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When a system is thermally coupled to only a small part of a larger bath, statistical fluctuations of
the temperature (more precisely, the internal energy) of this “sub-bath” around the mean tempera-
ture defined by the larger bath can become significant. We show that these temperature fluctuations
generally give rise to 1/f-like noise power spectral density from even a single two-level system. We
extend these results to a distribution of fluctuators, finding the corresponding modification to the
Dutta-Horn relation. Then we consider the specific situation of charge noise in silicon quantum
dot qubits and show that recent experimental data [E. J. Connors, et al., Phys. Rev. B 100,
165305 (2019)] can be modeled as arising from as few as two two-level fluctuators, and accounting
for sub-bath size improves the quality of the fit.

Charge noise, particularly the so-called 1/f noise
ubiquitous in electronic devices, is currently the most
significant roadblock to the successful development of
semiconductor-based scalable solid state qubits. It is well
known that an ensemble of thermally activated two-level
fluctuators (TLFs) with a broad range of switching rates
gives rise to a 1/f power spectral density (PSD) with a
linear temperature dependence [2]. This is the standard
hand-waving explanation given to explain wide-spread
observations of pink noise in solid state qubit devices,
with some sort of charged defects playing the role of
the TLFs. Early data from laterally-defined quantum
dots in silicon showed that the noise power indeed ap-
pears to increase with temperature [3], but with large
error bars that preclude a more detailed conclusion. Re-
cent experiments, however, have shown striking devia-
tion from the expected linear temperature dependence.
Ref. [1] measures a temperature dependence which is not
only nonlinear, but in some cases non-monotonic, qual-
itatively consistent with the Dutta-Horn model [4] of a
large ensemble of TLFs with a non-uniform distribution
of switching rates, although any expected quantitative
consistency varies widely within the data set. Meanwhile,
Ref. [5] finds a quadratic temperature dependence. On
the other hand, Ref. [6] observes a T ∗2 decoherence time
that is approximately constant over a range of tempera-
tures from 0.45K-1.2K, suggesting that their charge noise
comes from a few TLFs with activation energies much
smaller than kBT , rather than a broad distribution. The
situation, particularly in the measured noise temperature
dependence, is thus quite confusing.

In this work we show that, in principle, 1/f noise with
nonlinear temperature dependence can be produced by
even a single TLF coupled to a microscopic subsection
of the thermal bath. Although we cannot assert that
our proposed mechanism is operational in semiconductor
qubits (in fact, the physical mechanism underlying 1/f
noise is still obscure), we show that the experimental
data of Ref. [1] can be reasonably fit as arising from a
small number of TLFs, and that the fit is improved by

incorporating this microscopic thermal bath effect via an
additional fit parameter.

The essential narrative here is that, even within the
TLF model, observation of 1/f noise over some broad
frequency range need not imply an ensemble of TLFs.
One (or few) TLFs can suffice, in which case a nonlinear
temperature dependence is natural. This conclusion of
the adequacy of just a few TLFs obviously has important
implications.

It is quite physical to assume that a microscopic two-
level fluctuator may be coupled to only a microscopic
part of the thermal bath. For instance, in semiconductor
quantum dots one typically imagines the charge noise as
arising from charged TLFs coupled via Coulomb interac-
tion to a thermal electrostatic environment, but since the
Coulomb interaction is strongly screened by the nearby
two-dimensional electron gas (2DEG) and the dense ar-
ray of metallic top gates, each TLF will only interact with
a region of the bath that lies less than a screening length
away. This “sub-bath” has an internal energy character-
ized by an effective temperature, Tsb, whose average is
the same as the macroscopic bath temperature, T , but
with fluctuations around equilibrium of variance

σ2
sb =

kBT
2

CV
, (1)

where CV is the heat capacity of the sub-bath. Since CV
is an extrinsic quantity, σsb is proportional to one over the
square root of the volume of the sub-bath, which becomes
significant at small enough volumes. Generally, CV is
also a function of T ; at low temperatures the phonon
contribution is negligible and it is dominated by the elec-
tronic heat capacity, which is linear in T . For example,
considering a 2DEG sub-bath of area A, the variance in
temperature Tsb is

σ2
sb =

3~2T
πmAkB

, (2)

where m is the effective mass of the electrons. This can
certainly be non-negligible, since for Si, with an effective
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mass of m = 0.19me (where me is the electron mass), and
an area of one square micron, at a typical temperature of
50 mK one would have sub-bath fluctuations of 14 mK.

