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The hetero junction between different materials often exhibits a rectifying effect; e.g., pn-junction
is used for diode. On the other hand, the Josephson junction between two different superconductors
is assumed to show symmetric response between two directions of the current, i.e., the voltage drop
V is anti-symmetric with respect to the sign change of the current I. However, there should be an
asymmetry between the states of charge accumulation on the right and left sides of the Josephson
junction, which can lead to the nonreciprocal responses. Here we demonstrate theoretically that
nonreciprocal I-V characteristic appears due to this charging energy difference both in the classical
and quantum regimes.

I. INTRODUCTION

Nonreciprocal responses in noncentrosymmetric ma-
terials in general have been actively studied both from
theoretical and experimental viewpoints [1]. It is often
the case that broken T , the time-reversal symmetry, is
needed in addition to broken P, the inversion symme-
try, to obtain the nonreciprocal responses, but there are
cases where only P breaking is enough. The pn-junction
is a representative example, where the hetero junction
of n-type and p-type semiconductors acts as a rectifier
without a magnetic field or magnetization. On the other
hand, the direction of the arrow of time is determined
by the dissipation associated with the resistivity, i.e., ir-
reversibility. In the case of pn-junction, the existence
of the depletion layer due to the Coulomb interaction is
essential for its rectification function. Another example
of the nonreciprocal response without T -breaking is the
Zener tunneling [2]. In this case, the interband tunneling
probability across the band gap differs between right and
left directions due to the shift vector originating from the
Berry connection [3], even without the broken T . This
shift vector is also relevant to the shift current for the
interband photoexcitation [4]. Therefore, the quantum
geometry, which encodes the information of the micro-
scopic inversion asymmetry inside a unit cell, plays an im-
portant role. The nonreciprocity in optical systems has
been widely studied [5], and in particular, the quantum
diode of light has been theoretically studied [6] and ex-
perimentally realized [7]. Here the two isolated two level
systems act as nonlinear mirrors and lead to a left-right
asymmetric Fabry-Perot interferometer. Also, as for the
Josephson junctions, there are studies on the Josephson
diode [8–15], but the nonreciprocity of the voltage drop
of the single Josephson junction has not been studied.

Other works on the nonreciprocity include Ref. 16,
where the nonreicprocal property of the microwave re-
flection of the resistively shunted Josephson junction in
the finite voltage state is investigated. In Ref. 16, the
inversion symmetry is explicitly broken by the external
current bias, and the nonreciprocity in the AC regime,
characterized by the asymmetry of the scattering ma-

trix, is discussed. In contrast, our work focuses on the
nonreciprocity of the structurally inversion asymmetric
Josephson junction in the DC regime, which is charac-
terized by the I − V characteristic as,

V (I) 6= −V (−I)⇔ R(I) 6= R(−I), (1)

where I is the DC external current bias, V is the DC
voltage response, and R(I) = V (I)/I is the I-dependent
nonlinear resistance, i.e., the nonreciprocity is quanti-
fied by the difference of the nonlinear resistance between
positive and negative biases with fixed amplitudes of the
biases.

The nonreciprocity of the I − V characteristic defined
by Eq. (1) in I → 0 limit can be calculated from the per-
turbative expansion of R(I) as R(I) = R1+R2I+O(I2),
where nonzero R2 indicates the nonreciprocity. This
characterization of the nonreciprocity by R2 is inappro-
priate for the case with large current bias I where the
system is in the nonlinear regime so that the perturba-
tive expansion is invalid. For example, in pn junctions,
the nonreciprocity is particularly large when the voltage
bias is larger than the forward threshold voltage, i.e., in
the nonlinear regime. The large nonreciprocity persists
up to the critical voltage of the electric breakdown for
the backward bias. Therefore, in this case, the difference
of the critical voltage for positive and negative biases
leads to the nonreciprocal I − V characteristic. As for
the Josephson junction, it is known [17] that the I − V
characteristic exhibits the finite critical current between
finite and zero voltage state. The difference of this criti-
cal current between positive and negative biases in a sin-
gle Josephson hetero junction has not been studied. In
this work, we discuss the difference of the critical current
between positive and negative biases, and the resultant
nonreciprocity of the structurally asymmetric Josephson
junctions.

