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Recent work has demonstrated a new route to discrete time crystal physics in quantum spin chains
by periodically driving nearest-neighbor exchange interactions in gate-defined quantum dot arrays
[arXiv:2006.10913]. Here, we present a detailed analysis of exchange-driven Floquet physics in small
arrays of GaAs quantum dots, including phase diagrams and additional diagnostics. We also show
that emergent time-crystalline behavior can benefit the protection and manipulation of multi-spin
states. For typical levels of nuclear spin noise in GaAs, the combination of driving and interactions
increases the coherence times of entangled states by orders of magnitude. Similar results can be
obtained for other quantum dot systems such as in Si. We further show how to construct a time-
crystal-inspired €z gate between singlet-triplet qubits with high fidelity. These results show that
periodically driving exchange couplings can enhance the performance of quantum dot spin systems

for quantum information applications.

I. INTRODUCTION

Rapid theoretical and experimental development of
quantum computers has led to a productive crossover of
ideas between the fields of many-body condensed matter
physics and of quantum information and computation!:2.
On the one hand, a principal application of quantum
devices is the simulation of quantum many-body sys-
tems that are not amenable to classical computational
methods®®. However, the relationship is not merely one-
way: concepts from many-body physics can also be useful
in designing new quantum devices with improved infor-
mation processing capabilities. This direction is exempli-
fied by recent work on many-body localization, time crys-
tals, and fractons®!!. These concepts, along with others
from many-body physics, have been variously proposed
for robust storage of quantum information!'13.

Studies of discrete time crystals (DTCs) in spin sys-
tems have largely employed single-spin rotations as
the driving terms that are needed to realize the DTC
phase® 71415 SQuch driving can be achieved in quantum
dots (QDs), for instance, by electric dipole spin reso-
nance (EDSR) via an embedded micromagnet!6-19. But
gate-defined QDs also afford exquisite control over spin
interactions, whether by detuning or symmetric barrier
gates?022, This motivates the exploration of novel driv-
ing protocols in which the spin interactions are periodi-
cally modulated. Driving the interactions also allows one
to implement important operations, such as a SWAP be-
tween the states of neighboring QD spins, which is useful
for measuring states in the middle of an array by shut-
tling the desired state to the edge for readout. A re-
cent paper has developed a swAp DTC driving protocol
in which exchange driving of spin pairs by SWAP opera-
tions, followed by periods of weak interaction, produces
time-crystal-like signatures in a four spin QD array?®.

In this paper, we explore the preservation and ma-
nipulation of entanglement in QD spin chains via the

swap DTC protocol. We show that arbitrary states in
the S, = 0 subspace of two neighboring spins can be
preserved for long times, with marked improvement over
the undriven interacting system. In fact, we find that the
coherence times of entangled states can be extended by
orders of magnitude in this way. This result, obtained for
finite chains, is reminiscent of DTC physics in the ther-
modynamic limit, due to the crucial role played by inter-
actions in stabilizing the state. It also suggests the appli-
cation of the swap DTC protocol as a form of dynamic
quantum memory, protecting the state of the two entan-
gled spins. One may further consider such pairs of neigh-
boring spins as forming singlet-triplet (ST) qubits?%:24.
For this case, we design a universal gate set, which in-
cludes a high-fidelity ¢z gate through the modification of
the swAaP DTC protocol. Taken together, these results
show that DTC-based physics offers a promising route
for developing quantum information processing systems
in solid-state spin arrays.

The paper is structured as follows. Section II intro-
duces the model and the driving protocol for the SwAP
DTC. Section III presents phase diagrams that demon-
strate the robustness of the DTC phase to the presence
of driving errors, a key requirement for the swap DTC
to constitute a genuine phase of matter and to be of
practical use. In Section IV, we investigate the time de-
pendence of the return probability and uncover the exis-
tence of 4T periodic oscillations for initial entangled spin
states, in contrast with the usual 27T time translation
symmetry breaking found in earlier studies. Section V
compares the return probabilities for different driving
protocols and for the undriven Heisenberg spin chain,
illustrating the importance of driving for preserving en-
tangled states of the two spins in an ST qubit. Section VI
demonstrates the single-qubit gate allowing for coherent
switching of the preserved state. Section VII describes
the ¢z gate inspired by the swAap DTC protocol and
presents numerical calculations of its fidelity. Finally,
the results are summarized in Section VIII.



II. MODEL OF A SWAP TIME CRYSTAL

We consider a one-dimensional chain of spin-1/2 de-
grees of freedom consisting of L = 2N, sites. The Hamil-
tonian for this system is given by

Jij 1 2
H= <; “Lotoy + Z 5(Bo+0Bi)ai, (1)
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where o = {z,y, 2z} and (ij) indicates nearest-neighbors.
Ji; is the exchange interaction, By is an externally
applied uniform magnetic field, and §B; is a random
Gaussian-distributed contribution to the total field with
variance op due to nuclear spin noise (as in GaAs, for
instance).

Although the principles we discuss apply to generic
spin-1/2 Heisenberg chains, we find it helpful to think
of the system as an array of coupled ST qubits?*. An
ST qubit consists of a pair of electron spins on neighbor-
ing QDs subject to a large magnetic field that separates
out the polarized states, |T4) = |11) and |T_) = |]J),
leaving behind the computational subspace {|S), |Tp)} of
the singlet (1S) = (|1) — [41))/v/2)) and S, = 0 triplet
(1To) = (1) + [11))/v/2)) states. The resulting two-level
system admits a Bloch sphere representation, as shown
in Fig. 1, where the basis {|1}),]J1)} is chosen for the 2
direction. ST qubits are actively being studied as an en-
coding for qubits that are naturally insensitive to uniform
magnetic field fluctuations??:2°31, They can be coupled
both capacitively?® and through highly tunable control
of nearest-neighbor exchange interactions3?33. In the fol-
lowing, Ny is the number of ST qubits in the chain, which
are comprised of pairs of neighboring sites (2¢ — 1, 2q),
with ¢ = 1,2, ... (Fig. 1).
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FIG. 1. Schematic of an L. = 4 Heisenberg spin chain with
variable exchange interactions Ji2, J23, and Jss. One can
think of this system as a pair of coupled ST qubits (with
leakage), as indicated by the purple ovals. Jiz and Jss4 are
used to execute SWAP operations on the spins defining these
qubits, while J23 yields an interaction between them. The ST
qubit Bloch sphere is also shown.

