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We explore the spin superfluid transport in exchange interaction dominated three-sublattice an-
tiferromagnets. The system in the long-wavelength regime is described by an SO(3) invariant field
theory. Additional corrections from Dzyaloshinskii-Moriya interactions or anisotropies can break
the symmetry; however, the system still approximately holds a U(1)-rotation symmetry. Thus, the
power-law spatial decay signature of spin superfluidity is identified in a nonlocal-measurement setup
where the spin injection is described by the generalized spin-mixing conductance. We suggest iron
jarosites as promising material candidates for realizing our proposal.

Spintronics has been extremely successful in combin-
ing advanced theoretical concepts with practical applica-
tions and experiment [1]. Materials with antiferromag-
netic ordering are a focus of active research in spintronics
due to many desirable properties such as spin dynamics
in terahertz range [2], the absence of stray fields, and
insensitivity to the presence of magnetic fields [3]. In
addition, antiferromagnetic insulators are characterized
by long spin diffusion length associated with transport of
magnons, making them particularly suitable for spintron-
ics applications such as low dissipation electronic devices
[4].

Magnetic insulators can also transport spins in a
regime in which the transport can be describe as spin
superfluidity [5; 6]. In easy-plane magnets, the spin is
then transported over large distances by the coherent or-
der parameter precession [7–9]. The power-law decay of
spin current can enable spin transport over longer dis-
tances compared to the diffusive regime [7–15]. Never-
theless, in ferromagnets the dipole interaction can limit
the range of spin superfluid transport [9]. On the other
hand, collinear antiferromagnetic insulators could pro-
vide a viable platform for realizing the spin superfluid-
ity [8; 16; 17] as demonstrated in experiments on Cr2O3

[14] and antiferromagnetic ν = 0 quantum Hall state of
graphene [15].

Noncollinear antiferromagnets (nAFM) are yet another
viable platform for realizing spin flows [18–20]. The non-
collinear conducting magnets can exhibit a multitude of
phenomena associated with topology of electronic bands
[21], e.g., Mn3X (X = Ge, Sn, Ga, Ir, Rh, or Pt) mag-
nets exhibit the anomalous [22] and spin [23] Hall re-
sponses. Various magnon-mediated responses relying on
magnon spin-momentum locking, topology of magnonic
bands, and coupling to phonons have been studied theo-
retically, promising observation of spin related phenom-
ena in insulating antiferromagnets [24–32].

In this work, we analytically study viability of spin su-
perfluid transport in insulating nAFM. In general, the
U(1) symmetry of magnetic ordering can be hampered
by various anisotropies. The highly symmetric hexago-
nal environment considered in this work can be beneficial
for realizing spin superfluid transport. Hexagonal nAFM

can exhibit relevant phenomena, e.g., the appearance of
domain walls [33; 34] and Goldstone modes [35]. Further-
more, spin superfluid transport has been studied numer-
ically in a triangular nAFM [36]. In this work, we offer
analytical results with a detailed discussion of the gen-
eralized spin-mixing conductance and spin current injec-
tion into nAFM. We identify the power-law decay feature
of the spin superfluid transport in a nonlocal experimen-
tal setup. Our simple results can help in designing and
interpreting experiments on spin superfluidity in nAFM.

Long-wavelength Hamiltonian— In nAFM, the ex-
change interaction is often dominant, which approxi-
mately endows the system with an SO(3) symmetry
given that all other interactions, e.g., anisotropy, DMI,
are very weak. We start with constructing a long-
wavelength SO(3) field theory to describe the nAFMs
and regard other weak terms as additional perturbations.
In a two-dimensional nAFM with three sublattices (e.g.,
kagome, triangular), the exchange interactions favor fully
compensated spin configurations, which in the presence
of other interactions may acquire a very small net mag-
netization. Therefore, we parametrize the spins Si of
length S in each triangular plaquette as [37]