Before discussing the nonreciprocity, here we review
the physics of the Josephson junction to introduce our
model. Josephson effect is a representative macroscopic
quantum phenomenon where the superconducting cur-
rent depends on the phase difference ϕ of the order pa-
rameters of the two superconductors separated by the
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Figure 1. The Josephson circuit, where C, J and R represent
the capacitor, Josephson junction, and resistive shunt, respec-
tively. I1, I2 and I3 denote the currents flowing through the
capacitive, inductive and resistive channels of the junction,
respectively, and Ix is the total current through the junction.

insulating barrier. The dynamics of ϕ in the dissipation-
less case is characterized by the following Hamiltonian:

H =
Q2

2C
+ EJ

(
1− cos

2eφ

~

)
− Ixφ, (2)

where φ = ~ϕ/(2e), C is the capacitance of the Josephson
circuit, Q is the charge accumulated at the capacitance,
EJ is the Josephson coupling energy, −e < 0 is the charge
of an electron, [φ,Q] = i~, and Ix is the external current
bias, which is assumed to be constant. In this section,
for the purpose of illustration, we assume the symmetric
charging energy: Q2/(2C), i.e., Q and −Q are equiva-
lent. We will discuss the consequences of the asymmetric
charging energy in the following sections. Eq. (2) can
be regarded as the Hamiltonian of a particle under the
tilted cosine potential with the period δφ = π~/e, where
Q and φ can be regarded as the momentum and position
of the particle, respectively. When Ix is small, near the
local minimum of the potential, the potential energy can
be approximated by the one of the harmonic oscillator
where the mass m = C and the characteristic frequency
ω = (2e/~)

√
EJ/C. Then, the width of the wavefunction

around the potential minima is given by ∆φ =
√
~/(mω),

and the overlap of the wavefunctions between the adja-
cent minima is negligible when ∆φ� δφ⇔ EJ/EQ � 1
(case (I)), and large when ∆φ � δφ ⇔ EJ/EQ � 1
(case (II)), where EQ = e2/(2C). We also include the
resistive shunt, and the Josephson circuit we will discuss
is schematically shown in Fig. 1.

In the case (I), ϕ is well-localized inside the minima,
and including the resistive shunt, the dynamics is de-
scribed by the semiclassical Josephson equation given as
[18]

~ϕ̇ = 2eV, (3)

Q̇+ Ic sinϕ+
V

R
= Ix, (4)

where Ic = 2eEJ/~, V is the chemical potential (volt-
age) drop across the junction, and R is the shunt resis-
tance. In this paper, we consider the junctions where

the tunneling conductance is negligible compared to the
shunt conductance. In this case, R is determined by
the intrinsic resistance of the normal layer, so that R
is symmetric under the voltage inversion, and does not
contribute to the nonreciprocity. Therefore, we assume
that R is constant throughout this paper. We note
that Q̇ is different from Ix, since Q̇ is the time evolu-
tion of the charge accumulated on the capacitance, and
different from the total current across the junction, Ix.
Here we neglected the quantum decay probability from
the metastable solution where ϕ is localized around the
local minima, which is known [19] to be expressed as

P ∝ exp[−AEJ/(~ω)] = exp[−A
√
EJ/(8EQ)] � 1 at

zero temperature in the dissipationless case, where A is
the constant factor. We note that the dissipation further
suppresses the quantum decay probability [19].

