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Abstract: 

Monolayer and few-layer phosphorene are anisotropic quasi-two-dimensional (quasi-2D) van der 

Waals (vdW) semiconductors with the linear-dichroic light-matter interaction and the widely-

tunable direct-band gap in the infrared frequency range. Despite recent theoretical predictions of 

strongly-bound excitons with unique properties, it remains experimentally challenging to probe 

the excitonic quasiparticles due to the severe oxidation during device fabrication. In this study, 

we report observation of strongly-bound excitons and trions with highly-anisotropic optical 

properties in intrinsic bilayer phosphorene, which are protected from oxidation by encapsulation 

with hexagonal boron nitride (hBN), in a field-effect transistor (FET) geometry. Reflection 

contrast and photoluminescence spectroscopy clearly reveal the linear-dichroic optical spectra 

from anisotropic excitons and trions in the hBN-encapsulated bilayer phosphorene. The optical 

resonances from the exciton Rydberg series indicate that the neutral exciton binding energy is 

over 100 meV even with the dielectric screening from hBN. The electrostatic injection of free 

holes enables an additional optical resonance from a positive trion (charged exciton) ~ 30 meV 

below the optical bandgap of the charge-neutral system. Our work shows exciting possibilities 

for monolayer and few-layer phosphorene as a platform to explore many-body physics and novel 

photonics and optoelectronics based on strongly-bound excitons with two-fold anisotropy. 
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Main Text: 

I. Introduction 

Two-dimensional vdW semiconductors have emerged as a fascinating class of materials for 

exploring novel excitonic phenomena [1-4] and optoelectronic applications [5]. Such 

opportunities arise from the combination of spatial confinement and the dramatically enhanced 

Coulomb interaction due to reduced dielectric screening in the atomically thin structure, which 

greatly enhances the exciton binding energy compared to bulk materials, as shown for transition 

metal dichalcogenides (TMD) monolayers [6]. The exciton binding energy can be on the order of 

several 100 meV, which is more than an order of magnitude greater than in typical inorganic 

semiconductors. Higher-order excitonic complexes such as a charged excitons (or trions) [7,8], 

biexcitons [9,10], and even charged biexcitons [11-13] are observed to be stable at elevated 

temperatures. Furthermore, the strong Coulomb interaction can be readily controlled via the 

modification of the local dielectric environment, which provides a new pathway to engineer the 

electrical and optical properties of semiconductors based on many-body interactions [14-16]. 

 

Monolayer and few-layer phosphorene are unique quasi-2D vdW semiconductors with distinct 

physical properties. The puckered intralayer structure [Fig. 1(a)] exhibits the highly anisotropic 

charge transport and the linear-dichroic optical response (i.e. strong linear polarization 

dependence of light absorption) with respect to the crystalline axes [17-20]. As the thickness 

varies from the monolayer to the bulk limit, the electronic structure maintains a direct-bandgap, 

while the optical bandgap substantially decreases from ~ 1.7 eV to ~ 0.3 eV due to the strong 

interlayer interaction [21,22]. Such unusual properties of few-layer phosphorene have enabled 



 4

exciting new possibilities for device applications including widely-tunable infrared 

optoelectronics [23,24] and extremely low-power transistors [25]. 

 

However, experimental studies of anisotropic excitonic quasiparticles in  monolayer and few-

layer phosphorene have been significantly hampered due to the low crystal quality in the limit of 

atomic thickness [21,22,26-29]. A recent study shows that the crystal can be oxidized by the 

surface chemical environment of an oxide substrate even in a glovebox with a globally low level 

of oxygen and moisture [30]. The degradation from the substrate surface can be suppressed by 

utilizing a hydrophobic substrate such as polydimethylsiloxane (PDMS) [28]. Nevertheless, the 

polymer substrate is limited for device fabrication and low-temperature measurements, which are 

essential to investigate the structure and properties of excitons and to demonstrate optoelectronic 

applications. On the other hand, hBN, a vdW layered wide-bandgap insulator (~6 eV), has been 

widely utilized for two-dimensional materials as an excellent encapsulating material due to its 

atomically flat and dangling-bond-free surface. The disorder from the external environment 

including the substrate surface roughness, charge traps, and chemical degradation can be 

dramatically suppressed by encapsulation with hBN, which has provided experimental access to 

novel intrinsic physical properties of graphene, TMD monolayers, and air-sensitive 2D materials 

[25,31-33]. 

