice. 20 000 MC

sweeps are used for equilibration and an additional 20 000
MC sweeps are employed to compute statistical averages at

finite temperature, to obtain converged results. We also aver-

age our results over 10 random Bi/Nd distributions, to mimic

well disordered BNFO solid solutions.

Regarding the linear EC coefficient, αγ , it is the derivative

of the temperature with respect to electric field at constant en-

tropy. It can be obtained from MC simulations by taking ad-

vantage of the cumulant formula [16, 17, 55]:

αγ = −Z∗alatT

{

〈uγEtot〉 − 〈uγ〉 〈Etot〉
〈

Etot
2
〉

− 〈Etot〉
2
+ 21(kBT )2

2N

}

, (2)

whereZ∗ is the Born effective charge associated with the local

mode, alat represents the five-atom lattice constant, T is the

temperature, uγ is the γ-component of the supercell average

of the local mode with γ = x, y, or z (note that the x, y, and z
axis are chosen along the pseudocubic [100], [010] and [001]
directions, respectively),Etot is the total internal energy given

by the Heff , kB is the Boltzmann constant, N is the number

of sites in the supercell, and 〈 〉 defines the average over the

MC sweeps at a given temperature [56]. In the following,

we will denote α the quantity defined by
αx+αy+αz√

3
. Such

definition corresponds to the EC response for an electric field

applied along [111], which is the maximal response within a

R3c state.

Figure 1 shows the EC coefficient as a function of tem-

perature for four different Nd compositions in disordered

Bi1−xNdxFeO3. The results of Fig. 1 are obtained by start-

ing from 10 K adopting a R3c phase and then progressively

heating up the BNFO solid solutions up to the composition-

dependent Curie temperature, TC (for all investigated temper-

atures displayed in Fig. 1, the disordered Bi1−xNdxFeO3 al-

loys possess the R3c phase from 0 K and up to TC). This

R3c state is characterized by a polarization lying along [111]
and oxygen octahedra tilting in an antiphase fashion about this

polarization’s direction. These solid solutions also exhibit a

G-type antiferromagnetic-to-paramagnetic transition at a Néel

temperature, TN, which is mostly independent on the compo-

sition and equal to ≃ 660 K [35]. The SM [36] provides some

finite-temperature properties above TC.

Let us first focus on Fig. 1(a) that corresponds to a concen-

tration of Nd equal to 5%. The calculated TC ≃ 940 K and

TN ≃ 660 K of Bi0.95Nd0.05FeO3 are in rather good agree-

ment with the measurements of TC ≃ 970 K and TN ≃ 650 K

(a) (b)

(c) (d)

Bi0.95Nd0.05FeO3 Bi0.9Nd0.1FeO3

Bi0.85Nd0.15FeO3
Bi0.835Nd0.165FeO3

FIG. 1. Electrocaloric coefficient, α, as a function of the tempera-

ture for different compositions in disordered Bi1−xNdxFeO3 alloys:

(a) Bi0.95Nd0.05FeO3; (b) Bi0.9Nd0.1FeO3; (c) Bi0.85Nd0.15FeO3;

and (d) Bi0.835Nd0.165FeO3. The solid green lines represent the

fit of the MC results by the second line of Eq. (11), i.e., α =
T0a

′(T )
Cph

Psε0χ+ T0b
′(T )

Cph
Ls

∂Ls

∂Ps

∣

∣

∣

T
ε0χ, where a′(T ) = A0 +A1T

(A0 and A1 being fitting constants), and Cph and b′(T ) are also fit-

ting parameters. The solid blue lines display the fit of the MC re-

sults by its first contribution,
T0a

′(T )
Cph

Psε0χ. The solid brown lines

correspond to the fit of the MC results by its second contribution,
T0b

′(T )
Cph

Ls
∂Ls

∂Ps

∣

∣

∣

T
ε0χ (see text).

[52, 53]. For any investigated temperature, α basically mono-

tonically increases when the system is heated up to the Néel

temperature. It then adopts a small peak around TN, which

is found to originate from the coupling between polarization

and magnetism – we verify this by running Heff simulations

in which the coupling between local models and magnetic

moments is turned off. The EC coefficient then significantly

strengthens when increasing the temperature from the end of

this ≃ TN-centered peak and up to TC. Our predicted big

value of α around TC is of the order of ≃ 2.6× 10−7 K m/V.