We thus assume a stochastic TLF with activation
energy E and a thermally activated transition time
τ exp (E/kBTsb). Averaging over the sub-bath statisti-
cal temperature distribution f(Tsb), the PSD is

S(ω) = ∆2

∫ ∞
0

dTsbf(Tsb)
4τ exp (E/kBTsb)

1 + ω2τ2 exp (2E/kBTsb)

=
2∆2

ω

∫ ∞
0

dTsbf(Tsb)sech

(
E

kBTsb
+ ln(ωτ)

)
, (3)

where ∆2 is the total variance of the signal produced by
the switching events. Integrating over a gaussian distri-
bution of temperatures, truncated to avoid unphysical
negative temperatures and normalized,

S(ω) =
2∆2

ω

∫ ∞
0

dTsb
e
− (Tsb−T)

2

2σ2
sb sech

(
E
kB

(
1
Tsb
− 1

Tω

))
√
π/2σsb

(
1 + erf

(
T√
2σsb

)) ,

(4)
where we have also defined

Tω ≡
E

kB ln 1
ωτ

. (5)

The integrand in Eq. (4) contains two peaks, one at
the distribution’s mean, T , and one from the Lorentzian
at Tω. While the integral is easily carried out numeri-
cally for any set of parameters, the qualitative behavior
is illuminated by the following approximation. Assuming
the peaks are well separated, approximate the sech term
as a constant in the vicinity of T and as a gaussian in
the vicinity of Tω, with width

σω ≡
E

kB ln2 1
ωτ

, (6)

so as to obtain

S(ω) ≈ 2∆2

ω
sech

(
E

kB

(
1

T
− 1

Tω

))

+
2∆2

ω

σω√
σ2
sb + σ2

ω

1 + erf

(
σ2
sbTω+σ

2
ωT√

2σsbσω
√
σ2
sb+σ

2
ω

)
1 + erf

(
T√
2σsb

) e
− (T−Tω)2

2(σ2
sb

+σ2ω) .

(7)

This has nontrivial frequency and temperature de-
pendence, but in the low-frequency limit Tω � T and
σω � σsb,

S(ω) ≈ 4τ∆2

1 + ω2τ2
+

2E∆2

kBσsbω ln2 1
ωτ

2e
− (T−Tω)2

2σ2
sb

1 + erf
(

T√
2σsb

) . (8)
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FIG. 1. Power spectral density vs frequency from Eq. (4) for
E
kBT

= 1, σsb
T

= 0.3.

The first term is the typical Lorentzian spectrum of a
single TLF. The second term rises above this Lorentzian
floor at low frequencies as 1/ω ln2 ωτ , which over a broad
frequency range centered around ω0 is practically indis-
tinguishable from 1/ωα with α = 1 + 2/ lnω0τ . An ex-
ample of this behavior is shown in Fig. 1.

Thus, if temperature fluctuations are significant, one
can expect to find 1/ωα noise at frequencies below
roughly

ω1/f ∼ 0.01τ−1
E

kBσsb

(
1 + erf

(
T√
2σsb

)) exp

(
− T 2

2σ2
sb

)
,

(9)
transitioning to white noise at intermediate frequencies,
and finally falling as 1/ω2 at frequencies above τ−1. Al-
though no quantum dot experiment to our knowledge has
measured the noise spectrum at high enough frequency to
conclusively observe the roll-off to 1/ω2 (although Ref. [7]
finds suggestions of it in the data of Ref. [8]), some have
observed a whitening of 1/ωα noise with increasing fre-
quency [1, 9].