 

In this study, we report observation of strongly-bound excitons and trions (charged excitons) 

with highly anisotropic optical properties of bilayer phosphorene in a field-effect transistor (FET) 

geometry with hBN encapsulation. Reflection contrast and photoluminescence spectroscopy 
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reveal a linear-dichroic optical spectra from a series of anisotropic excitons and trions with 

remarkably narrow linewidth which allows us to probe the detailed excitonic structure. The 

optical resonances from the exciton Rydberg series shows that the neutral exciton binding energy 

in the encapsulated bilayer phosphorene is greater than 100 meV. The electrostatic injection of 

free holes enables the observation of an additional optical resonance from the positive trion ~ 30 

meV below the lowest-energy singlet exciton state. In combination with ab initio calculations of 

the energy splitting between the spin-singlet and spin-triplet exciton states, we estimate that the 

binding energy of the positive trions is ~ 20 meV. Despite the large dielectric screening from 

hBN, bilayer phosphorene shows tightly-bound excitons and trions with remarkably large 

binding energies. 

 

II. Results and Discussion 

Fig. 1(a) shows the crystal structure of bilayer phosphorene where phosphorus atoms form a 

puckered honeycomb lattice with two distinct crystalline axes along the X (armchair) and Y (zig-

zag) directions. An optical microscope image and a schematic of the representative FET device 

are shown in Fig. 1(b) and 1(c), respectively.  Two hBN crystals (~ 20 nm thick) encapsulate the 

bilayer phosphorene to prevent oxidation and avoid the oxide substrate-induced defects including 

dielectric disorder [33]. Two flakes of few-layer graphene are in contact with the bilayer 

phosphorene as a source and a drain electrode. Additional few-layer graphene is placed under the 

bottom hBN which controls the carrier concentration electrostatically (see Supplemental Material 

[61] and Refs. [21,31] therein). The source-drain current as a function of the gate voltage (VB) 

shows the characteristic behavior of a bipolar transistor which indicates that both electrons and 
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holes can be injected in the channel of bilayer phosphorene (see Supplemental Material [61]). 

We find that bilayer phosphorene is slightly hole-doped at VB = 0 V presumably due to defects in 

the crystal as reported in the previous literature [18,34]. 

 

We measure the absorption and photoluminescence spectra of the bilayer phosphorene for the 

charge-neutral case (VB = 0.2 V). Fig. 2(a) shows the polarization-resolved reflection contrast 

spectra (∆R/R). Linearly-polarized broadband white light from a tungsten-halogen lamp 

illuminates the sample in a home-built confocal microscope set-up. All our optical measurements 

are carried out at a temperature of 10 K unless otherwise specified. For atomically thin vdW 

crystals on a transparent sapphire substrate, ∆R/R is approximately proportional to the real part 

of the optical conductivity (i.e. optical absorption) [21,35]. A prominent resonance is observed at 

1.129 eV for the polarization along the arm-chair direction (Red solid line labelled as X-pol.) of 

the bilayer phosphorene crystal. On the other hand, ∆R/R shows an overall broad background for 

the polarization along the zig-zag direction (Black solid line labelled as Y-pol.). The observed 

linear-dichroic resonance with a Lorentzian lineshape originates from the excitonic transition at 

the optical band edge of the bilayer phosphorene as reported in the previous literature 

[16,21,22,28,36,37]. In particular, a mirror symmetry in the xz-plane of bilayer phosphorene 

[Fig. 1(a)] leads to the strictly-forbidden dipole interaction of linearly polarized light in the Y-

direction (Y-polarized light) at the band edge. The broad background in the spectra for both 

polarization configurations arises due to the dielectric capping layers of hBN which start 

introducing the imaginary part of the optical conductivity in ∆R/R [21,35]. 
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Fig. 2(b) shows the photoluminescence spectra with the unpolarized laser excitation at 1.96 eV. 