It is thus large and close to the experimental data of 2.5×10−7

K m/V at T ≃ 499K in PbZr0.95Ti0.05O3 films [7] (the largest

observed α is equal to 22× 10−7 K m/V and has been found

in a BaTiO3 single crystal, see Ref. [57]) [58]. Note that Heff

techniques have been demonstrated in Refs. [16, 17] to accu-

rately reproduce the EC coefficients of ferroelectrics and re-

laxor ferroelectrics, such as those reported in BaTiO3 [57, 59]

and Pb(Mg,Nb)O3 [49].

Let us now concentrate on other compositions in disordered

Bi1−xNdxFeO3 alloys. Figures 1(b)-1(d) show the depen-

dence of the EC coefficient when the Nd composition is equal

to x =0.10, 0.15 and 0.165, respectively. The Curie temper-

ature TC noticeably decreases when increasing the Nd com-

position, as consistent with observations and computations

[35, 51–53]. Consequently, the two critical temperatures coin-

cide, i.e. TC = TN, for a Nd concentration of 16.5%. Figures

1(b)-1(d) especially reveals that α at the Néel temperature is

enhanced when the Nd composition increases, but it becomes
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more difficult to see its associated peak.

To understand the results in Fig. 1, we use a Landau free-

energy potential F (P,L, E , T ) in which we substitute polar-

ization P and G-type antiferromagnetic (AFM) moment L by

their equilibrium values Ps and Ls found from minimization

of free energy: ∂F
∂P

∣

∣

P=Ps,E,T
= 0 and ∂F

∂L

∣

∣

L=Ls,E,T
= 0.

The minimized free energy Fs(E , T ) = F (Ps, Ls, E , T ) has

the form:

Fs(E , T ) =
1

2
a(T )P 2

s (E , T ) +
1

4
βP 4

s (E , T )

− EPs(E , T ) +
1

2
b(T )L2

s(E , T )

+
1

4
κL4

s(E , T ) +
1

2
cL2

s(E , T )P
2
s (E , T ) ,

(3)

where E is the electric field.

Such equation implies that the polarization implicitly de-

pends on magnetism, because of the 1
2cL

2
s(E , T )P

2
s (E , T )

term. This equation is similar to the one used in Ref. [33]. The

entropy described by this free energy Fs(E , T ), composed of

dipoles and spins, can then be obtained as

SF (E , T ) = −
dFs

dT

∣

∣

∣

∣

E

= −
a′(T )

2
P 2
s (E , T )−

b′(T )

2
L2
s(E , T ) ,

(4)

where a′ = da/dT and b′ = db/dT . Note that, here we took

into account that Ps and Ls are found from minimization of

the free energy.

In the case of a magnetic phase transition and presence of

polarization, we can consider two parts of the total entropy

S(E , T ): A first one due to electric dipoles and spins (the ac-

tive part treated by the Landau potential above, with entropy

SF (E , T )) and a second one due to the rest of the lattice (the

inert part that can be considered to be a trivial collection of

harmonic phonons, with entropy Sph(T )) [60, 61]. For an

adiabatic process, we have:

∆S(E , T ) = ∆SF (E , T ) + ∆Sph(T ) = 0 . (5)

Let Cph denote the heat capacity associated with the back-

ground lattice modes. Then the change of lattice entropy from

an initial state (0, T0) to the final state (E , T ) is given by:

∆Sph =

∫ T

T0

Cph

T
dT ∼= Cph ln

(

T

T0

)

. (6)

Consequently, combining Eqs. (5) and (6) leads to

Cph ln

(

T

T0

)

= −∆SF =
1

2
a′(P 2

s − P 2
0 ) +

1

2
b′(L2

s − L2
0) .

(7)

Here Ps = Ps(E , T ), P0 = Ps(0, T0), Ls = Ls(E , T ), L0 =
Ls(0, T0), where T0 is the initial temperature and T = T0 +

∆T is the final temperature (∆T represents the temperature

change). Solving this equation with respect to T/T0 yields:

(T0 +∆T )/T0 = e[a
′(P 2

s −P 2

0
)+b′(L2

s−L2

0
)]/2Cph . (8)

For small ∆T :

∆T =
T0

[

a′(P 2
s − P 2

0 ) + b′(L2
s − L2

0)
]

2Cph
. (9)

One can then derive the following expression forα [10, 16]:

α =
∂∆T

∂E

∣

∣

∣

∣

S

≈
T0a

′(T )

2Cph

∂P 2
s

∂E

∣

∣

∣

∣

T

+
T0b

′(T )

2Cph

∂L2
s

∂E

∣

∣

∣

∣

T

. (10)