In the absence of the capacitance, i.e., Q̇ = 0, the
Ix − V characteristic is solved easily to give V = 0
for |Ix| < Ic = 2eEJ/~ and the time-averaged voltage

V̄ = sign(Ix)R
√
I2x − I2c for |Ix| > Ic = 2eEJ/~. There-

fore, in this case, the response is reciprocal, as shown in
Fig. 2(a), blue curve. In the presence of the capacitance
C, i.e., Q = CV , the differential equation becomes sec-
ond order, i.e., the inertia term of ϕ appears; It results
in the coexistence of the two solutions for a range of Ix
and hysteretic behavior of Ix − V characteristic, see Fig.
2(b), blue curve. We will numerically show that, in this
case, the nonreciprocal Ix−V characteristic is realized if
we include the effect of the inversion asymmetry coming
from the charging energy (see Fig. 2(c)). To understand

why Q̇ term in Eq. (4) is necessary for the nonreciprocal
effect, here we discuss the inversion symmetry, P, and the
time reversal symmetry, T , of Eqs. (3) and (4), in the

absence of Q̇ term. T transforms Ix → −Ix, ϕ → −ϕ,
while V → V as we can see from Eq. (3). Note here that
the last term on the left hand side of Eq. (4) changes sign
when T is applied, although V is even with respect to T .
This is usual since 1/R represents the dissipation and ir-
reversibility, and introduces the asymmetry between the
two directions of time. As for the inversion symmetry P,
on the other hand, the transformation gives Ix → −Ix,
ϕ → −ϕ, and V → −V since the two bulk supercon-
ductors are exchanged. Therefore, the nonreciprocal re-
sponse, if it exists, comes from the term Q̇ in Eq. (4)
when the spatial inversion symmetry P is broken.

In the case (II), since the cosine potential is small, Q
is the good quantum number. In the same spirit as the
nearly free electron approximation, EJ(1 − cos[2eφ/~])
term in the Hamiltonian, Eq. (2), can be treated pertur-
batively, and it leads to the Bragg reflection and opens up
a gap at the “momentum” Q = ±~π/δφ = ±e [20]. The
size of the gap is proportional to EJ , and the energy at
Brillouin zone edge is EQ, so the dimensionless quantity
EJ/EQ is roughly the ratio of the bandgap to the band-
width. The last term in Eq. (2) can be regarded as the
potential coming from the external electric field E = Ix,
and, including the dissipation term, the dynamics of Q
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is described by the following equation:

Q̇ = Ix −
1

R

∂Ẽch(Q)

∂Q
, (5)

where Ẽch(Q) is the band energy with the gap at Q = ±e.
To discuss the nonreciprocal I−V characteristic, we will
show that the Bloch oscillation and the Zener tunneling
for the dynamics of Q are asymmetric. The asymmetry
of the Zener tunneling in the presence of the nonlinear
interaction was discussed in Ref. 21, but in their case, the
asymmetry is between the tunneling processes from the
ground state to the excited state and from the excited
state to the ground state. In our case, the tunneling
process from the lowest band to the next lowest band for
the positive and negative biases are asymmetric.

In the present paper, we study theoretically the nonre-
ciprocal nature of Ix-V characteristic of the asymmetric
Josephson junction, which is modeled by the asymmet-
ric charging energy Ech(Q)(6= Ech(−Q)). We will show
that, both for case (I) and case (II), the asymmetry of
Ech(Q) leads to the nonreciprocity.

Before getting into the detailed analysis, here we dis-
cuss the origin of the asymmetric charging energy. The
capacitance of the junction system originates from two
contributions: One is the classical capacitance, deter-
mined by the electrostatic energy inside the thin film,
and the other is the quantum capacitance, which de-
pends on the charge response properties of two sand-
wiching bulk superconductors [22–26]. Among these two
contributions, the latter one is in general nonlinear and
asymmetric when the bulk superconductors exhibit dif-
ferent charge response properties. In section III, we will
estimate the order of the quantum capacitance in real
systems and discuss how to experimentally measure the
nonreciprocity.