The polarization of the luminescence is analyzed by a combination of a half-wave plate and a 

linear polarizer in front of the spectrometer. The spectra show perfectly polarized 

photoluminescence along the armchair direction (Red solid line labelled as X-pol.) as expected 

from the anisotropic dipole interaction of bilayer phosphorene. In addition, a strong signal is 

observed at 1.129 eV which is exactly the same energy of the resonance in ∆R/R as marked with 

a black dashed line in Fig. 2(a) and 2(b). The excellent agreement between the absorption and the 

luminescence edges confirms the characteristic of the direct bandgap semiconductor for bilayer 

phosphorene. The full-width-half-maximum (FWHM) of the luminescence peak is ~ 10 meV. 

The broad and small signal at lower energy is presumably from defect-related states. The 

absence of a Stokes shift and the remarkably narrow linewidth indicate that high crystalline 

quality of bilayer phosphorene can be achieved via hBN encapsulation as demonstrated for 

graphene and TMD monolayers [32,33]. 

 

The high quality of the sample enables detailed investigation of the excitonic transitions at the 

optical band edge. ∆R/R (Red solid line in Fig. 2(a)) shows another pronounced resonance at 

1.229 eV. The strong polarization dependence indicates that the resonance originates from the 

bilayer phosphorene. The optical transition between the higher-lying sub-bands, on the other 

hand, is located at ~ 2.4 eV which is far away in energy [16,21]. Therefore, we attribute the 

resonances in series at 1.129 eV and 1.229 eV as the optical transitions for the exciton 1s and 2s 

states, respectively. The assignment is further supported by our GW plus Bethe-Salpeter equation 

(GW-BSE) calculations [38-40], which find an energy difference of 160 meV between the 

exciton 1s and 2s states in freestanding bilayer phosphorene and 90 meV when the screening 
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from the hBN encapsulation is included with a Rytova-Keldysh type potential [41,42] (see 

Supplemental Material [61] and Refs. [38-42, 54-60] therein). We note that the recent study 

reports similar excitonic transitions in bilayer phosphorene on PDMS at room temperature [28]. 

 

Due to the large transfer of oscillator strength to the exciton states, the continuum onset is not 

visible in the reflection contrast spectrum. However, the binding energy of the exciton can be 

estimated from the excitonic absorption lines in Fig. 2(a). In the simplest approach, the isotropic 

2D hydrogenic model predicts that the exciton binding energy, ܧ஻௑బ, should be ܧ஻௑బ ൌ ଽ଼ ∆ଵଶ , 

where ∆ଵଶ  is the energy difference between the exciton 1s and 2s states. For unencapsulated 

quasi-2D materials, it is well-established in both theory and experiment that exciton excitation 

series deviate strongly from the isotropic 2D hydrogenic model due to the inhomogeneous 

dielectric environment, and the ratio of ܧ஻௑బ and ∆ଵଶ can be greater than 2 in freestanding quasi-

2D materials [16,43-46].  However, in the presence of encapsulation, if the dielectric constant of 

the encapsulating material is similar to that of the functional material, as is the case for hBN and 

few-layer phosphorene [16,47,48], the dielectric environment becomes more homogeneous and 

is better approximated by the 2D hydrogenic model. Based on our experimentally measured ∆ଵଶ 

of ~100 meV, we use the 2D hydrogenic model to estimate a binding energy of ~110 meV. A 

more accurate theoretical model (see Supplemental Material [61] and Refs. [38-42, 54-60] 

therein), which was fit to our GW-BSE calculation and includes the anisotropy of the band 

structure, gives a similar value of 98 meV for the exciton binding energy of bilayer phosphorene 

encapsulated in hBN. 
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We investigate the effect of doping on the exciton structure by applying a gate voltage which 

electrostatically controls the carrier concentration in bilayer phosphorene. Fig. 3(a) and 3(d) 

show photoluminescence spectra and ∆R/R with polarization along the armchair direction, 

respectively, for the hole-doped case. In both the luminescence and absorption spectra, the 

exciton 1s peak at 1.129 eV diminishes, and the new peak emerges at ~ 1.1 eV as the gate 

voltage is varied from 0.2 V (the charge-neutral case) to -1.5 V (the hole-doped case). The 

emerged optical resonance also shows strong polarization dependence. At VB = -1.5 V, as a 

representative example for the hole-doped case, the magnitude of the peak at ~1.1 eV exhibits a ܿݏ݋ଶߠ  pattern (blue empty circles in Fig. 3(c) and blue filled circles in Fig. 3(f) for 

photoluminescence and ∆R/R, respectively) in the function of the light polarization angle ߠ. The 

negligible optical response at ߠ ൌ 90° (polarization along the zig-zag direction) indicates that the 

dipole interaction for Y-polarized light is forbidden, identical to the optical resonance at ~1.129 

eV for the charge neutral system (Grey-empty circles in Fig. 3(c) and Grey-filled circles in Fig. 