Discrete time crystals are a nonequilibrium phase of
matter characterized by spontaneous breaking of the time
translation symmetry of a system from the T periodicity
of the drive down to nT, for integer n > 1. To eliminate
trivial cases, such as a single spin undergoing periodic
7 rotations (e.g., spin echo sequences), it is further re-
quired that many-body interactions play a role in stabi-
lizing the phase against perturbations, such as errors in
the driving®'%. As a phase of matter, the time crystal
is strictly defined in the thermodynamic limit. Though
our numerical calculations are performed for finite-sized
systems, the behavior of the system with respect to inter-
actions and perturbations suggests that our results hold
beyond the sizes accessible by exact diagonalization.

Time crystalline phases were previously discovered in
driven Heisenberg chains by applying tailored “H2I”
pulse sequences or magnetic field gradients that convert
the Heisenberg interactions into effective Ising ones343°.
In both approaches, the periodic driving consisted of
single-particle terms that rotate the spins by m, whether
by idealized d-function pulses or realistic EDSR meth-
ods. Notably, it was found to be necessary to apply H2I
pulses or field gradients in order to stabilize a DTC for
the levels of magnetic field noise present in experiment
(e.g. 18 MHz in GaAs, such that T35 ~ 10 ns).

Here, we consider a driving protocol based on vary-
ing the exchange interactions in a QD array, instead of
single-spin manipulations. This approach has several ad-
vantages. For one, it can be performed in systems that
lack the micromagnet needed for EDSR. More impor-
tantly, the timescales for modifying the nearest-neighbor
exchange are very fast (a few nanoseconds), whereas
EDSR is slower for the weak to moderate field gradients
typically used in experiment'®. The fundamental idea
of our approach is to drive the system periodically by
fast SWAP operations within each ST qubit, followed by
long evolution times during which neighboring ST qubits
interact?. Both of these operations are implemented by
the same underlying physical mechanism, namely, the
nearest-neighbor exchange coupling between QD spins.
More specifically, we consider the following unitary evo-
lution over one drive period:

U= USWAP(TS)Uevo(Te)~ (2)

The two parts of this protocol are piecewise constant,
with the SWAP piece given by Uswap(Ts) = e HsTs,
where

J o2 L q
S (e} (0% z
HS = Z(l—e) Z 0'22-710'27;4-25(30—}-531‘)01-

i=1,0 i=1
(3)

is applied for time Tg such that JsTs = m, thus inter-
changing the spin states of sites 2i—1 and 2i. € introduces
a fractional error in the SWAP pulse, corresponding to an
underrotation for € > 0. For the L = 4 chain, the Swap
interactions are illustrated by the light blue dashed lines



in Fig. 1, SU.Ch' that Jio = J34 = Jg. The evolution piece
Uecvo(T.) = e~ #eTe is generated by the Hamiltonian

J L/2—-1 L 1
He = Ze izzla 0'(211‘0'(211‘+1 + ; i(BO + 6B2)0'f (4)

These interactions are indicated by the light green dashed
line in Fig. 1, with Jo3 = J.. In the following sections,
we explore the consequences of this driving protocol for
the stabilization of quantum information. Unless other-
wise stated, we assume an L = 4 chain in our numeri-
cal calculations. The calculations were performed using
the QuSpin Python package for exact diagonalization of

quantum many-body systems>C.

IIT. PHASE DIAGRAMS

One of the defining features of a time crystal is its
stability to perturbations due to the presence of non-
zero interactions in the system. Earlier work on both
Ising model and Heisenberg model DTCs has shown that
sufficiently weak driving pulse errors (i.e. over- or under-
rotation of the spins relative to 7 radians) do not destroy
the phase. Here we examine the corresponding errors
in performing an incomplete SWAP operation. Fig. 2(a)
shows the subsystem return probability for qubit 1 (sites
1 and 2) of an L = 4 spin chain, after four periods of
the protocol (np = 4). The system is initialized in the
product state in which each ST qubit is in its individual
non-interacting ground state, the latter being determined
by the local magnetic field gradient across the double QD.
Thus, the initial state chosen varies over the field noise
disorder realizations. This scenario is naturally realized
in experiments with gate-defined QD arrays. In our cal-
culations, we fix the evolution time to T, = 1.4 us, and we
vary the interaction strength J. and the fractional error
in performing a SWAP, i.e. an error of ¢ = 0.5 corresponds
to a v/SWAP, while for ¢ = 1 no operation is performed at
all. We find that typical levels of charge noise, incorpo-
rated as random shifts in the nearest-neighbor exchange
interactions by about 1% of their nominal values®?, have
little effect on the results, so we safely neglect this here.
The wedge-shaped regions of high return probability for
small € and increasing J, illustrate that interactions are
crucial for preserving the quantum state of qubit 1 in the
presence of driving errors. We note that not driving the
system at all (e = 1) is also very effective for preserving
the state of qubit 1 (though of course in this case there
is no time translation symmetry breaking). We examine
this further in Section V. However, we note here that the
benefits for preserving entangled spin states, discussed
below, indicate that driving should always be applied if
one wishes to preserve an unknown quantum state.