II. RESULTS

A. Model for case (I)

The DC Josephson effect is described by constant ϕ
and Q = V = 0, where ϕ is determined by Ix =
2eEJ

~ sinϕ = Ic sinϕ. For |Ix| > Ic, there is no solution of
the Josephson equation with constant ϕ, and because of
the Josephson relation, Eq. (3), the voltage V appears.
In this picture, Ic is identical for both directions, while
one needs to solve the dynamics, i.e., the time depen-
dence, of Q and ϕ when finite voltage appears. In this
case, the functional form of Ech(Q), which is related to

the voltage V by V = ∂Ech
∂Q , is important. Often the

form Ech(Q) = Q2/(2C) − VgQ is taken with C being
the capacitance and Vg the gate voltage, which induces
the chemical potential bias across the junction. The gate
voltage term seems to break the symmetry between right
and left, i.e., Q and −Q, but the shift in the origin of Q
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Figure 2. Ix − V characteristic for case (I) at T = 0 and
T > 0. Ix − V characteristic, numerically calculated from
Eqs. (8) and (9), for the system (a) without Q̇ term and

(b), (c) with Q̇ term (for the definition of r−1, see Eq. (8)),
where ix = Ix/Ic and V0 = RIc with Ic = 2eEJ/~. In (c), we
show Vasym(ix) = [V (ix) + V (−ix)]/[V (ix) − V (−ix)] which
quantifies the degree of nonreciprocity calculated from the
Ix − V characteristic (b). We note that Vasym = 0 identically

for the Ix − V characteristic (a), i.e., when Q̇ = 0. The
arrows on blue curves in (b) and (c) represent the directions
of the sweep of ix. ic1 and ic3 are the critical currents at
T = 0, and ic2 is the critical current at T > 0 [27]. To obtain
the orange curves (T > 0 data), we numerically solved the
Langevin equation, Eqs. (8) and (9) with stochastic Heun’s

scheme [28], with the parameters T̃ = 0.25, A = 0.6, and
A′ = 0.3.

recovers that symmetry. Therefore, the essential asym-
metry between right and left comes from the higher order
terms in Q such as

Ech =
Q2

2C
+ αQ3 + α′Q4, (6)
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where α 6= 0 for junctions where bulk superconductors
exhibit different charge response properties [25, 26] (see
section IIIA for details). αQ3 term breaks the inversion
symmetry P, and leads to the nonreciprocal response.

Here, the term Q2

2C comes from the classical charging en-

ergy, while the term αQ3 + α′Q4 originates from the
charging energy of the electromagnetic field penetrating
into the bulk superconductors, and is known as “quantum
capacitance” [22–26]. Then we consider the generalized
Josephson equation given as

~
2e
ϕ̇ =

∂Ech
∂Q

, Q̇ = Ix + Ĩ(t)− Ic sinϕ− 1

R

∂Ech
∂Q

, (7)

where we added the fluctuating current Ĩ(t) satisfying

〈Ĩ(t)Ĩ(t′)〉 = 2(βR)−1δ(t− t′), to include the finite tem-
perature effect.

It is useful to rewrite Eqs. (6) and (7) with the di-

mensionless parameters ĩ = Ĩ/Ic, ix = Ix/Ic, r
−1 =

R−1
√
~/(2eCIc), A = αC3/2

√
EJ , A′ = α′C2EJ and

T̃−1 = EJβ. Also, we rescale t and Q as τ =
t
√

2eIc/(~C) and q =
√

2e/(~CIc)Q. Then, Eqs. (6)
and (7) can be transformed as

dϕ

dτ
=
∂εch
∂q

,
dq

dτ
= ix + ĩ(t)− sinϕ− r−1 ∂εch

∂q
, (8)

where

εch =
q2

2
+Aq3 +A′q4. (9)

Here we note the relationship of the dimensionless param-
eters defined above to the parameters used in the liter-
ature [17]: r2 = βc, where βc is the Stewart-McCumber
parameter; τ = ωpt and q = I−1c ωpQ, where ωp is the
plasma frequency of the Josephson circuit. Here, let us
discuss the analogy of the dynamical system described by
Eqs. (8) and (9) with the particle motion under the pe-
riodic potential. The Josephson phase ϕ corresponds to
the position x, while the charge transfer q corresponds to
the momentum p. In this particle picture, the potential
energy is − cosx and the kinetic energy is εch(q → p). In
this sense, one can define the “time-reversal symmetry”
T ′ and “inversion symmetry” P ′ as

T ′ :x→ x, p→ −p, (10)

P ′ :x→ −x, p→ −p.