Here we assumed that, since the adiabatic temperature

change is small as compared to the temperature, the constant-

S derivatives can be evaluated at a constant T = T0. One can

write:

α =
T0a

′(T )

Cph
Psε0χ+

T0b
′(T )

2Cph

∂L2
s

∂Ps

∣

∣

∣

∣

T

∂Ps

∂E

∣

∣

∣

∣

T

=
T0a

′(T )

Cph
Psε0χ+

T0b
′(T )

Cph
Ls

∂Ls

∂Ps

∣

∣

∣

∣

T

ε0χ ,

(11)

where ε0 is the vacuum permittivity and χ is the dielectric

susceptibility. Finally, let us note that one could try to ap-

proximate Cph by adding a kB contribution for each degree

of freedom belonging to the trivial – harmonic – part of the

system. However, it is not obvious how to count the exact

number of active and inactive variables in the framework of

a Landau theory; we thus treat Cph as an adjustable parame-

ter. Note that we did not fit Cph alone but rather the ratio of

a′(T )/Cph and b′(T )/Cph.

As shown by the green lines of Fig. 1, the second line of

Eq. (11) fits well the MC data, when (1) using the Ps, χ, Ls

and ∂Ls

∂Ps
[62] obtained by our Monte-Carlo simulations (these

four quantities are shown in Fig. 2 for the case of a 5% Nd

composition); and (2) assuming that Cph and b′(T ) are fitting

constants, while a′(T ) = A0+A1T with A0 andA1 are fitting

parameters [63]. Since its validity is confirmed by Fig. 1, the

second line of Eq. (11) can now be used to gain an insight [36]

into the results of Fig. 1, via the decomposition of α into its

two terms – that are
T0a

′(T )
Cph

Psε0χ and
T0b

′(T )
Cph

Ls
∂Ls

∂Ps

∣

∣

∣

T
ε0χ.

The first contribution has precisely the analytical form of the

EC coefficient for non-magnetic systems, see Refs. [16, 17]. It

is shown by blue lines in Fig. 1, and is the one that contributes

the most to the total α for any composition. Its increases with

temperature and is driven by the corresponding increase in di-

electric susceptibility, however moderated by the concomitant

decrease in polarization [see Figs. 2(b) and 2(a)]. This first

contribution implicitly depends on magnetism because of the

coupling between polarization and antiferromagnetism, as ev-

idenced in the change of behavior of the polarization and in

the occurrence of a plateau in the dielectric response near TN
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(such behavior of χ has been reported in other multiferroics

[39, 64]). The second contribution of Eq. (11) is depicted

in brown lines in Fig. 1, and is basically independent on the

investigated composition for any temperature. As evidenced

in Fig. 1, it is the one responsible for the small peak of α
found near the Néel temperature. This small peak becomes

more difficult to be seen in the total EC coefficient (shown in

green) when the Nd composition increases simply because the

first contribution provides much larger values than the second

contribution. Figures 2(c) and 2(d) also reveal that this small

peak originates from the activation and then sharp increase

of the magnitude of ∂Ls

∂Ps
near TN. This derivative for tem-

peratures far away below TN is then basically a constant that

characterizes intrinsic magnetoelectric coupling – which is re-

lated to the c constant of Eq. (3). The second term of Eq. (11)

tells us that the EC coefficient of a multiferroic can be opti-

mized even at temperatures far away TN in systems possessing

strong coupling between polarization and magnetic ordering.

Ba(Sr,Ba)MnO3 films may thus be a system of choice to in-

vestigate electrocaloric effects due to its strong magnetoelec-

tric coupling [65–67].

The now-elucidated effect of ∂Ls

∂Ps
on α near TN can be

further used to address the finite-size effects in our compu-

tations of the EC coefficient. It is known that such size effect

broadens the magnetic transition when decreasing the super-

cell size (see the SM [36]) [47, 48], and we also checked that

the magnitude of the second contribution of α around TN in-

creases when increasing such size. It will thus be more real-

istic, regarding what to expect in experiments, to rather adopt

a Ls = A|TN − T |β power law (see Refs. [47, 50]) near the

Néel temperature, where A and β are coefficients. Conse-

quently, we (1) chose to replace, around TN, the MC data for

Ls by the result given by such power law with β equal to 0.5
(mean-field value); (2) continue to still use the MC data for Ls

for temperatures far away (below) the Néel temperature; and

(3) extract A such by imposing that this power law of item (1)