In contrast, Fig. 2(b) reveals that when qubit 1 is ini-
tialized in a singlet state, SWAP driving is required to pro-
duce a high return probability after four periods of evolu-
tion. Here, the initial state of qubit 2 is still the product
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FIG. 2. (a) Phase diagram of the return probability for an
initial |1J) state on qubit 1 as a function of inter-qubit cou-
pling J. and pulse error e. (b) Phase diagram of the return
probability for an initial singlet state of qubit 1. Parameters
are L = 4, Bp = 3075 MHz, op = 18 MHz, Tc = 1.4 us,
Ts =2 ns, Jg = w/Ts, np=4. Here we have chosen param-
eters similar to those of Ref.?3. The initial state of qubit 2
is the product state that minimizes the field gradient energy
for a given disorder realization. Results are averaged over 192
disorder realizations.

state determined by the local field gradient. While J, = 0
yields a high singlet return probability for a perfect SWAP,
the presence of finite interactions does increase the value
of the return probability, as seen in Fig. 3. The singlet
return probability peaks when J.T, = mn (for J. mea-
sured in rad/us). In weak magnetic field gradients, these
values correspond to performing n SWAP operations on
sites belonging to different neighboring qubits (e.g. sites
2 and 3 in the L = 4 chain). An even n yields a net
trivial operation (for perfect swaps), while odd n causes
the initial singlet on sites 1 and 2, Si2, to be transferred
to sites 1 and 3 during the evolution piece of the proto-
col, which is then undone after three additional periods
in the L = 4 case. The low values of Si5 in between the
peaks can be understood as arising from the monogamy
of entanglement, since an incomplete SWAP leads to site 1



remaining partially entangled with the rest of the chain
after four periods, and thus less entangled with site 2.
When the initial state is the product state |1])| 1]}, the
SWAP on 2 and 3 produces a spin echo-like effect that
accounts for the maxima when n is odd.
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FIG. 3. Return probability for qubit 1 as a function of J.T.,
for the initial states |1]) (blue line) and the singlet (orange
line). Parameters are L = 4, By = 3075 MHz, o = 18 MHz,
Js = 250 MHz, T. = 1.4 us, Ts = 2 ns, nr=4, ¢ = 0. The
initial state of qubit 2 is |1J). Results are averaged over 960
disorder realizations.

IV. RETURN PROBABILITY DYNAMICS

The dynamics are also different depending on whether
the initial state is a product or singlet state. Fig. 4 il-
lustrates the 27T periodicity of the return probability for
qubit 1 when the system is initialized in |1])| 1)) and
JeT. = m. The results agree with those for a chain
driven by single-spin 7 rotations, as the Ugwap op-
eration has the same effect on the given initial state:
[THT) = I ). Note, however, that this trans-
formation is only approximate in the presence of finite
magnetic field gradients, though the error vanishes in the
limit Jg > AB.

On the other hand, the L = 4 chain shows a 47T pe-
riodicity for the singlet return probability of qubit 1.
This is in striking contrast with previous work on dis-
crete time crystals, which generally found a 27 periodic-
ity for spin-1/2 degrees of freedom®7-141% although sys-
tems with long-range interactions have been seen to yield
other values®”. In fact, for op < J. we find that an L
site chain has a singlet return probability with LT pe-
riodicity. This can be easily understood as arising from
successive applications of SWAPs, coming from both the
explicit driving part of the protocol and the evolution
part tuned to J.T. = w. For instance, when L = 6 we
have the following steps that transfer the singlet state
down the chain, where it is “reflected” off the right edge
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FIG. 4. Time dependence of the return probabilities for qubit
1, given an initial state of |1) for qubit 2. The blue line
shows the return probability for [1]), given the initial product
state |T4)|1)). The orange shows the return probability for
the singlet state |S), given the initial product state |S)|1])
(orange line). Parameters are L = 4, By = 3075 MHz, o =
18 MHz, T. = 1.4 us, Jo = 7/Te, Ts = 2 ns, Jg = ©/Ts,
€ = 0. Results are averaged over 6000 disorder realizations.

and returns back to its initial position:

SWAP evo SWAP evo
S19g — S12 — S13 — Sog — S35

SWAP evo SWAP evo
E— 546 — 556 E— 556 — 546

SWAP evo SWAP evo
—_— 535 — 524 —_— 513 — 512 (5)

However, the experimentally relevant interaction
strength needed to perform a single SWAP over 1.4 us
is ~ 350 kHz, which is much smaller than the magnetic
field noise ~ 18 MHz in GaAs QDs. For realistic lev-
els of field noise, the singlet return probability displays a
4T periodicity regardless of chain length. Moreover, we
find that when the disorder starts at small values and
increases toward 18 MHz, the transition between 671" and
4T periodicity is smooth, with the return probability at
6T gradually decreasing while that at 47 increases (as
opposed to a shift in the peak from 67" to 47 through
intermediate values).

The 4T periodicity observed at sufficiently strong dis-
order can be explained as follows. First, note that each
part of the protocol involves interactions only between
disjoint pairs of spins. Thus, we may consider the Hamil-
tonian, Eq. (1), restricted to two sites a and b,

J 1
Hap = 7 (0404 + 0oy +0507) + 5(Baog + Byoy),
(6)
where B, 3 is the total field at site a, b. In general, the two

spins coupled in a given part of the protocol can have par-
allel or antiparallel orientations. Within the {|1l), 1)}



subspace the evolution operator U = e~ #Hab ig
U, = /2 cos(%t) + % sin(ta/2) —% sin(%t)
—% sin(%t) cos(§) — ’—sin(%t) ’

with a = vJ2 + A2 and A = B, — B, the field gradi-
ent across the pair. We have multiplied U (and hence
Ui1) by a global phase, /¥4, to simplify the following
analysis. The SWAP part of the protocol is performed in

2 ns, so that Jg > A and we may neglect errors in the

transition | 1)) SwAP, [{1). For the evolution part of the

protocol we use perturbation theory in (J./A) to obtain
the approximate evolution

i 62’At/2 0
Uf = ¢'et? ( 0 e-idt2 ) (8)

On the other hand, the evolution in the {|11),|{l)} sub-
space is given by

e—iBmtt/Q 0
Uz = < 0 etBtott/2 | (9)

where B,y = B,+ Bp. Now starting from the initial state
[o) = (|14 = |[41))| 1)) (suppressing the normalization
of the state) and successively applying the evolutions in
Eq. (8) and Eq. (9) (between spins 2 and 3) and SWAPs
(on the spins within the pairs (1,2) and (3,4)), we find

[tho) = ln) = ie AT/ Lp1) — e BT 2 1)

(10)
after the first period, where we used that e?/eTe/2 = g,
and we ignored accumulated phases coming from spins
other than the first three. The second period of the pro-
tocol yields

1) = [¥2) = =(IT4) + L)), (11)

so that the first qubit is in the state |Tp). Two further
periods then recover the initial state on sites 1 and 2,
explaining the 47T periodicity of the singlet return prob-
ability.