Si = SR̂(ni +L)/(1 + 2L · ni + L2)1/2, (1)

where ni (i = 1, 2, 3) sets a reference ordered state al-
lowed by exchange interactions with

n1 = (0, 1, 0), n2 = (−
√

3

2
,−1

2
, 0),

n3 = (

√
3

2
,−1

2
, 0); (2)

R̂ ∈ SO(3) is a rotation matrix which generates de-
generate states by acting on the reference state; L de-
scribes small deviation from the compensated spin struc-
ture with the magnitude L� 1. R̂ and L together gen-
erate all possible spin configurations on three sublattices.
To the leading order in L, Si = SR̂[ni +L−ni(L ·ni)],
and the net angular momentum density,

m = ~/Auc

∑
i

Si = 3sR̂(T̂L), (3)
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FIG. 1. Noncollinear kagome (left) and triangular (right) an-
tiferromagnets. The red arrows indicate the spin directions of
the reference state. The blue arrows (left) indicate the out-
of-plane and in-plane DMI vectors; the in-plane DMI vectors
are defined for anti-clockwise direction in each triangular pla-
quette.

where s = S~/Auc, Tab = δab − 1
3

∑
i n

a
i n

b
i , and Auc is

the area of a unit cell.

With the forgoing parametrization, the system is gen-
erally described by a Lagrangian [37],

L = m ·Ωt −
m2

2%
− tr[P̂ij∂iR̂

T∂jR̂] (4)

where (Ωt)i = − 1
2Riαεαβγ(R̂T∂tR̂)βγ . Here, the first

term is derived from the spin kinetic energy; the sec-
ond term originates from the exchange interaction, e.g.,
for the nearest exchange J , we obtain % ∝ ~2/(JAuc);
the last term describes the second-order gradient expan-
sion of exchange coupling with tensor P̂ij encoding the
exchange interactions and lattice geometry. From the
Euler-Lagrange equation [33], we obtain:

m = %Ωt, (5)

from which the field m can be removed from Eq. (4), i.e.,

L =
%

4
tr[∂tR̂

T∂tR̂]− tr[P̂ij∂iR̂
T∂jR̂]. (6)

This is the so-called nonlinear σ model [37; 38].

To determine the tensor P̂ij for a hexagonal-symmetry
lattice, kagome or triangular, when exchange is the dom-
inant interaction, we explore the spin wave behavior by
following Ref. [35]. We consider small fluctuations upon

the reference state by using R̂ = exp[−iθ · Ĵ ], where
(Ji)jk = −iεijk with εijk being the Levi-Civita tensor
and a vector θ describes the small deviation with |θ| � 1.
The spin-wave energy is obtained from the leading-order
expansion of the second term in Eq. (6),

U= tr[P̂ijĴkĴl]∂iθk∂jθl
= ∂iθk∂jθktr[P̂ij ]− Pij,kl∂iθk∂jθl. (7)

Due to the highly symmetric hexagonal environment, θz
acts as a scalar and θx, θy act as two components of a

vector under symmetry transformations. Using the sym-
metry constraints, we recover the form of P̂ij tensor:

Pij,kl = ηδijδkl + λδikδjl + µδilδjk for k, l = 1, 2,

Pij,zz = κδij . (8)

where the arbitrary coefficients κ, η, λ, and µ scale as the
exchange strength J . For triangular and kagome lattices
with the nearest exchange interaction, their values are
summarized in Table. I.

From Eq. (6), the spin-wave Lagrangian reads L =

(%/2)(θ̇)2 − U . By using Eq. (8), we can obtain three
linearly dispersive Goldstone modes [35] ωi = vik with

v1 =
√

2(2η + λ+ µ)/%, v2 =
√

2(κ+ η + λ+ µ)/%,

v3 =
√

2(κ+ η)/%. Here, ω1 corresponds to the scalar
mode θz, and ω2,3 comes from the vector modes θx, θy
[35].