matches the MC data of item (2). Using the new resulting ∂Ls

∂Ps

along with all the previous other quantities in Eq. (11) (includ-

ing the temperature behavior of the polarization) provides the

data given in Fig. 3 for the second contribution but also to-

tal EC coefficient in disordered Bi0.95Nd0.05FeO3 alloys. The

aforementioned change of Ls’s behavior, that is a more abrupt

change near TN, leads to a narrower and stronger peak of α
close to the Néel temperature. The second contribution now

amounts for 42% of the total EC coefficient near the magnetic

transition. Such latter result is in-line with the phenomenolog-

ical theory of Edström et al. [33] predicting that the magnetic

contribution can reach approximately 60% of the electric con-

tribution at the magnetic transition, and thus enhance the EC

effect, in epitaxial multiferroic SrMnO3 systems under a ten-

sile strain of 2.63% – for which TN = TC. Our study explains

why it is the case thanks to Eq. (11) that not only reproduces

atomistic results but also and especially provides an insight

into the microscopic origins of the EC effects in a multifer-

roic. We also used a larger supercell and such power law of

Ls with different β, and found that our qualitative results are

(a) (b)

(c) (d)

Bi0.95Nd0.05FeO3

FIG. 2. Temperature dependence of some properties in disordered

Bi0.95Nd0.05FeO3 alloys, as obtained from our MC simulations: (a)

the macroscopic polarization Ps; (b) the average between the three

diagonal elements of the dielectric susceptibility; (c) the AFM vec-

tor; and (d) the derivative dLs/dPs.

FIG. 3. Same as Fig. 1 (a) but now using a different ∂Ls

∂Ps
(see text)

in the second line of Eq. (11).

still valid for any reasonable choice of β (see Fig. S3 of the

SM [36]). Note that the peak of Fig. 1(a) at the Néel tem-

perature is significantly less pronounced than in Ref. [33] for

two possible reasons. The first one is that such peak depends

on the size of the simulation supercell (see the SM [36]) and

the second one is that the magnetoelectric coupling is weaker

in BiFeO3 [39] than in SrMnO3 [33]. Fluctuations within the

Heff are also discussed in the SM [36].

In summary, an atomistic effective Hamiltonian scheme has

been used to compute finite-temperature electrocaloric coeffi-

cients in the rare-earth substituted BiFeO3 multiferroic. The

results are then interpreted via the development of a model

that reproduces these computational data. EC coefficients can

be decomposed in two main terms. The first term takes its

largest value at the Curie temperature and explicitly depends

on the polarization and dielectric susceptibility, that are both

implicit functions of magnetic ordering and strength because
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of magnetoelectric couplings. The second term adopts a peak

near the Néel temperature and is proportional to the antifer-

romagnetic vector, the polarization derivative of the antiferro-

magnetic vector and the dielectric susceptibility. Such find-

ings therefore suggest an original way to induce large EC

coefficients by simultaneous optimization of electric, mag-

netic and magnetoelectric properties at a selected temperature

below the Néel temperature: (1) the dielectric susceptibility

should be large; (2) the antiferromagnetic vector should be

strong; and (3) the magnetoelectric coupling ∂Ls

∂Ps
should be

large [68]. Our results and phenomenology should be valid

for all magnetoelectric multiferroics, at the exception of those

for which a magnetic Dzyaloshinskii-Moriya interaction in-

volving the polarization (e.g., the spin-current model) is im-

portant. We hope that the present article deepens the fields of

multiferroics and important subtle cross-coupling properties

such as electrocaloric effects.
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Mathur, and X. Moya, MRS Bull. 43, 295 (2018).

[22] Y. Liu, G. Zhang, Q. Li, L. Bellaiche, J. F. Scott, B. Dkhil, and

Q. Wang, Phys. Rev. B 94, 214113 (2016).

[23] I. Takeuchi and K. Sandeman, Phys. Today 68, 48 (2015).

[24] H. Khassaf, T. Patel, and S. P. Alpay, J. Appl. Phys. 121, 144102

(2017).

[25] G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009).

[26] T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran,

M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D.

M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, Nat. Mater. 5,

823 (2006).

[27] D. Lebeugle, D. Colson, A. Forget, M. Viret, A. M. Bataille,

and A. Gukasov, Phys. Rev. Lett. 100, 227602 (2008).

[28] R. J. Zeches et al., Science 326, 977 (2009).

[29] N. A. Spaldin, S.-W. Cheong, and R. Ramesh, Phys. Today 63,

38 (2010).
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