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Understanding quantum many-body states of correlated electrons is one main theme in modern condensed
matter physics. Given that the Fermi-Hubbard model, the prototype of correlated electrons, has been recently
realized in ultracold optical lattices, it is highly desirable to have controlled numerical methodology to provide
precise finite-temperature results upon doping, to directly compare with experiments. Here, we demonstrate
the exponential tensor renormalization group (XTRG) algorithm [Phys. Rev. X 8, 031082 (2018)], comple-
mented with independent determinant quantum Monte Carlo (DQMC), offer a powerful combination of tools
for this purpose. XTRG provides full and accurate access to the density matrix and thus various spin and
charge correlations, down to unprecedented low temperature of few percents of the tunneling energy. We ob-
serve excellent agreement with ultracold fermion measurements at both half-filling and finite-doping, including
the sign-reversal behavior in spin correlations due to formation of magnetic polarons, and the attractive hole-
doublon and repulsive hole-hole pairs that are responsible for the peculiar bunching and antibunching behaviors
of the antimoments.

Introduction.— The Fermi-Hubbard model (FHM), de-
scribing a paradigmatic quantum many-body system [1, 2],
has relevance for a broad scope of correlation phenomena,
ranging from high-temperature superconductivity [3], metal-
insulator transition [4], quantum criticality [5], to interacting
topological states of matter [6]. Yet, puzzles remain in this
strongly interacting many-body model after several decades
of intensive investigations. In solid-state materials, FHM is
often complicated by multi-band structures and interactions
such as spin-orbital and Hund’s couplings [7]. In this regard,
recent progresses in two-dimensional (2D) fermionic optical
lattices, where the interplay between the spin and charge de-
grees of freedom in FHM has been implemented in a faith-
ful way [8–14], enable a very clean and powerful platform
for simulating its magnetic [15–22] and transport properties
[23, 24].

With the state-of-the-art quantum gas microscope tech-
niques, single-site and spin-resolved imaging is now available,
and “snapshots” of correlated fermions have been studied ex-
perimentally [8–10, 12]. On top of that, detailed local spin and
charge correlations [11, 13–15, 17, 22], as well as hidden or-
ders revealed by pattern recognition [19, 20], all inaccessible
in traditional solid-state experiments, can be read out by the
microscope. As a highly controlled quantum simulator, ultra-
cold fermions in optical lattices therefore serve as a promis-
ing tool for resolving various intriguing theoretical proposals

in 2D FHM. However, numerous challenges remain, both the-
oretically and experimentally. The currently lowest achiev-
able temperature is T/t ' 0.25-0.5 (with t the fermion tun-
neling energy) on a finite-size system with about 70-80 6Li
atoms [17, 20, 22], and T/t ∼ 1 in 40K systems [12, 25].
These temperatures are still much higher than the estimated
superconductivity transition temperature, Tc/t ∼ 0.05, near
the optimal doping of the square-lattice FHM [3, 26].

On the theoretical side, it is then of vital importance to
provide precise quantum many-body calculations in 2D FHM
with similar system size and fermion density as those studied
experimentally. With that, one can benchmark theory with ex-
periment, determine the effective temperature of the fermionic
optical lattice system, explain experimental results, and pro-
vide accurate guidance for future progress. However, accu-
rately computing properties of 2D FHM at finite temperature
and finite doping is difficult. Quantum Monte Carlo (QMC)
methods suffer from the minus-sign problem, although with
finite size and temperature it can actually be performed, yield-
ing unbiased results before one hits the “exponential wall”. In
this regard, it is highly desirable to have an alternative and
powerful method, whose accessible parameter space extends
to more difficult yet highly interested regions. In this letter, we
demonstrate that the thermal tensor network approach consti-
tutes the method of choice.