Lattice % Auc κ η λ µ

Triangular 2~2
9
√
3Ja2

3
√
3a2

2
0

√
3JS2

8
0 0

Kagome ~2
4
√
3Ja2 2

√
3a2 0 0

√
3JS2

16

√
3JS2

16

TABLE I. Parameters describing spin-wave excitations in tri-
angular and kagome lattices with only the nearest exchange
interaction. Here, a is the lattice constant.

DMI and anisotropy— In nAFMs, the field theory used
to describe exchange interactions should be modified by
the aforementioned weak interactions that remove the
SO(3) symmetry and gap out the Goldstone modes. To
take these interactions into account in centrosymmetric
crystals, we first consider their microscopic expressions.

In a kagome lattice (see Fig. 1), we consider the DMI
term, e.g. typical to jarosites [39],

HD =
∑
i,j

Dij · (Si × Sj), (9)

where Dij = Dzẑ + D‖, D‖ = Dpn̂ij with n̂12 =

(
√
3
2 ,−

1
2 , 0), n̂23 = (0, 1, 0), and n̂31 = (−

√
3
2 ,−

1
2 , 0). We

first consider DMI to the leading-order in spatial gradi-
ents and obtain the energy density,

HD ≈ −itr[X̂ · (R̂T Ĵ R̂)], (10)

where (X̂k)ab =
∑3
i,j=1 S

2Dkijnai nbj and Dkij = Dk
ij/Auc.

By using Eq. (10) and the representation of the rotation

matrix, R̂ = exp[−iθ · Ĵ ] exp[−iφĴz], the leading correc-
tion of the DMI term is obtained by expanding Eq. (10)
to the lowest order of θi (i = x, y, z),

δU =
∆

2
(θ2x + θ2y), (11)

where ∆ = −3
√

3DzS2 > 0. The out-of-plane DMI sup-
presses spin rotations other than those with respect to
z-axis, reducing the SO(3) symmetry to a U(1) rotation
symmetry. Furthermore, the DMI in Eq. (9) constrains
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the ground state of the system and gaps out the Gold-
stone modes ωi =

√
v2i k

2 + ∆/% for i = 2, 3, while the
ω1 mode is intact [40].

To capture a small gap in the ω1 mode, we expand
Eq. (1) to the first order in L and substitute it in Eq. (9).
The contribution proportional to m can be written in a
compact form,

H(1)
D = B ·m, (12)

where B is a “magnetic field”:

Bl = −itr[ẐklR̂T ĴkR̂], (13)

with (Zkl)ab = (S/6~)
∑
i,j

∑
cD

k
ij(n

a
i δ
bc − nai n

b
jn
c
j +

δacnbj − nai n
b
jn
c
i )(T̂

−1R̂T )cl. Combing this term with
Eqs. (4) and (10) and eliminating m, the effective La-
grangian becomes:

L =
%

2
(Ωt −B)2 − U [R̂], (14)

where U [R̂] = tr[P̂ij∂iR̂
T∂jR̂] +HD. The B term breaks

the rotation symmetry and gaps out the ω1 mode.
In a triangular lattice (see Fig. 1), the intrinsic DMI

is forbidden by the lattice symmetry, while the ground
state can be stabilized by the energy density,

HA=
∑

i=1,2,3

−K(n̂i · Si)2 +Kz(ẑ · Si)2, (15)

where K = K/Auc, Kz = Kz/Auc, with K,Kz being
the easy-axis and easy-plane anisotropy constants, re-
spectively. By substituting Si ≈ R̂ni in Eq (15), the
anisotropy term gives a correction,

δU =
∆

2
(θ2x + θ2y) + 3KS2θ2z , (16)

where ∆ = 3(Kz+K)S2. When K � Kz, we can approx-
imately neglect the easy-axis term, and thus the system
approximately respects U(1) symmetry. The Goldstone

modes, ω2,3, acquire a gap,
√

∆/%. A small gap in the
ω1 mode is described by K.