Then, our system breaks both P ′ and T ′, while it pre-
serves P ′T ′ except the dissipative term r−1 ∂εch∂q in Eq.

(7). Namely, the periodic potential is inversion symmet-
ric, while the kinetic energy is asymmetric with respect
to p and −p. In the quantum mechanical case, this leads
to the asymmetric dispersion ε(k) 6= ε(−k).

We will discuss the nonreciprocity of Eq. (8) with Eq.
(9) for two cases: First, we will discuss the system with
no thermal fluctuation, at T = 0. For |ix| > 1, where the
bias is so strong that the potential barrier disappears,

the dynamics is characterized by the limit cycle in (ϕ, q)
space. For |ix| < 1 and sufficiently small r−1, there coex-
ists the stable fixed point and the limit cycle, which rep-
resents the metastable steady state [29, 30]. Secondly, we
will discuss the system with thermal fluctuation at finite
temperature T > 0, where the phase slip is caused by the
thermal fluctuation [31, 32]. In both cases, we will show
that the asymmetry of the charging energy leads to the
nonreciprocity.

Here we note that, since the voltage drop V in the
presence of A satisfies V (A,−ix) = −V (−A, ix), the
nonreciprocity characterized by Vasym = [V (A, ix) +
V (A,−ix)]/[V (A, ix) − V (A,−ix)] can be rewritten as
[V (A, ix)−V (−A, ix)]/[V (A, ix) +V (−A, ix)], so we cal-
culate the voltage drop V (A, ix) for positive ix and
change the sign of A. For the same reason, iRc1(−A) =
iLc1(A). From now on, we fix the parameters A = ±0.6
and A′ = 0.3 for the purpose of demonstration of the
asymmetry. We will discuss the estimation of these pa-
rameters in real materials in section IIIA.

B. Nonreciprocal Ix − V characteristic at T = 0 for
case (I)

In Fig. 2 (blue curves), we show the Ix−V characteris-
tic, numerically calculated from Eqs. (6) and (7) without

the Q̇ term (panel a) and with P breaking Q̇ term (panel
b) at T = 0. As we mentioned in the introduction, the
nonreciprocity is realized only for the latter system, see
panel c.

An important feature of Ix−V characteristic at T = 0
with finite Q̇ (Fig. 2(b), blue curve) is the hysteresis for
iRc1 < ix < ic3 and −ic3 < ix < −iLc1. This hysteresis
comes from the coexistence of the limit cycle and stable
fixed point [29, 30]. As can be seen from Figs. 3(b) and
(c), because of the presence of the limit cycle, for the ini-
tial condition inside the dark blue region, the long-time
dynamics is governed by the limit cycle so that the volt-
age drop is finite. On the contrary, for the initial con-
dition inside the green region, the particle is attracted
to the stable fixed point and the voltage drop is zero.
Sweeping ix from the large value to the small value cor-
responds to the former case, while sweeping ix from the
small value to the large value corresponds to the latter
case. Namely, the hysteresis behavior occurs. On the
contrary, there is no hysteresis for Ix − V characteristic
at T = 0 without Q̇ term (Fig. 2(a), blue curve).

Here we review the qualitative aspect of the bifurcation
of the limit cycle in the system with T = 0 [29, 30] for
ix > 0. The system shows qualitatively different behavior
depending on the value of the dimensionless dissipation
strength r, defined above Eq. (8).