In fact, various tensor renormalization group (TRG) meth-
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FIG. 1. (a) Bilayer calculation of the spin-spin 〈Ŝ i · Ŝ j〉 and hole-
doublon 〈ĥi · d̂ j〉 correlators by sandwiching corresponding opera-
tors in between ρ̂(β/2) and ρ̂†(β/2) where the snake-like ordering of
sites for the XTRG is indicated by thick gray lines. (b) In the low-
temperature AF background (blue down and red up spins), a mag-
netic polaron (grey shaded region) emerges around a moving hole,
where the spins around the hole can be in a superposition of spin-
up and down states. The blue ellipse represents a hole-doublon pair
showing a strong bunching effect. (c) A hole moves in the system
along the path indicated by the grey string, leading to a sign reversal
of the diagonal spin correlation. The red- and blue-shaded regions
illustrate the deformed magnetic background due to the interplay be-
tween the hole and spins. Diagonal correlations are indicated red
(aligned) or blue (antialigned).

ods have been developed to compute the ground-state prop-
erties of the 2D FHM [27–34]. However, the T > 0 prop-
erties at finite doping are much less explored. In this work,
we generalize the exponential TRG (XTRG) from spin sys-
tems [35, 36] to strongly interacting fermions, and employ it
to simulate FHM at both half-filling and finite-doping, down
to a few percents of the tunneling energy t. We compare
the results obtained from both XTRG and determinant QMC
(DQMC) [37] in the parameter space where both methods are
applicable, and find excellent agreement between them. Then
we carry out XTRG+DQMC investigations of the 2D FHM
to cover the entire parameter space accessed by current cold-
atom experiments. We find that the experimental data can be
perfectly explained by our numerical simulations. The com-
bined XTRG+DQMC scheme therefore opens a route for sys-
tematic investigation of the finite-temperature phase diagram
of the 2D FHM and constitutes an indispensable theoretical
guide for ultracold fermion experiments.

The Fermi-Hubbard model.— We consider the interacting
electrons on the L × L square lattice with open boundary con-
dition,

H = −t
∑
〈i, j〉,σ

(ĉ†i,σĉ j,σ + h.c.) + U
∑

i

n̂i↑n̂i↓ − µ
∑
i,σ

n̂i,σ, (1)

with t = 1 the nearest-neighbor hopping amplitude (that sets
the unit of energy, throughout), U > 0 the on-site Coulomb
repulsion, and µ the chemical potential. The fermionic oper-
ator ĉi,σ annihilates an electron with spin σ ∈ {↑, ↓} on site i,
and n̂i,σ ≡ ĉ†i,σĉi,σ is the local number operator.

In the large-U limit (U � t) and at half-filling (µ = U/2),
FHM can be effectively mapped to the Heisenberg model with
exchange J = 4t2/U, giving rise to a Néel-ordered ground
state with strong antiferromagnetic (AF) correlations at low
temperature [depicted schematically in Fig. 1(b)]. This has
been demonstrated in many-body calculations [38] and re-
cently observed in ultracold fermion experiments [17]. To
make direct comparison to recent experiments [12, 17, 20, 25],
we take L = 4, 6, 8, set U = 7.2 and further tune the chemical
potential µ < U/2 to introduce hole doping.

Fermion XTRG.— Finite-temperature TRG methods have
been proposed to compute the thermodynamics of interact-
ing spins [35, 39–45]. However, the simulation of correlated
fermions at finite temperature has so far been either limited
to relatively high temperature [46, 47] or to rather restricted
geometries, like 1D chains [48]. XTRG employs a density-
matrix renormalization group (DMRG) type setup for both 1D
and 2D systems [35, 36] and cools down the systems expo-
nentially fast. It has shown great precision in quantum spin
systems [35, 49, 50], thus holding great promise to be gener-
alized to correlated fermions.

As shown in Fig. 1(a), we represent the density matrix
ρ̂(β/2) as a matrix product operator (MPO) defined on a
1D snake-like path [thick gray lines in Fig. 1(a)]. To guar-
anteer the positive-definite condition of the density matrix
and accurately compute the expectation value of an observ-
able Ô, we adopt the bilayer technique [48], yielding 〈Ô〉 =
1
Z

Tr[ρ̂(β/2) · Ô · ρ̂†(β/2)], with Z = Tr[ρ̂(β/2) · ρ̂†(β/2)] the
partition function. We consider mainly two-site static cor-
relators, 〈Ô〉 = 〈Ôi · Ô j〉, with Ôi a local operator such as
the SU(2) spinor Ŝ i ≡ [ −1

√
2
ĉ†i↑ĉi↓,

1
2 (n̂i↑ − n̂i↓), 1

√
2
ĉ†i↓ĉi↑]

T , the
fermion number n̂i ≡ n̂i↑ + n̂i↓, the occupation projectors
ĥi ≡ |0〉〈0|i (hole) and d̂i ≡ |↑↓〉〈↑↓|i ≡ n̂i↑n̂i↓ (doublon), etc.
The spin-spin 〈Ŝ i · Ŝ j〉 and hole-doublon 〈ĥi · d̂ j〉 correlations
are schematically depicted in Fig. 1(a).