Turning our attention now to the temperature depen-
dence, we can compute Eq. (4) numerically for a given
set of parameters, as shown in Fig. 2. The PSD is peaked
around Tω and is qualitatively similar to the PSD in the
absence of temperature fluctuations. It is instructive to
look at the limiting cases analytically. At temperatures
well above Tω, Eq. (8) holds, so one has an exponential
decay to a constant value as temperature increases. This
is the same high-temperature dependence as in the ab-
sence of fluctuations. The data in Ref. [6] is believed to
correspond to this constant, high-temperature tail. For
T < Tω (and hence also < E/kB), the peaks of the in-
tegrand in Eq. (4) at T and Tω are no longer well sepa-
rated. However, by approximating the sech as a decaying
exponential (i.e., neglecting unity in the denominator of
Eq. (3) compared to the exponentially large term), we
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FIG. 2. Power spectral density at ωτ = 0.01 vs temperature
for kBσsb

E
= 0.1

√
kBT/E. The solid line is numerically com-

puted from from Eq. (4), the dashed line is from Eq. (12),
and the dotted line is from Eq. (8).

can make a gaussian approximation to the integrand

S(ω)
T→0
≈ 4∆2

ω2τ

∫ ∞
0

dTsb
e
− E
kBTsb

− (Tsb−T)
2

2σ2
sb√

π/2σsb

(
1 + erf

(
T√
2σsb

))
≈ 4∆2

ω2τ

e
− E
kBT∗

− (T∗−T )2

2σ2∗√
π/2σsb

(
1 + erf

(
T√
2σsb

)) ∫ ∞
0

dTsbe
− (Tsb−T∗)

2

2σ2∗ ,

(10)

where the expressions for T∗ and σ∗ in terms of the
physical parameters are algebraically cumbersome, but
simplify in the low-temperature limit if we assume

limT→0 T/
(
σ2
sbE/kB

)1/3
= 0 (as is the case for electrons

(2)) to

T∗ =
1

3
T +

(
E

kB
σ2
sb

)1/3

, σ∗ =
1√
3
σsb, (11)

and one obtains

S(ω)
T→0
≈ 4

√
2∆2

√
3ω2τ

exp

−1

2

(
− 2T

3σsb
+

(
E

kBσsb

)1/3
)2


× exp

(
− 3E/kB

T + 3 (σ2
sbE/kB)

1/3

)
. (12)

So, instead of the typical linear temperature dependence
[2], it is exponentially flat at low temperatures, going like

exp

(
−
(

3
√
πmAE

2
√
2kB~

)2/3
T−1/3

)
.

This flatness at low temperatures is qualitatively con-
sistent with some of the data sets of Ref. [1], and we
show below that superposing PSDs as in Fig. 2 of a few
TLFs with different activation energies can provide an
alternate way to understand and fit the nonlinear behav-
ior in Ref. [1]. However, at this point it suffices to note

that by dropping the assumption that 1/f noise must im-
ply a continuous distribution of TLFs, we have preserved
the nonlinear temperature dependence of a single TLF,
and, depending on the parameter values, one could ob-
tain seemingly very different behaviors if one observes
over only a narrow range of temperatures.

We now discuss briefly how the PSD of a continuous
distribution of TLFs would be affected by sub-bath tem-
perature fluctuations. The classic Dutta-Horn model [4]
for a temperature-independent distribution of activation
energies, F (E), gives

S =
2πkBT

ω
F (Eω) , (13)

where Eω ≡ kBT ln 1
ωτ , in which case the frequency de-

pendence and the temperature dependence are linked as

γ ≡ −∂ lnS

∂ lnω
= 1− 1

lnωτ

(
∂ lnS

∂ lnT
− 1

)
. (14)

Modifying Eq. (13) to the case of a fluctuating sub-
bath temperature (more precisely, starting from Eq. (3)
and assuming F is broad, with a width much larger than
kBT such that the sech function can be approximated as
a delta function),

S =
2πkB∆2

ω

∫
dTsbTsbF (kTsb ln

1

ωτ
)f (Tsb) . (15)

Since the distribution of activation energies is assumed
narrow compared to the distribution of sub-bath temper-
atures, we can do the integration in Eq. (15) by approx-
imating