To provide further support for this simple physical pic-
ture, we consider two extensions of the idea. We note the
4T periodicity fundamentally arises from the phase fac-
tor e*/<*/2 in Eq. (8) becoming trivial after four periods,
when J.T, = 7 (here J is given in radians and i = 1).
Thus, one should obtain a different periodicity when J. T,
is chosen such that the relative phase winding occurs at
another rate. That this is indeed the case is shown in
Fig. 5, where J.T. = 27/3 and the resulting periodicity
of the singlet return probability maxima is 67. Alter-
natively, one may consider initializing the second qubit
in the state |[11) (with the first qubit still initialized in
|S)). A similar argument as above shows that the first
qubit returns to the singlet state after 27, in agreement
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FIG. 5. Singlet return probability for the cases in which the
total phase accumulation of the evolution part of the protocol
is JeTe = 27/3 (blue line) and in which the initial state is
[S) 1)) (orange line). In the first case, the initial state is
the singlet state for qubit 1 and the product states minimizing
the field gradient energies for the other qubits. In the second
case, J.T. = mw. Other parameters are L = 6, By = 3075
MHz, op = 18 MHz, T. = 1.4 us, Ts = 2 ns, Js = 7/Ts,
€ = 0. Results are averaged over 6000 disorder realizations.

with the orange curve in Fig. 5. In longer chains, a sin-
glet state prepared in the bulk experiences 47 periodic-
ity of the return probability at an interaction strength
J.T, = 7/2, half the value for a ST qubit on the edge.
This is essentially due to the increased number of neigh-
bors, and mirrors the case of the single spin return prob-
ability, for which the phase diagram of a bulk spin has
half the period compared to that for an edge spin°. Since
an arbitrary state on the singlet-triplet Bloch sphere is
a superposition of |S) and |Tp), any initial state will be
restored stroboscopically after four periods, and so if the
qubits are to be measured this should be timed with the
4T periodicity of the return probability, rather than the
T periodicity of the drive.

V. COMPARISON WITH THE UNDRIVEN
SYSTEM

As noted in Section III, the product state | ) on qubit
1 is well-preserved even in the absence of SWAP driving.
In Fig. 6(a) we study the return probability as a func-
tion of time, for several different driving protocols. Two
different undriven cases are presented. In the first, the
Heisenberg interactions are equal throughout the chain
and set to the same value as used for the SwWAP driv-
ing evolution: Jyo = Jag = J3qu = 7w/T.. However,
since the SWAP DTC evolution piece only involves inter-
qubit J., the second undriven case mirrors this by setting
Jog = /T, and Ji2 = J34 = 0. In either case, while the
undriven and SWAP-driven cases perform similarly up to



ten periods, in the long-time limit the undriven cases
are clearly superior. The saturation value of the return
probability for the undriven cases tends to grow with in-
creasing field noise strength®. We note, however, that it
does not ultimately approach 1 in the large noise limit.
This is due to the fact that disorder averaging mixes in
unfavorable field configurations, which limits the overall
return probability. On the other hand, applying a uni-
form linear field gradient (not shown) does tend to in-
crease the return probability towards 1, as the gradient
strength increases.

We also compare the SWAP protocol to more traditional
single-spin driving. Thus, we consider an idealized in-
stantaneous 7 rotation of all the spins (i.e. a delta-pulse
in time):

Vs(t) = gZ(s(tfsT)Zaf. (12)

— j=1

In this case, all nearest-neighbor exchange interactions
are turned on, as in the first undriven case. The period
of the delta-pulses is adjusted to coincide with the total
period of swAP driving cases, Ty = T, + Ts. Fig. 6(a)
shows that for an initial product state, the SWAP driving
is preferable to the single-spin rotations of the delta-pulse
case for experimentally relevant levels of magnetic field
noise.

Turning to the case where qubit 1 is initially in an
entangled state, it is apparent from Fig. 6(b) that an
initial singlet state is not at all preserved for the undriven
protocols, whereas the SWAP case leads to a high return
probability every four periods, in accordance with the
results above. In the given parameter regime, we again
see that delta-pulse single-spin rotations are inferior to
SWAP pulses for preserving the initial state.

Our results indicate that conventional dynamical de-
coupling schemes, which are not robust against control
errors, are not as useful as the swap DTC approach.
Moreover, our approach is not much more complicated
than dynamical decoupling since it merely involves peri-
odic modulations of J., which is easily controlled in ex-
periments. Furthermore, a significant benefit to the co-
herence times is obtained with only the modest overhead
of adding a few additional spins to the system. This can
be compared to previous efforts to encode qubits in mul-
tiple spins to reduce susceptibility to noise and speed up
control times (e.g. three-spin exchange-only qubits®?:49
and hybrid qubits*!). Our control scheme is no more
complicated than those needed to operate these alter-
native types of qubits, yet our approach has the added
benefit of robustness against both noise and driving im-
perfections.

We have seen that the product states | 1) and |} 1) sur-
vive longer in the absence of SWAP driving, whereas |S)
and |Tp) are preserved better when the system is driven.
This suggests that if we consider “unbalanced” superpo-
sitions cos(0/2)| 1)) — sin(6/2)|1) where 0 < § < 7/2,
there should exist some value 6, such that for 6 > 4,,
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FIG. 6. (a) Comparison between the undriven system and
driving protocols, for an initial product state that minimizes
the field gradient energy of qubit 1. (b) Comparison between
the undriven system and driving protocols, for an initial sin-
glet state of qubit 1. Other parameters are L = 4, By = 3075
MHz, op = 18 MHz, T, = 1.4 us, Jo = w/T.. For the swap
driving case T's = 2 ns, Js = m/Ts, and for both driven cases
€ = 0. The initial state of qubit 2 is the one minimizing the
field gradient energy. Results are plotted stroboscopically for
every 2T and averaged over 6000 disorder realizations.