Spin superfluidity— In the following, we focus on the
spin transport facilitated by approximate U(1) symme-
try. We assume that the system is driven by a weak
perturbation when compared to the gap of the ω2 and
ω3 modes, while large enough to overcome the barrier
corresponding to the gap of the ω1 mode. By adding
HA or HD to the Lagrangian (6) and neglecting the hard
modes, the Lagrangian of the soft mode becomes:

L =
%

2
φ̇2 − A

2
(∇φ)2, (17)

where A = 2(2η + λ + µ). On the other hand, the third
component of Eq. (5) is reduced to mz ≈ %∂tφ. There-
fore, we arrive at a continuity equation,

∂tmz −A∇2φ = 0, (18)

𝐽𝐿
𝑐 𝐽𝑅

𝑐

𝑱𝑳
𝒔 𝑱𝑹

𝒔

𝜙

s

𝝁𝑠

FIG. 2. A nonlocal measurement setup containing normal
metal/nAFM/normal heterostructure. A charge current in
the left layer generates a spin accumulation µs via spin Hall
effect, which injects a spin current into nAFM layer. The spin
current mediated by the collective modes in the middle layer
passes the second interface by virtue of spin pumping effect.
The pumped spin current is measured in the right layer via
the inverse spin Hall effect.

where a spin current density with polarization along z-
axis can be identified as

js = −A∇φ. (19)

The spin superfluidity in nAFM will be affected by
dissipation effects. Within the Lagrangian formalism, we
can add dissipation using the Rayleigh dissipation func-
tion [41]:

R =
1

2
QijṠi · Ṡj , (20)

where Q̂ is a symmetric matrix with non-negative eigen-
values [42; 43]. From symmetry considerations applied to
three equivalent sublattices, we obtain that Qij = r1 for
i = j and Qij = r2 for i 6= j where r1 and r2 are real pa-
rameters. The Rayleigh function can be approximately
written asR = tr[Q̂∂tR̂T∂tR̂] with Qab = 1

2

∑
ij Qijn

a
i n

b
j

to describe dissipation of the soft mode, i.e.,

R = αsφ̇2/2, (21)

where α = 3(r1 + 2r2)/s is a dimensionless dissipation
parameter.

To activate spin dynamics in a magnetic insulator, a
spin Hall current can be induced in a neighbouring nor-
mal metal layer (see Fig. 2). A build-up of spin accumu-
lation in a normal metal will then lead to injection of spin
current into the magnetic insulator layer. The boundary
condition on the interface can be derived via the mag-
netoelectronic circuit theory [44–48]. When exchange
interactions dominate, the spin injection and pumping
together give the total spin current across the interface
(see details in Supplemental Material [40]):

Is =
1

4π
Ĝm · (µs − ~ω). (22)

where ω is the instantaneous angular velocity for slow dy-
namics of the order parameter and Ĝm is the generalized
spin-mixing conductance tensor [48]. Under assumption
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of C3 symmetry (or axial symmetry with respect to l

axis), the tensor Ĝm takes the following form:

Ĝm(l) = 2G↑↓r (1− l⊗ l) + 2G↑↓i (l×) + 2G‖l⊗ l,
(23)

where G↑↓r(i) =
∑
mn Re(Im)(δnm − r↑↑mnr

↓↓∗
mn), G‖ =∑

mn(|r↑↓mn|2 + |r↓↑mn|2), and l is the unit vector normal to
the plane spanned by three-sublattice spins (cf. Eq. (59)

in Ref. [48]). Here, rσσ
′

mn stands for reflection amplitudes
for electrons reflected from channel n into channel m
in the normal metal and l is the quantization axis for
σ, σ′ =↑, ↓.