We also fully implement non-Abelian spin and particle-hole
symmetries in the QSpace framework [51, 52] (for techni-
cal details, see [71]). To be specific, for the half-filled case
we exploit SU(2)charge ⊗ SU(2)spin, and for the doped case
U(1)charge ⊗SU(2)spin symmetry. The implementation of sym-
metries has been shown to be very useful in the DMRG-type
calculations [53–55], and here it allows us to reduce the D
states retained in XTRG to an effective dimension of D∗ mul-
tiplets. Practically, for the half-filled (doped) cases, the ef-
fective dimensional reductions D/D∗ ∼ 5.6(2.6), correspond-
ing to a (D/D∗)4 ' 50-1000 fold reduction of computation
time, guaranteeing high efficiency and accuracy for the ther-
mal simulations. We obtain well-converged XTRG results
on the L = 8 square lattice at half filling (total site number
N = L2 = 64) using up to D∗ = 900 multiplets (D ' 5, 000
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FIG. 2. Half-filled FHM with U = 7.2 and L = 4, 6, 8. (a) The
finite-size AF order pattern is determined from the spin correlation
CS (d) versus (dx, dy), which melts gradually as T increases. We show
in (b) the spin correlation function |CS (d)| of various d = 1,

√
2, 2,

and in (c) the finite-size spontaneous magnetization ms. Excellent
agreement between the calculated (L = 8) data to the experimental
data [17] can be observed.

FIG. 3. Doped FHM with U = 7.2 and L = 6, 8. (a) shows the
spin correlation pattern CS (d) versus δ, plotted at T = 0.06, where
the finite-size AF order fades out for δ & 0.15. The computed (b)
spin correlations |CS (d = 1)| and (c) staggered magnetization ms are
compared to the experimental data [17]. The XTRG data in (b,c) are
obtained via extrapolation 1/D∗ → 0 [71]. In the inset of (c), we
show how δ, computed by both XTRG and DQMC, varies with T
and on a L = 6 lattice and at a fixed chemical potential µ = 1.5.

states), and upon doping using up to D∗ = 1, 200 multiplets
(D ' 3, 100 states) [71] down to temperatures T/t ' 0.06
which is unprecedentedly low for such system sizes. The
DQMC simulation performed here is of the finite temperature
version with fast update [56].

Spin correlations and finite-size magnetic order at half-
filling.— In recent experiments of FHM, the antiferromag-
net (AF) has been realized in ultracold optical lattices at
low effective temperature T/t < 0.4 [17]. We first bench-
mark the XTRG method, along with DQMC, with the exper-
imental results of half-filled FHM. Fig. 2(a) exhibits the spin

correlations CS (d) ≡ 1
Nd

∑
|i− j|=d

〈Ŝ i·Ŝ j〉

S (S +1) , summed over all Nd

pairs of sites i and j (Cartesian coordinates) with distance
d. It shows AF magnetic order across the finite-size sys-
tem at low temperature, e.g., T . 0.12, which melts gradu-
ally as temperature increases and effectively disappears above
T ∼ 0.49, in good agreement with recent experiments [17].
In Fig. 2(b), we show |CS (d)| vs. T at three fixed distances
d = 1,

√
2, 2, where XTRG and DQMC curves agree rather

well in the whole temperature range. Fig. 2(c) shows the
finite-size spontaneous magnetization ms ≡

√
S (π, π) vs. T ,

where S (q) = 1
N(N−1)

∑′
i, j
〈Ŝ i·Ŝ j〉

S (S +1) e
−iq·(i− j) is the spin structure

factor, with the summation Σ′ excludes on-site correlations
(following the convention from experiments [17]). For all
sizes considered, ms grows quickly as T is decreased from
1 to 0.1. Notably, for both spin correlations and spontaneous
magnetization, the L = 8 XTRG data shows good qualitative
agreement with the experimental measurements. This may be
ascribed to the similar system sizes and boundary conditions
[17].