TsbF (kBTsb ln
1

ωτ
) ≈ TF (Eω)

+ (F (Eω) + EωF
′ (Eω)) (Tsb − T )

+

(
Eω
T
F ′ (Eω) +

E2
ω

2T
F ′′ (Eω)

)
(Tsb − T )

2
. (16)

Plugging this into Eq. (15), and assuming for simplicity
that σsb < T such that we can neglect the truncation
of the gaussian temperature distribution and allow the
tail to extend slightly into unphysical negative sub-bath
temperatures, we obtain

S(ω) =
2πkBT∆2

ω
F (Eω)

+
πk2Bσ

2
sb

ω

[
2 ln

1

ωτ
F ′ (Eω) + Eω ln

1

ωτ
F ′′ (Eω)

]
. (17)

(One can easily do the integral with the truncated gaus-
sian distribution instead, picking up additional terms
with factors of e−T

2/σ2
sb , but it does not affect the con-

clusions and the results are algebraically unwieldy, so we
do not reproduce them here.)

Then it is straightforward to obtain the corresponding
approximate modified Dutta-Horn relationship:
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γ = 1− 1

lnωτ

(
∂ lnS

∂ lnT
− 1

)(
1 +

2σ2
sb (2F ′ (Eω) + EωF

′′ (Eω))

2 (T 2 − σ2
sb)F

′ (Eω) + Eωσ2
sb (2F ′′ (Eω) + EωF ′′′ (Eω))

)
. (18)

The main point here is that including temperature fluc-
tuations destroys the key feature of the Dutta-Horn re-
sult that the relationship between the frequency depen-
dence and temperature dependence is independent of the
details of the activation energy distribution. Only in
the restricted case of negligible second- and higher-order
derivatives of F does the relationship becomes indepen-
dent of the form of F :

γ = 1− 1

ln (ωτ)

(
∂ lnS

∂ lnT
− 1

)
1 + σ2

sb/T
2

1− σ2
sb/T

2
. (19)

Generally, the frequency and temperature dependences
are now decoupled in the sense that one cannot predict
one from the other without knowing the underlying dis-
tribution. In such a scenario, the details of the noise
would matter a great deal, leading possibly to nonuni-
versal experimental behavior.

We now turn to the experimental data of Ref. [1].
There the charge noise in several silicon double quantum
dots was measured as a function of temperature at 1 Hz,
as well as the local frequency dependence exponent, γ.
We find that the data can be described reasonably well
with our theory using as few as two discrete TLFs,

S=

∫ ∞
0

dTsb

2∑
i=1

∆2
i

√
8mAkBe

− (Tsb−T)
2

6~2T
πmAkB sech

[
Ei

kBTsb
+ ln(ωτi)

]
~ω
√

3T

(
1 + erf

(√
πmAkBT

6~2

))
(20)

by fitting over the switching times (τi), activation en-
ergies (Ei), and fluctuator strengths (∆2

i ), as well as a
common 2D sub-bath area (A), where we have made the
physically reasonable assumption that the heat capac-
ity of the thermal bath is dominated by the electronic
contribution and used Eq. (2). The objective function si-
multaneously minimizes net deviations from the moving
average of the noisy S and γ data with equal weighting,
and the minimization is carried out via a local gradient
search using the fmincon function in Matlab. The fit-
ting parameters are constrained to lie within 0 − 10 s
for τ , 0 − 100 meV for Ei, 0 − 104 meV2 for ∆2

i , and
2nm − 100µm for

√
A/π when it is finite. In the infi-

nite sub-bath case, A → ∞, the temperature distribu-
tion corresponds to a delta function. The optimization is
not guaranteed to find the global minimum, though we
perform each optimization over 30 times for each quan-
tum dot with different initial values so as to sample over
different local minima.

In Fig. 3 we show an example of the results of the
fitting with and without taking a microscopic sub-bath
area. (Fits to the complete data set are included in the
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FIG. 3. Data from Supplemental [10] Fig. 2b and d of Ref. [1]
(Device 1, QD R1, Right), along with fits using only two
fluctuators. The fitting parameters are given in Table I and a
sensitivity analysis is included in the Supplemental Material
[10].