driving is beneficial for state preservation. The value of
0. in fact depends on how long one wishes to preserve the
state, as is shown in Fig. 7. The undriven system return
probabilities depend strongly on 6, but are essentially
time-independent after an initial decay. Here we have
considered the first type of undriven system, in which all
nearest-neighbor exchange interactions are nonzero and
equal. In contrast, SWAP driving leads to a steady de-
cay of the return probability as the number of driving
periods is increased; this decay is relatively insensitive to
6. The intersection of the return probability curves for
the undriven and swaP-driven cases yields the time be-
low which SwWAP driving enhances the attainable return
probability for a given initial state parameterized by 6.
Conversely, we may fix the time scale at a desired value
and then read off the value of 6, by adjusting 6 until the
undriven return probability curve intersects the SwAP-
driving curve at that time. Similar results are obtained
for states with complex coefficients (not shown). Aver-
aging over 88 states approximately distributed equally
across the Bloch sphere, the undriven system yields a
return probability of 0.65 after 40 periods, compared to
0.90 for the sSWAP driven case—a nearly 40% improve-
ment.

These results indicate that a generic state is much bet-



ter preserved by driving the system with the swap DTC
protocol. Since the goal of any preservation method is to
ultimately protect arbitrary, unknown quantum states,
one must apply the driving indiscriminately, even for
near-product states that will be harmed by doing so.
However, the reduction in return probability for the latter
states is vastly outweighed by the benefit to preserving
entangled ones.

The long-term decay of the return probability can oc-
cur for two different reasons: the state may evolve to a
different one within the S, T, subspace, or alternatively
it may leak out of the computational subspace and into
the Tp (|11)) and T- (]JJ)) triplet states. To assess
the relative importance of these contributions, we cal-
culated the time-dependent leakage for the driven and
undriven systems, as shown in Fig. 8. For single-spin
delta pulse driving, the leakage to the {7y, T_} subspace
grows linearly in time. On the other hand, the swaAp
DTC protocol leads to a strong suppression of the leak-
age, almost to the levels obtained when J, = 0. Taken
together with the results of Fig. 6, this shows that the
errors in the sSwap DTC method are largely due to tran-
sitions within the S, Tj subspace (i.e. the computational
subspace of the ST qubits), as opposed to leakage outside
of it. Note that this behavior is consistent with earlier ex-
amples of DTCs based on delta-function pulses (see e.g.,
Ref. 7), where it was found that the interactions in the
DTC phase act to restore the noise-canceling properties
of the pulses despite pulse errors.

While the preceding analysis considered the simple set-
ting of static magnetic field noise, in actual experiments
both magnetic field and charge noise are time-dependent.
We examine these effects in the Appendix, and find that
the swap DTC protocol still affords an advantage for the
preservation of entangled states.

VI. SWITCHING PRESERVED STATES

In the course of an information processing task, it is
necessary to be able to change what state is stored in
the memory. In Fig. 9(a) we show that an initial |S)
state, preserved for 20 periods, can be switched to the
|To), and subsequently preserved to a similar degree. The
switching operation is performed simply by inserting an
additional two periods with J. = 0, halfway through the
experimental run.

More generally, one can switch from |S) to an arbitrary
state of the form |1]) + €'¥|[1) by adjusting the value
of J. during the two extra periods, such that J.7T, = a.
Fig. 9(b) shows that the return probability for the new
state after ~ 40 total periods of evolution remains large,
regardless of the choice of a.

Undriven, # =0
1.00 - SWAP driving, = 0
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0.98 Undriven, § = /8 b
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FIG. 7. Comparison between the undriven (first case; all
nearest neighbor interactions on) (solid lines) and SWAP-
driven (dashed lines) systems when qubit 1 is initialized
in cos(6/2)| 1)) — sin(8/2)|11). Results are shown for § =
0,7/16,7/8. Results are plotted stroboscopically every 47
Other parameters are L = 4, By = 3075 MHz, o = 18 MHz,
T. = 14 us, Jo = w/Te. For the driven case, Ts = 2 ns,
Js = m/Ts, e = 0. The initial state of qubit 2 is |[1]). Results
are averaged over 6000 disorder realizations.

VII. IMPLEMENTING TWO-QUBIT GATES

While the preservation of quantum states is an impor-
tant task for quantum computing, it is also necessary
to manipulate states and execute various logical gates.
Here we explore the possibility of using the SWAP driv-
ing protocol to realize two-qubit gates in a chain of ST
qubits. We first note that when qubit 1 is initialized
in a singlet state, the return probability oscillates with
period 4T (2T) if qubit 2 is in state |1}) (|11)). This
implies that the evolution after two periods is equiva-
lent (up to single-qubit rotations) to a CNOT gate, where
qubit 1 is the target, and qubit 2 is the control, since
qubit 1 flips from |S) to |Tp) depending on whether the
spins in qubit 2 are parallel or antiparallel. However,
this approach suffers from the disadvantage that parallel
spin states are not part of the computational subspace of
ST qubits. Conditional control of individual spins using
ESR or EDSR would alleviate this issue by allowing one
to temporarily map [}1) — |]|) to execute the cNOT,
before restoring the |]1) state of the control bit.

Another approach is based on the effective Ising Hamil-
tonian between exchange-coupled ST qubits in a linear
array*?. An Ising interaction of the appropriate duration
can be converted to a €z gate by applying additional
single-qubit rotations*3:

o7 = e—iﬂ'/4€iﬂ'af/4ei7ra§/4€—im7fa§/4 (13)
This suggests viewing the protocol for the SWAP time

crystal not only as a means of state preservation, but also
as a way to generate two-qubit gates. Indeed, whereas
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FIG. 8. Leakage to {T'+,T-} subspace for the undriven sys-
tem and driving protocols, for (a) an initial product state
that minimizes the field gradient energy of qubit 1 and (b) an
initial singlet state of qubit 1. Other parameters are L = 4,
By = 3075 MHz, op = 18 MHz, T. = 1.4 us, J. = 7/T..
For the swap driving case Ts = 2 ns, Js = 7/Ts, and for
both driven cases € = 0. The initial state of qubit 2 is the
one minimizing the field gradient energy. Results are plotted
stroboscopically for every 27" and averaged over 6000 disorder
realizations.