Staggered magnetization upon hole doping.— By tuning the
chemical potential µ < U/2, we dope holes into the system
and study how they affect the magnetic properties. Fig. 3(a)
shows the spin correlation patterns for different dopings δ at
low T . The AF order clearly seen at low doping, becomes in-
creasingly short ranged as δ increases, effectively reduced to
nearest-neighbor (NN) only for δ & 0.15. The fall-off of AF
order upon doping can also be observed in |CS (d)| with a fixed
distance d. In Fig. 3(b), we show the d = 1 NN spin correla-
tions, where the XTRG and DQMC agree well, whenever the
latter is available (for L = 6 lattice at T = 0.24 and T = 0.49).
Remarkably, our L = 8 XTRG data again show excellent
agreement with the experiments, while the sign problem hin-
ders DQMC from reaching such system size at T = 0.24 [71].

Fig. 3(c) shows the staggered magnetization ms vs. δ.
Again a rapid drop of the finite-size AF order at approxi-
mately δ ∈ [0.1, 0.25] can be seen. Based on the agree-
ments between the XTRG (L = 8) and experimental results
[Fig. 3(b,c)], we find the effective temperature of ultracold
fermions in the doped case is also around T/t = 0.24, con-
sistent with the experiments [17]. In our calculations we tune
the doping δ by scanning the chemical potentials µ. In the in-
set of Fig. 3(c), we show the doping δ vs. T for a fixed µ = 1.5
(again the XTRG and DQMC results agree for T & 0.24 with
a tolerable sign problem [71] for DQMC). The behavior of δ
is non-monotonic: it first increases as T is lowered [having
δ(T = ∞) = 0], and then slowly decreases due to hole repul-
sion [71].

Two-point spin correlations upon hole doping.— In Fig. 4,
we analyze spin correlations between the diagonal (d=

√
2)

and next-nearest-neighbor (d=2, NNN) sites. We compare
them to recent measurements where the diagonal correlation
CS (
√

2) undergoes a sign reversal around δ ' 0.2 [20]. Our
computations reproduce this fact [Fig. 4(a)], and the L = 8
XTRG results computed at T = 0.24 accurately reproduce
the experimental measurements. For the NNN correlations
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FIG. 4. Diagonal and NNN CS (d) correlations versus δ for L × L
system with U = 7.2 and L = 6, 8 for (a) d =

√
2 and (b) d = 2. The

inset to (b) zooms in on small CS (d) values. The sign-reversal of Cd

is in good agreement with experimental data [20].

(d = 2) [Fig. 4(b)], we find that an analogous sign rever-
sal, hardly discernible in experiments, takes place around
δ ' 0.25.

The sign reversal can be explained within the geometric
string theory [57]. It signals the formation of a magnetic po-
laron in the system. As shown in Fig. 1(c), the hole motion
through the system generates a string of misaligned spins. The
strong NN AF spin correlations are thus mixed with the di-
agonal and even further correlations, e.g., CS (2), resulting in
even ferromagnetic clusters [red and blue shaded regions in
Fig. 1(c)]. Due to the interplay between the charge impurity
and magnetic background, the moving hole distorts the nearby
AF background [see the gray “cloud” in Fig. 1(b)], giving
rise to the magnetic polaron. Such exotic quasi-particles have
been imaged experimentally [22] for a doublon in the particle-
doped Fermi-Hubbard model, and investigated numerically in
the context of t-J model [58].

Hole-doublon bunching and hole-hole antibunching.—
Quantum gas microscope can also access parity-projected
antimoment correlation functions defined in the charge
sector, ḡ2(d) ≡ 1

Nd

∑
|i− j|=d

〈α̂i α̂ j〉

〈α̂i〉〈α̂ j〉
[13] and g̃2(d) ≡

1
Nd

∑
|i− j|=d[ 1

δ2 (〈α̂iα̂ j〉−〈α̂i〉〈α̂ j〉)+1] [20], with the antimoment
projector α̂i ≡ ĥi + d̂i [59]. Fig. 5(a,b) shows the computed
antimoment correlation results. Antimoments are bunching
(ḡ2 > 1) at low doping, yet become antibunching (ḡ2 < 1)
at large doping, in quantitative agreement with an earlier 40K
experiment [13] and a more recent 6Li gas measurement [20].
The antibunching at large doping is attributed to hole repul-
sion, and the bunching at low-doping to hole-doublon pairs
[13].