Supplemental Material [10].) Even the fit using an infi-
nite thermal sub-bath appears better than the standard
Dutta-Horn results, although this happens because we
are just fitting S (a function of T and ω) over a cut at
constant ω while also fitting the derivative ∂ωS perpen-
dicular to the cut. As we showed at the outset, incorpo-
rating a microscopic sub-bath area in principle allows for
a 1/ω-type frequency dependence over the whole plane.
Even restricting ourselves to the data in hand, there is
a noticeable improvement in the fit when including the
effects of a microscopic sub-bath. It is interesting that
the sub-bath sizes that emerge from the fit are quite con-
sistent across different dots and correspond to disks with
radii of about 100 nm, which is physically reasonable for
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Parameter Fluctuator 1 Fluctuator 2

A→∞
τ (ms) 8.397 80.803

E (meV) 0.216 5.414×10−11

∆2
i (meV2) 10.624 6.495

A <∞

τ (ms) 1.423×10−5 57.104

E (meV) 1.478 3.128×10−3

∆2
i (meV2) 80.580 4.807√
A/π (nm) 80.488

TABLE I. Fitting parameter values for Fig. 3.

the devices being fitted which have top gate feature sizes
ranging from roughly 70 nm to 200 nm [1]. Note that
these small radii correspond to significantly large temper-
ature fluctuations; for the device corresponding to Fig. 3
and Table I, for example, the sub-bath radius of ∼ 80 nm
that gives the best fit corresponds to a standard devia-
tion σsb ∼ 330 mK at a mean temperature of T ∼ 500
mK. The data can be fit more closely with three or four
TLFs (see Supplemental Material [10]), but given how
much variance the data displays, it does not make sense
to strive for too much precision in fitting the average.

One ramification of having only a few relevant TLFs
would be that increasing temperature may not be as
deleterious to coherence as it is for typical 1/f noise,
as suggested in Ref. [6]. If it is furthermore true that
these TLFs are indeed coupled to a microscopic sub-
bath with appreciable temperature fluctuations, it could
have some other surprising but testable ramifications.
For instance, it is natural to wonder what happens if
the sub-bath is small enough that the effective temper-
ature distribution has a long tail leading to fluctuations
larger than the mean temperature. Indeed, from (2), this
is always the case at small enough mean temperature,
T < 3~2/πmAkB . For a simple planar bath where there
is no other relevant length scale, the sub-bath area should
go like the square of the distance, d, between the TLF
and the bath, so the critical distance at which σsb ∼ T is
dc ∼ ~/

√
mkBT , which is around 200nm for T ∼ 100mK

in Si. The dependence of the low-frequency PSD ampli-
tude on the distance goes like ∼ d exp

(
−d2kBTm/~2

)
(cf. Eqs. (8) and (2)), which diminishes linearly with
decreasing distance below dc before saturating at the
Lorentzian floor. Thus, one has the counterintuitive pos-
sibility of suppressing low-frequency noise by bringing
the thermal electronic bath (presumably the capacitively
coupled surrounding 2DEG, or the metal gates) in closer
contact with the TLFs (perhaps charged defects at the
oxide interface, or near the semiconductor surface).

In conclusion, we have shown how a 1/f noise power
spectral density (PSD) with nonlinear temperature de-
pendence, often modeled as arising from a broad distribu-
tion of two-level fluctuators (TLFs) via the Dutta-Horn
relation, can in fact emerge from even one or two TLFs
when coupled to a microscopic thermal sub-bath due to
effective temperature fluctuations. If a broad distribu-
tion of TLFs is coupled to such a bath, the strict connec-
tion between local frequency and temperature scalings
enforced by the Dutta-Horn relation is relaxed. Finally,
we noted that recent experimental measurements of both
the local frequency scaling and a nonlinear temperature
dependence in silicon quantum dots can be reasonably
explained as arising from as few as two TLFs.
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