two periods of the protocol U of Eq. (2) yield the best
state preservation when J.T, = 7w (for product states
of a single qubit), setting J.T. = w/2 produces a CZ
gate when followed by single-qubit rotations on each ST
qubit, due to the effective Ising interaction between the
ST qubits. Later, we compare this two-period gate to
one that uses a single period of swAp DTC evolution.
We numerically study the ¢z protocol in the L = 4
spin chain, configured as two ST qubits. The accu-
racy of the proposed gate can be assessed by looking
at the probability of finding the evolved spins in the
state that would be obtained from an ideal €z gate:
Pcz = |<CZideal7i|CZactual,i>|2- Here, |CZactual7i> = UCA|¢2>
and |CZigear,;) = CZ|1);), where truncation of the state
to the logical subspace is implicit. The physically imple-
mented gate is given by

Uey = RS;?/)Q[USWAP (TS)Uevo(Te)}Qa (14)

where the exchange coupling J. in Ug,, is such that
JeTe = 71'/27 while JS in USWAP(TS) remains the value
required for a SWAP operation: JgTs = w. The operation

R(zlf/)2 implements a simultaneous rotation on each qubit

by 7/2.
The fact that U., approximates a CZ gate can be seen
by noticing that in the physically relevant parameter
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FIG. 9. (a) Return probabilities for qubit 1 for the singlet
(blue line) and triplet (orange line) states, for a system ini-
tialized in the singlet state for qubit 1 and subject to the
switching protocol half way through the total evolution. (b)
End time return probability for the state |¢) = |1])+e ™| 1)
for qubit 1, when it is initialized in the singlet state and sub-
ject to the switching protocol half way through the evolution.
Other parameters are L = 4, By = 3075 MHz, o = 18 MHz,
T. = 1.4 ps, Jo = w/T.. The initial state of qubit 2 is |1]).
Results are averaged over 6000 disorder realizations.

regime where Jg > A and J. < A, where A is the mag-
netic field gradient across neighboring QDs, the evolution
(truncated to the logical subspace) after two periods is
approximately given by

i 000

0100
[USWAP(TS)Uevo(Te)]2 ~ 0010 (15)

00014

in the basis {[0)|0), [0)[1),[1)[0),[1)[1)}, with [0) = [1{)
and [1) = |}1) forming the logical basis of the ST qubits.
This result can be obtained using the approximate ex-
pressions for each piece of the evolution given in Sec. IV.
The subsequent application of the z rotations on each ST
qubit as indicated in Eq. (14) converts the right-hand side
of Eq. (15) into a cz gate. Below, we show that the dis-
crepancy between Ug, and CZ is mostly due to additional
single-qubit gates that arise from terms of order A/Jg
and J./A. Thus, Ug, remains locally equivalent to a ¢z
gate even when these higher-order effects are included.
In Fig. 10(a) we present numerical results for the ¢z
gate probability, pc;, for 100 randomly selected initial
product states of the ST qubits: [¢);) = |1/)§1))|¢§2)>. De-
spite the single-qubit gates caused by finite A/Jg and
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Actual €z|3.5 x 107%]—4.1 x 1077 |1 + 3.9x107°
—9.0 x 10774
Ideal ¢z 0 0 1

TABLE I. Makhlin invariants for the sSwAP-DTC two-qubit
CZ gate. Parameters are the same as in Fig. 10.

Je/A, the mean probability is high: pcz = 0.991. The
use of more complicated pulse shaping techniques that ef-
fectively remove these extra local gates can be expected
to improve this result further?6:4445. Unless noted oth-
erwise, calculations are performed with fixed field gradi-
ents across each ST qubit, without any “noise” compo-
nent. Corrective pulse shaping can be designed using the
knowledge of these gradients to produce a pure Cz gate.

In our simulations, the RS;?}Q operation is implemented

by allowing each ST qubit to precess freely under its re-
spective field gradients for a time (T, —t, —2Ts)/2. Here
T, =1 ps is the total gate time, while

L {w/(2A)
"7\ 3n/(20)

it A>0

it A <O (16)
After this precession, a SWAP pulse is applied and the
qubit is allowed to precess again until T, — T’s, at which
time a final SWAP is applied. This process allows for the
rotation of the single-qubit state, along with an addi-
tional spin-echo-like part that keeps the different qubits
in sync. Below, we also consider the noisy situation in
which the true values of the gradients deviate from the
ones assumed by the experimentalist implementing the
gate.

To assess the intrinsic entangling properties of the
physical two-qubit CZ, we compute the Makhlin invari-
ants G, G2, and G3, which characterize a given two-
qubit gate up to arbitrary single-qubit rotations*¢47.
The Makhlin invariants for an ideal ¢z are G; = G2 =0
and G3 = 1. Fig. 10(b) shows the Makhlin invariants
for the physical ¢z as functions of the inter-qubit cou-
pling J.. For the optimal value J, = 7/(2T,), the values
of G123 are given in Table I. One sees that the invari-
ants of the physical gate closely approximate those of the
ideal one. This suggests that errors in the single-qubit
rotations are the main factor leading to the imperfect
¢z probabilities shown in Fig. 10(a). We also note that
(3 is necessarily real for any two-qubit gate. Thus, the
small imaginary part in the numerical calculation must
arise due to leakage out of the computational subspace.
Fig. 10(b) indicates that significant departures from the
optimal J, lead to non-negligible errors in G; and G3.
Thus, precise experimental control over the magnitude
of J. is important for realizing the desired gate. For a
value of J, that is 1% larger than optimal one, however,
G'3 remains well within 0.01% of its ideal value.