3(f)). The large oscillator strength of the new peak in ∆R/R implies that the new peak does not 

originate from long-lived localized defect states. Instead, our optical spectra suggest that a new 

delocalized state with strong anisotropy emerges due to the presence of free holes. The gate-

dependent photoluminescence spectra are also reported in previous studies of monolayer and 

trilayer phosphorene on a SiO2/Si substrate without encapsulation [27,29]. 

 

The emerged resonance in the photoluminescence and ∆R/R spectra can be explained by the 

formation of the trion, which was predicted by a recent theoretical study on monolayer 

phosphorene [36] and also well-established in TMD monolayers [6,49] as well as conventional 

semiconductors [50,51]. An exciton can combine with an additional hole (electron) to form a 
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positive (negative) trion. The presence of free carriers enables the optical transition to directly 

create the trion, while the optical transition for the neutral exciton is suppressed due to a 

combination of Pauli blocking and dielectric screening. Following photoexcitation, the 

population of photoexcited excitons quickly relaxes to the trion, which is lower in energy. Such 

modification of the optical transition and relaxation dynamics of exciton explains our optical 

spectra in Fig. 3(a) and 3(d). 

 

In addition, the injection of free holes leads to a linewidth broadening and energy blueshift of 

optical transitions for the exciton 1s and 2s states [Fig. 3(d)]. The scattering with holes decreases 

the lifetime of excitons which increases the linewidth of the resonances. The blueshift of the 

resonance energy is due to a combination of Pauli blocking and screening of Coulomb 

interaction. In the single-particle band picture, the occupation of hole states blocks the interband 

transitions at the band edge which participate in the formation of the exciton states. This leads to 

an energy blueshift of the quasi-particle gap and exciton excitation energy. On the other hand, 

the dielectric screening of Coulomb interaction reduces both the quasiparticle bandgap and the 

exciton binding energy, which also modifies the exciton resonance energy. Typically, the overall 

effect results in an energy blueshift for the exciton 1s state, which is consistent with our result 

[7,49]. 

 

The optical spectra for the electron-doped case are investigated by the application of a gate 

voltage from 0.2 V to 1.5 V with polarization along the armchair direction. The 

photoluminescence spectra [Fig. 3(b)] show somewhat similar behavior to the hole doping case 



 11

where the exciton peak diminishes accompanied by the emergence of a new peak at ~ 1.09 eV. 

However, ∆R/R [Fig. 3(e)] shows a stark difference. We do not observe any noticeable 

emergence of a new resonance at ~ 1.09 eV corresponding to the luminescence peak. The 

majority of the 1s state resonance shows only a continuous redshift while leaving a small 

shoulder at higher energy as shown for VB = 1.0 V and 1.2 V. At VB = 1.5 V, as a representative 

example for the electron-doped case, the magnitudes of the luminescence peak at ~ 1.09 eV and 

∆R/R peak at ~ 1.116 eV show the same polarization dependence (red empty circles in Fig. 3(c) 

and red filled circles in Fig. 3(f), respectively) as the optical resonances for the neutral and hole-

doped cases. This gate-dependent behavior cannot be explained by the conventional model for 

the trion as in the hole-doped case. This can be potentially explained by the electric field effect 

on few-layer phosphorene. A thicker-layer phosphorene FET with additional gate controls will 

be effective to address this anomalous issue, which is of future interest but beyond the scope of 

this work. 

 

The analysis of ∆R/R [Fig. 3(d)] allows us to estimate the binding energy of the positive trion, 

which is defined as the energy required to break it into a free hole and the lowest energy neutral 

exciton. The exciton 1s state has the two possible spin configurations for the electron and the 

hole which are the optically-bright singlet (S=0) and the optically-dark triplet (S=1) excitons, 

labelled as ܺ଴௦௜௡௚௟௘௧ (Red solid line) and ܺ଴௧௥௜௣௟௘௧ (Black solid line) respectively in Fig. 4(a). The 

energy levels of two states are separated by twice the electron-hole exchange energy (ܧ௘௫), and 

the singlet state is higher in energy than the triplet state. In the absence of a magnetic field or 

spin-orbit coupling, ܺ଴௦௜௡௚௟௘௧  and ܺ଴௧௥௜௣௟௘௧  are bright and dark, respectively, due to the zero 
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quantum number of spin of the photon. Therefore, the exciton 1s peak at 1.129 eV in Fig. 2(a) 

and 3(d) can be attributed to the optical resonance from ܺ଴௦௜௡௚௟௘௧.  
 