For r−1 � 1 (Fig. 2(a)), we can neglect the inertia
term (the capacitance term, dq/dτ) and Eq. (8) becomes

r−1
dϕ

dτ
= ix − sinϕ. (11)
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Figure 3. The bifurcations of the system with finite capacitance, Eqs. (8) and (9). We set A = 0.6, A′ = 0.3, r−1 = 0.1 and
(a) ix = 0.1, (b) ix = 0.288 ∼= iRc1, (c) ix = 0.5, (d) ix = 1 = ic3 and (e) ix = 1.1. The blue and red dots represent the stable
fixed point and saddle point, respectively. Black curves represent the (meta)stable limit cycles, and the green and dark blue
regions are the basins of attraction of the stable fixed point (blue dot) and limit cycle (black curve), respectively. We present
the case of positive ix. While the behavior is similar also for ix < 0, the critical iLc1 is different from iRc1.
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Figure 4. The bifurcation of the system with Q̇ = 0, i.e., Eq.
(11), for (a) ix = 0.5, (b) ix = 0.8 and (c) ix = 1.2. The blue
curve represents the value of dϕ/dτ at each ϕ, and the arrow
on the black curve represents the direction of the velocity.
The blue and red dots represent the stable fixed point and
saddle point, respectively. We can see that there is no limit
cycle for ix < 1.

For ix > 1, dϕ/dτ > 0 and there is only a limit cycle (Fig.
4(c)). As we decrease ix, at ix = ic3 = 1, the saddle-node
(blue-sky) bifurcation leads to the vanishing of the limit
cycle and the birth of the stable and unstable fixed points
at ϕ = sin−1 ix and π − sin−1 ix, respectively, see Figs.
4 (b) and (c). For ix < 1, the long-time dynamics is
governed by the stable fixed point, see Figs. 4(a) and
(b). Therefore, for r−1 � 1, the disappearance of the
limit cycle and the birth of the stable fixed point occur
simultaneously, i.e., iRc1 = ic3 = 1. Above ic3, the flow
of ϕ occurs, and we get the finite time-averaged voltage
drop V̄ = sign(Ix)R

√
I2x − I2c as we mentioned in the

introduction.

For r−1 � 1 (Fig. 2(b)), we cannot neglect the inertia
term in Eq. (8), and, although the long-time dynamics
for ix > ic3 = 1 is governed by the limit cycle just as in
the r−1 � 1 case, the system exhibits two bifurcations as
we decrease ix. One is at ix = ic3 = 1, where the saddle-
node bifurcation leads to the birth of the stable fixed
point and the saddle point at (ϕ, q) = (sin−1 ix, 0) and
(π−sin−1 ix, 0), as is shown in Figs. 3(c), (d) and (e); The
other one is the homoclinic bifurcation at ix = iRc1, where
the limit cycle collides with the saddle point at (ϕ, q) =
(π− sin−1 ix, 0) to become the homoclinic orbit and then

disappears, as is shown in Figs. 3(a) and (b). We will
review what a homoclinic orbit is and discuss its role in
the phase diagram later. As for the bifurcations for ix <
0, the qualitative nature of the bifurcations is the same,
but importantly, iLc1 6= iRc1 because of the asymmetry of
the charging energy. It leads to the enhancement of Vasym
near −iLc1 and iRc1 as can be seen in Fig. 2(c).

C. Nonreciprocity for various ix and r−1 at T = 0
for case (I)

For |ix| > 1, Vasym as a function of ix and r−1 is shown
in Fig. 5(a). We can see that the nonreciprocity is en-
hanced for small ix and r−1. Since |ix| > 1, the long-time
dynamics is governed by the limit cycle traversing from
ϕ = −π to π at finite q as is shown in Figs. 6(a) and
(b). As we can see from these figures, the limit cycles for
A > 0 and A < 0 are different, so that Vasym is finite.