One should also consider variations in the magnetic
field gradients across the two qubits. While these can be
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FIG. 10. (a) Probability pe; = |[(CZideal|CZactuar)|® of find-
ing the spin chain in the state that would be produced by
an ideal Cz gate after the sequence in Eq. (14) is applied.
Je = w/(2T¢), with Te = 1.4 us, as indicated by the vertical
gray line in panel (b). Initial states are random product states
in the ST qubit logical subspace. The red dashed line indi-
cates the mean CZ gate probability pc; = 0.991. (b) Makhlin
invariants G1, G2, and G3, as functions of the inter-qubit
coupling J.. Other parameters are L = 4, AB; = 18 MHz,
ABy; =T7MHz, T, =14 us, Ts =2 ns, Jgs =7/Ts, Ty = 1
us.

controlled to some extent, for instance, by micromagnet
design, there are also contributions due to nuclear spin
noise. Fig. 11 shows the Makhlin invariants for the phys-
ical CZ gate as functions of the magnetic field gradients
across qubits 1 and 2, respectively (the left spins of each
qubit are assumed to have the same field value). In this
figure, the axes give the nominal field gradients that are
assumed in order to determine the pulse sequences that
execute the necessary z rotations. The actual magnetic
fields used in the calculation are modified, however, by
the addition of Gaussian random field noise with stan-
dard deviation og = 1 MHz. The difference between
the nominal and actual field values leads to errors in the
single-qubit rotations of Eq. (14). As the Makhlin invari-
ants are unaffected by single-qubit rotations, the results



are essentially the same as for cg = 0 (not shown). Nev-
ertheless, we find that large values (~ 100 MHz) of the
field gradients lead to sizable departures from the ideal
Ccz gate, due to errors in the SWAP gates induced by the
gradients. But for AB;, ABs; < 50 MHz, the Makhlin
invariants remain close to the ideal ones. Use of com-
posite pulse shaping is expected to allow for successful

operation in the larger gradient regime as well.
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FIG. 11. Makhlin invariants G1, G2, and G3 as functions of
the nominal magnetic field gradients across each qubit. The
true magnetic field for each data point is modified by the ad-
dition of Gaussian random field noise with standard deviation
op = 1 MHz. Other parameters are L = 4, J. = 7/(2Te),
T. =14 pus, np = 2, Ts = 2 ns, Jg = 7/Ts, Ty = 1 ps.
Results are averaged over 40 disorder realizations.

Unlike the Makhlin invariants, the cz gate probabili-
ties are reduced by inaccurate z rotations, and thus by
differences between the nominal and actual magnetic field
gradients in the system. Fig. 12 shows the return prob-
abilities in the presence of og = 1 MHz Gaussian field
noise when the nominal gradients are AB; = 18 MHz and
A By = 7MHz. We find that the mean return probability
is lowered from 0.991 in the noiseless case to 0.968 in the
presence of noise. This suggests that reliable knowledge
of the field gradients is crucial for obtaining accurate ST
qubit gates.

An alternative metric for the quality of the physical ¢z

gate is given by the fidelity:4%:4

f= Z—O(Tr[UCZ’pUgZ’p] + (UL, ,C2%),  (17)
where C'Z* = U,U3C ZU,U; is the generalized CZ consist-
ing of the ordinary cz preceded by arbitrary one-qubit
unitaries Uy 2 of the two qubits, and followed by the ar-
bitrary unitaries Us 4. Furthermore, Ucyz, is the DTC
part ([Uswap(Ts)Uevo(T:)]?) of the physical ¢z gate pro-
jected down to the computational subspace, and CZ* is
optimized over the parameters «;, 3;,7;,d; defining the
one-qubit unitaries U; = €'* R, (3;)Ry(7i)R-(5;). With
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FIG. 12. ¢z gate probabilities for random initial product

states of the ST qubits, for which the true magnetic field
for each data point is modified by the addition of Gaussian
random field noise with standard deviation o = 1 MHz.
The red dashed line shows the mean value pc; = 0.968. Other
parameters are L. = 4, AB; = 18 MHz, AB; = 7 MHz,
Je =7w/(2T.), Te = 1.4 ps, nr = 2, Ts = 2 ns, Js = 7/Ts,
Ty =1 ps. Results are averaged over 20 disorder realizations.

this definition, the optimized fidelity of the physical cz
gate is shown as a function of the magnetic field gradients
in Fig. 13. For gradients below 50 MHz, the optimized
fidelity reaches values in excess of 0.995, indicating that
single-qubit rotations are the limiting factor in achieving
an accurate gate in this case. While z rotations can be
performed by turning off the intra-qubit exchange cou-
pling Jg for the appropriate length of time, thereby al-
lowing the system to evolve in the “always on” field gra-
dients, perfect x rotations cannot be similarly achieved
by applying a single value of Jg for a given time, as the
axis of rotation is tilted due to the gradients. This again
highlights the need for pulse shaping methods to improve
single-qubit rotations.

Thus far we have considered a two-qubit cz gate that
requires two periods of the swap DTC driving protocol,
with a modified value of J. that maximizes the gate per-
formance instead of preserving the initial state. It is nat-
ural to ask whether a ¢z gate could also be executed using
a single period of inter-qubit evolution. That is indeed
the case, as illustrated in Fig. 14(a), which shows that for
a single evolution period such that J. T, = m, the Makhlin
invariants are close to their ideal values. Here, the evolu-
tion is not followed by the subsequent intra-qubit SWAP
pulses of the DTC protocol, as these amount to unneces-
sary additional single-qubit rotations. However, the cor-
responding CZ gate probabilities for the optimal value of
J. are very poor [Fig. 14(a)]. This is due to the fact that
the one-period protocol lacks the spin-echo behavior of
the two-period version discussed above, which cancels the
continuous z rotations of ST qubits with finite field gra-
dients. Nevertheless, one can still achieve high ¢z gate
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FIG. 13. Optimized unitary fidelity of Eq. (17) as a func-
tion of the magnetic field gradients across each qubit. Other
parameters are L = 4, J. = w/(2T¢), Te = 1.4 us, np = 2,
Ts =2ns, Js =n/Ts, Ty =1 us.

probabilities by selectively rotating each qubit through
different angles 6. 1, 6, 2, such that the total rotation for
each qubit at the end of the gate is the required R /2.
This is seen in Fig. 15, which displays the ¢z gate proba-
bility as a function of single-qubit rotation angles applied
to each qubit after the inter-qubit evolution part of the
gate. The optimal choices of rotation angles depend on
the field gradients across each qubit; in Fig. 15 the high-
est return probability attained is 0.980, comparable to
that of the two-period CZ protocol.