By writing the Euler-Lagrange equation with Rayleigh
dissipation for Eqs. (17) and (21), the dynamic equation
for φ reads,

%φ̈−A∂2xφ+ αsφ̇ = 0. (24)

We use a steady-state ansatz [7; 8], φ(x, t) = ϕ(x) + Ωt,
where Ω is a constant frequency. For almost in-plane spin
order, the angular velocity is ω ≈ φ̇ẑ and l = ẑ. We also
assume spin accumulation along z-direction, µs = µẑ.
Equations (19), (22), and (23) then lead to the bound-
ary conditions on the left (x = 0) and right (x = L)
interfaces:

−A∂xϕ(0) = −gL
4π

(~Ω− µ), (25a)

−A∂xϕ(L) =
gR
4π

~Ω, (25b)

where ga = G‖,a/V (a = L,R) with V being the area
of interface. Combining the boundary condition and the
steady-state ansatz, we obtain,

Ω =
µgL

~(gL + gR + gα)
, jsR =

µ

4π

gLgR
(gL + gR + gα)

,(26)

where gα = 4παsL/~.
Above approximations need to be revisited when weak

in-plane DMI or easy-axis anisotropy are present. We
obtain a Lagrangian describing the soft mode:

L[φ] =
%

2
[(∂tφ)2 − c2s(∇φ)2 +m2

s cos 2φ], (27)

where cs =
√
A/% and ms is the mass term due to weak

in-plane DMI or easy-axis anisotropy. To activate spin
transport, the gradient needs to overcome the barrier in-
duced by the gap, i.e., |∇φ| ≥ ms/cs. The spiral-like
phase supporting spin superfluid will become energeti-
cally unstable when the field φ varies faster than 1/ξ

where ξ =
√
%c2s/∆ is the characteristic length associ-

ated with the gap of ω2 and ω3 modes, i.e., |∇φ| ≤ ξ−1.
Thus, the spin-superfluid transport is only possible under
the assumption,

ms

√
%/∆� 1. (28)

We first discuss the kagome lattice nAFM with in-plane
DMI in which case ms =

√
3/2DpS/~. As estimated

in Table. II, we find that different iron jarosites fulfil
criteria (28) very well and hence are very promising for
experimental realization of spin superfluidity. In a trian-
gular lattice, the easy-axis anisotropy hinders ideal spin
superfluidity leading to the last term in Eq. (27) with

ms = 3S
√
KJ/~. Equation (28) leads to the condition√

K/Kz � 1.
The spin-superfluid transport can be measured in a

nonlocal setup in Fig. 2 [49]. The spin Hall current builds
up an effective spin accumulation, µs = (4π/gL)JsSH,
where JsSH = ϑSH(~/2e)JcL is the spin current induced
by the charge current JcL, and ϑSH is the spin Hall an-
gle in the leads [49–51]. The spin current mediated by
the collective dynamics of nAFM passes across the sec-
ond interface by virtue of the spin pumping effect, and
it is converted into a charge current in the right lead,
JcR = (ϑSHσ/d)(~/2e)Ω, where σ and d are, respectively,
the conductivity and thickness of the right metal layer.
The nonlocal transport is characterized by a drag co-
efficient, D = JcR/J

c
L = D0/(1 + L/Lα), where D0 =

πϑ2SHσ~/(2e2gd), g = gL = gR, and Lα = ~g/(2παs).
Assuming ϑSH = 0.1, σ = 0.1µΩ−1 · cm−1, d = 1nm,
g ∼ 1019m−2, α = 10−3, s ∼ ~/a3, and a lattice constant
a ∼ 1nm, we obtain D0 ∼ 0.1 and Lα ∼ 1µm. These
results are similar to collinear systems [7; 8] and show
that the long crossover length Lα can be used as a key
signature of spin superfluidity.

Material J(meV) Dp/J Dz/J ms

√
%/∆

KFe3(OH)6(SO4)2 3.18 0.062 -0.062 0.088

AgFe3(OH)6(SO4)2 3.18 0.057 -0.053 0.088

AgFe3(OD)6(SO4)2 3.18 0.075 -0.053 0.115

TABLE II. Relevant material parameters for iron jarosites
taken from Refs. [52; 53].