Now antimoments contain contributions from both, holes
and doublons, yet their individual contributions cannot be
distinguished via parity projection measurements [13, 20].
XTRG, however, readily yields detailed correlators gll′

2 (d) ≡
1

Nd

∑
|i−j|=d

〈l̂i l̂′j〉

〈l̂i〉〈l̂′j〉
, with l ∈ {h, d} and l̂i ∈ {ĥi, d̂i} for hole or

double-occupancy projectors, respectively. Later we also use
l = n for l̂ j = n̂ j the local density.

Our results for the correlations ghh
2 (d) and ghd

2 (d) vs. δ are
shown in Fig. 5(c,d). We always find anticorrelation amongst

bunching

antibunching

FIG. 5. Various g2 correlators for a 8 × 8 system with U = 7.2.
The antimoment correlators (a) ḡ2(d = 1) and (b) g̃2(d = 2) are
shown versus δ. Experimental data with d = 1, T/t ' 1.0 [13] and
d = 2, T/t ' 0.25 [20] are included for comparison. (c, d) The two-
site hole-doublon (ghd

2 ), hole-hole (ghh
2 ), and full-density (gnn

2 ) corre-
lations, for (c) d = 1 and (d) d = 2. The d = 1 hole-doublon correla-
tions ghd

2 is compared with experiment in (c), with a nice agreement
despite a separate U/t ' 11.8 in experiment [25].

holes (ghh
2 < 1) while strong bunching between hole and dou-

blon (ghd
2 > 1). As shown in Fig. 5(c), the computed ghd

2 data
show qualitative agreement with very recent experimental
measurements using the full-density-resolved bilayer readout
technique [25, 60]. The change from bunching to antibunch-
ing behaviors in antimoment correlations in Fig. 5(a,b) can be
ascribed to the fact that the hole-doublon attraction is advan-
tageous over the hole-hole repulsion at low doping while the
latter dominates at relatively large doping [71]. When com-
paring the charge correlations at d = 1 and 2 in Fig. 5(c,d), we
find that the hole-doublon bunching effect in ḡ2(1) is particu-
larly strong at δ � 1, where the holes mostly stem from NN
hole-doublon pairs [see illustration in Fig. 1(b)]. The further-
ranged ghd

2 (2) still shows the bunching effect, yet gets much
reduced.

The full density correlation gnn
2 (d) is shown in Fig. 5(c,

d). We observe gnn
2 (d) ≈ 1 at low doping for both d = 1, 2,

i.e., weak non-local charge correlations near half-filling, and
a more pronounced anti-correlation gnn

2 (d) < 1 as δ increases.
Based on our XTRG results, we further reveal that the longer-
ranged gnn

2 (2) also exhibits anticorrelations upon doping, sug-
gesting the statistical Pauli holes may be rather nonlocal,
though decaying rapidly spatially.

Conclusion and outlook.— In this work, we generalized
XTRG [35, 36] to the 2D FHM. Employing XTRG and
DQMC, we obtained reliable results both for half-filling and
doped cases and found consistency with the ultracold atom
experiments. XTRG can explore a broader parameter space,
especially in the doped case, than DQMC, which is lim-
ited by a minus-sign problem. XTRG+DQMC constitutes
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a state-of-the-art complimentary numerical setup for prob-
ing the phase diagram of FHM, for SU(2) fermions here and
generally SU(N) fermions [61], thanks to the implementa-
tion of non-Abelian symmetries [51]. Fundamental questions,
such as the explanation of the Fermi arcs and the pseudo-
gap phase [62, 63], with their implications for the break-
ing of Luttinger’s theorem [64–67], or the role of topologi-
cal order [68–70] are open interesting topics to be studied by
XTRG+DQMC and optical lattices.
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[53] I. P. McCulloch and M. Gulácsi, “The non-Abelian density ma-
trix renormalization group algorithm,” EPL 57, 852 (2002).

[54] M. A. Werner, C. P. Moca, Örs Legeza, M. Kormos, and
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