The advantage of the one-period protocol (apart from
the two-fold reduction in gate time) can be seen by con-
sidering the Makhlin invariants as functions of the mag-
netic field gradients [Fig. 16]. The invariants remain
within 107° of their ideal values throughout the range
considered, thus showing considerable improvement from
the two-period case at large gradients. This suggests that
optimizing over arbitrary single-qubit operations before
and after an ideal CZ gate, in the manner of Eq. (17),
should lead to very high fidelities. We confirm this ex-
pectation, as shown in Fig. 17, where the lowest infidelity
over the range of gradients considered is only ~ 5x 1077.
Infidelities obtained in experiments will likely be higher
due to single-qubit rotation errors. Despite the signifi-
cantly improved fidelities of the one-period protocol over
the two-period version, the fact that the required z rota-
tions are gradient-dependent may present further exper-
imental challenges. This would necessitate adaptive con-
trol of the pulse sequence, in response to a prior measured
value of the field gradient. The two-period sequence, on
the other hand, always involves z rotations of 7/2 for
each qubit, regardless of the gradient strength, such that
the pulse sequence does not need to be changed “on the
ﬂy'”
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FIG. 14. (a) cz gate probability for the np = 1 protocol,
using the optimal J. = 7/Te, indicated by the vertical gray
line in panel (b). The red dashed line indicates the mean CZ
gate probability pc; = 0.675. (b) Makhlin invariants for the
nr = 1 protocol for the ¢z gate. Other parameters are L = 4,
ABy =18 MHz, AB, =7 MHz, 05 =0, To = 1.4 ps, T, = 1
us.

VIII. CONCLUSIONS

We have shown that driving exchange interactions,
as opposed to performing single-spin rotations, in QD
spin chains leads to an alternative route to time crystal
physics that can be used for the preservation and manip-
ulation of quantum states. We demonstrated that such
driving preserves entangled states over time scales that
are orders of magnitude longer than coherence times in
the absence of driving and that, on average, the it im-
proves the preservation of arbitrary states by nearly 40%.
In addition, we uncovered additional signatures of the
exchange-driven time crystal phase, including a 47T peri-
odicity of the singlet return probability that runs counter
to the 2T periodicity normally encountered in such sys-
tems. While our work focused on the case of GaAs, it
could also be implemented in Si (for which the nuclear
spin bath is much weaker), if the requisite magnetic field
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FIG. 16. Makhlin invariants G1, G2, and G3 as functions of
the nominal magnetic field gradients across each qubit. (Note
that 1 — Re[G3] is plotted in (c)). The true magnetic field
for each data point is modified by the addition of Gaussian
random field noise with standard deviation o = 1 MHz.
Other parameters are L =4, Jo = 7/T., Te = 1.4 us, np =1,
Ty =1 ps. Results are averaged over 40 disorder realizations.

gradients were supplied by an embedded micromagnet.
The other requirements of fast SWAP pulses followed by
longer periods of evolution under small exchange cou-
plings are readily achievable in most semiconductor QD
platforms.

We also considered applications of this time crystal
physics to the design of exchange-driven quantum gates
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FIG. 17. ¢z gate infidelity for the one-period protocol (np =
1) as a function of the magnetic field gradients across each
qubit. The infidelity at each point is optimized over single-
qubit gate parameters. Other parameters are L = 4, J. =
7/Te, Te =14 us, Ty =1 ps.

for singlet-triplet qubits. In particular, we showed that
a simple modification of the SWAP-DTC protocol yields
a high-fidelity cz gate, up to single-qubit operations.
These results suggest that time crystal physics may be
beneficial to quantum information applications based on
QD spin qubits.

Appendix: Time-dependent Magnetic Field and
Charge Noise

The assumption of static noise sources, while accurate
over sufficiently short timescales, may be questioned if
the dynamics is studied over many periods of time evo-
lution. Since the present study considers state preserva-
tion out to tens of periods, it is important to verify that
time-dependent noise does not alter the usefulness of the
swaP DTC protocol. In GaAs singlet-triplet qubits, both
magnetic field and charge noise have been described by

power-law spectra®? 2,
1+ap,s
S _ Ay Al
B(W) = —2—, (A1)

where ap ~ 2.6, Ap ~ 0.3 MHz, a; ~ 0.7, Ay =~ 100
MHz. In our calculations, we begin by randomly gener-
ating site-dependent magnetic field noise with standard
deviation op (similarly to the main text), but now also
including charge noise in the form of random shifts of the
exchange couplings J;;. In this case, the standard devia-
tions are given by J;;/(v/27Q), where Q = 21 is the ex-
change oscillation quality factor?®. On top of these static
noise components, we introduce time-dependent fluctua-
tions by inverse fast Fourier transforming the above spec-
tra to generate time-series disorder realizations®3°4.



Fig. 18 shows the long-time return probability for ini-
tial product and entangled states. For the initial state
[1t)) [Fig. 18(a)], whether one includes magnetic field
noise, charge noise, or both, has little effect on the de-
gree of state preservation under the SwaAp DTC protocol.
Similarly to the static noise case, the undriven Hamilto-
nian stabilizes this product state more effectively than
the driving protocol. The situation for the initial singlet
state [Fig. 18(b)] under time-dependent noise also essen-
tially mirrors the results of the static model, in that swap
driving significantly improves the state preservation com-
pared to the undriven system. In this case, however, we
find that the time-dependent charge noise is more signif-
icant overall in degrading the return probability. Thus
we see overall that realsitic levels of time-dependent noise
do not significantly affect the performance of the SwWAP
DTC protocol for state preservation.
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FIG. 18. (a) Return probability of the leftmost two spins as
a function of time for an initial state |1)) under the swap
DTC protocol (solid lines) compared to the undriven system
(dashed line), in the presence of time-dependent noise. (b)
Return probability of an initial singlet state. Power law noise
parameters are given in the text. The infrared and ultraviolet
cutoff frequencies for the noise spectra are 25 kHz and 0.5
MHz, respectively. Other parameters are L = 4, By = 3075
MHz, T. = 0.998 us, Ts = 2 ns, J. = w/Te, Js = w/Ts,
€ = 0. Results are averaged over 6000 disorder realizations.
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