It is worthwhile to remark that at a finite temperature,
a two-fluid theory may be required to describe the spin
transport and dissipation [12; 54]. In particular, the equi-
libration between condensate and thermal magnons may
need to be taken into account. Our phenomenological
treatment of dissipation may be amended by including
spin conserving relaxation, this correction, however, is
expected to be small at low temperatures [12].

Conclusions— We have used an SO(3)-invariant field
theory to describe three-sublattice antiferromagnets with
hexagonal lattice in an exchange interaction domi-
nated limit. When weak interactions, such as DMI or
anisotropy, are added, the symmetry is approximately re-
duced to U(1). We have shown that in this limit, three-
sublattice antiferromagnets can facilitate a spin super-
fluid transport. Using generalized spin-mixing conduc-
tance, we have also described the injection of spin current
and its power-law decay in a nonlocal experimental setup.
Our results indicate that the magnitude of spin current
is constrained by parasitic DMI or anisotropies, which
can help in finding suitable materials. In particular, we
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estimate that iron jarosites can be promising for realizing
spin superfluidity in noncollinear antiferromagnets. Non-
collinear antiferromagnets hold promise for realizing spin
flows with low dissipation and the theoretical framework
presented here can be useful for exploring the interplay

between transport phenomena [55; 56] and topological
defects, i.e., domain walls [33; 34], or skyrmions [57].

This work was supported by the U.S. Department of
Energy, Office of Science, Basic Energy Sciences, under
Award No. DE-SC0021019.
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Nature 561, 222 (2018).

5 E. Sonin, Adv. Phys. 59, 181 (2010).
6 B. I. Halperin and P. C. Hohenberg, Phys. Rev. 188, 898

(1969).
7 S. Takei and Y. Tserkovnyak, Phys. Rev. Lett. 112, 227201

(2014).
8 S. Takei, B. I. Halperin, A. Yacoby, and Y. Tserkovnyak,

Phys. Rev. B 90, 094408 (2014).
9 H. Skarsv̊ag, C. Holmqvist, and A. Brataas, Phys. Rev.

Lett. 115, 237201 (2015).
10 J. König, M. C. Bønsager, and A. H. MacDonald, Phys.

Rev. Lett. 87, 187202 (2001).
11 E. B. Sonin, Phys. Rev. B 95, 144432 (2017).
12 B. Flebus, S. A. Bender, Y. Tserkovnyak, and R. A. Duine,

Phys. Rev. Lett. 116, 117201 (2016).
13 E. Iacocca, T. J. Silva, and M. A. Hoefer, Phys. Rev. B

96, 134434 (2017).
14 W. Yuan, Q. Zhu, T. Su, Y. Yao, W. Xing, Y. Chen, Y. Ma,

X. Lin, J. Shi, R. Shindou, et al., Sci. Adv. 4, eaat1098
(2018).

15 P. Stepanov, S. Che, D. Shcherbakov, J. Yang, R. Chen,
K. Thilahar, G. Voigt, M. W. Bockrath, D. Smirnov,
K. Watanabe, et al., Nat. Phys. 14, 907 (2018).

16 A. Qaiumzadeh, H. Skarsv̊ag, C. Holmqvist, and
A. Brataas, Phys. Rev. Lett. 118, 137201 (2017).

17 S. Takei, A. Yacoby, B. I. Halperin, and Y. Tserkovnyak,
Phys. Rev. Lett. 116, 216801 (2016).

18 A. Mook, R. R. Neumann, J. Henk, and I. Mertig, Phys.
Rev. B 100, 100401 (2019).

19 B. Flebus, Y. Tserkovnyak, and G. A. Fiete, Phys. Rev. B
99, 224410 (2019).

20 B. Ma, B. Flebus, and G. A. Fiete, Phys. Rev. B 101,
035104 (2020).
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