While our optical spectroscopy cannot probe the optically dark ܺ଴௧௥௜௣௟௘௧ state, we determine the 

triplet exciton energy level with theoretical calculations within the ab initio GW-BSE approach 

[38-40] (see Supplemental Material [61] and Refs. [38-42, 54-60] therein). We find that the 

exciton singlet-triplet energy splitting in bilayer phosphorene is 10 meV in good agreement with 

previous calculations [37]. While the encapsulation leads to a renormalization of the QP bandgap 

and exciton binding energy, it will not affect the exciton singlet-triplet splitting, which arises 

from the short-range exchange interaction.  

 

Analogous to the case of carbon nanotubes [52,53], the major dissociation pathway of the 

positive trion in bilayer phosphorene, labelled as ܺା  (Red dashed line) in Fig. 4(a), is the 

following process. ܺା ՜ ܺ଴௧௥௜௣௟௘௧ ൅ ݈݁݋݄ . The energy separation between ܺ଴௦௜௡௚௟௘௧  and ܺା 

monotonically increases as the doping concentration is raised as shown in Fig. 3(d). The energy 

separation between ܺ଴௧௥௜௣௟௘௧  and ܺା  follows an identical trend, as the exchange interaction 

defining the exciton singlet-triplet energy splitting is unscreened and should thus be largely 

unaffected by doping. Fig. 4(b) summarizes the energy separation as a function of VB. The 

increase in the energy separation can be explained by the energy required to dissociate ܺା into ܺ଴௧௥௜௣௟௘௧ and a hole at different doping concentration [7]. At an infinitesimal concentration of 

doping, the dissociation simply requires ܧ஻௑శ . At higher concentrations, additional energy is 
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required for the dissociation to overcome the raised chemical potential for the gas of free holes. 

Fig. 4(b) shows ~ 20 meV for the energy separation at the nearly zero concentration which 

corresponds to the binding energy of a positive trion ܧ஻௑శ. 

 

III. Conclusions 

In summary, we realize a FET device of high-quality bilayer phosphorene by fabrication of a van 

der Waals heterostructure with hBN. ∆R/R and photoluminescence spectra show a strong linear-

dichroic optical resonances from anisotropic excitons and positive trions. Despite the dielectric 

screening from hBN, bilayer phosphorene exhibits tightly-bound excitons and trions with a 

binding energy of roughly 100 meV and 20 meV, respectively. Our work shows exciting 

possibilities for exploring many-body physics and novel optoelectronic applications based on 

excitons with two-fold anisotropy. 
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Figures 

 

FIG. 1. hBN-encapsulated bilayer phosphorene in FET geometry. (a) Crystal structure of 

bilayer phosphorene. (b) Optical microscope image of the representative bilayer phosphorene 

device. (c) The schematic of the FET device in (b).  
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FIG. 2. Optical spectra of the anisotropic exciton for the undoped system. (a) The 

polarization-resolved ∆R/R. (b) The polarization-resolved photoluminescence spectra with the 

unpolarized laser excitation at 1.96 eV. 
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FIG. 3. Optical spectra of the anisotropic excitons with gate control. (a) and (b) 

Photoluminescence spectra with polarization along the armchair direction for the hole-doped (a) 

and electron-doped (b) cases. (c) Intensity of photoluminescence at peak energy as a function of 

polarization angle ߠ. (d) and (e) ∆R/R with polarization along the armchair direction for the 

hole-doped (d) and electron-doped (e) cases. (f) ∆R/R at peak energy as a function of 

polarization angle ߠ.  
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FIG. 4. The gate-control of exciton energy structure. (a) The schematic of the energy levels 

for excitons and trions. (b) The energy separation of optical resonances between ܺ଴௧௥௜௣௟௘௧ and ܺା 

with the function of VB.  
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