For |ix| < 1, the homoclinic bifurcation occurs at iRc1
and −iLc1. As we explained, at this bifurcation point the
limit cycle becomes the homoclinic orbit. In short, a
homoclinic orbit is a variant of a limit cycle. However, in
contrast to a limit cycle, there is a fixed point on it, so its
time period is infinite, since it takes infinite time to reach
and depart from the fixed point. For example, the black
curves in Figs. 3(b) and 6(c) and (d) are homoclinic
orbits where the fixed point is shown by the red dots.
Since the presence of the homoclinic orbit indicates the
homoclinic bifurcation, by identifying the one-parameter
family of the homoclinic orbit on the (ix, r

−1) plane, we

can calculate i
R/L
c1 as a function of r−1.

For small ix and r−1, we can perturbatively calculate

i
R/L
c1 from the parameter ix = r−1 = 0, where we can

analytically calculate the homoclinic orbit, see Figs. 6(c)

and (d). i
R/L
c1 (r−1) can be calculated from the simple
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Figure 5. Nonreciprocity for various ix and r−1 for case (I) at T = 0. (a) Vasym(ix) = [V (ix) + V (−ix)]/[V (ix)− V (−ix)] as a

function of ix and r−1, numerically calculated from Eqs. (8) and (9) with T̃ = 0. (b) The voltage drop V/V0 where V0 = RIc
for A > 0 and A < 0 with r−1 = 1 and T̃ = 0 in Eqs. (8) and (9). (c) The phase diagram in (ix, r

−1) space for the dynamical

system governed by Eqs. (8) and (9) with T̃ = 0. St., Mst. and LC. represent the phase with the stable fixed point only,
stable fixed point coexisting with the limit cycle, and limit cycle only, respectively. The black curves are the phase boundaries
calculated from Eq. (12). (d) Vasym(ix) near the phase boundary, where V (ix) is calculated for the metastable limit cycle of

Eqs. (8) and (9) with T̃ = 0, i.e., the plot corresponds to the sweeping of ix from the large value in Fig. 2(b). In the white
region, V = 0 for both A > 0 and A < 0 cases, while in the region where |Vasym| = 1, V 6= 0 for A > 0 and V = 0 for A < 0.
Therefore, the step of |Vasym| comes from the difference of the critical current for A > 0 and A < 0. We note that Vasym < 0
for the parameter region shown in (a) and (d).

zero of the following Melnikov function [33]:∫ ∞
−∞

dtϕ̇0(t)(ix − r−1ϕ̇0(t))

=2πix − 2r−1
∫ qmax

0

dq

(
dεch(q)

dq

)2
1√

εch(q)[2− εch(q)]
,

(12)

where ϕ0(t) is the homoclinic orbit for ix = r−1 = 0
shown in Figs. 6(c) and (d), and qmax is the maximum
of q along that orbit. As we can see, the homoclinic
orbits for A > 0 (Fig. 6(c), black curve) and A < 0
(Fig. 6(d), black curve) are very different and that leads
to the difference of the Melnikov functions in two cases,
so that iLc1(r−1) 6= iRc1(r−1). In Fig. 5(c), we show the

phase boundary (i.e., i
R/L
c1 (r−1)) obtained from the direct

numerical calculation (red dotted and green dot-dashed
curves) and the one obtained from the condition that
Eq. (12) should be zero (black solid curve). We can

see that the prediction of Eq. (12) agrees well with the
numerically obtained boundary for small ix and r−1. For
(ix, r

−1) such that metastable limit cycle does exist for
A < 0 but not for A > 0, we observe |Vasym| = 1, i.e.,
the perfect nonreciprocity, as is shown in Fig. 5(d), since

the time-averaged velocity dϕ/dτ ∝ V̄ = 0 for A > 0,

while dϕ/dτ ∝ V̄ 6= 0 for A < 0. We also note that the
large |Vasym| for ix & 1 (Fig. 5(a)) can be understood
as a consequence of the difference of iRc1 and iLc1: As we
can see from Fig. 5(b), the voltage drop V is larger for
ix & 1 for A < 0, because ic1 is smaller for A < 0.

D. Nonreciprocal Ix − V characteristic at finite
temperature T > 0 for case (I)

For the finite temperature T > 0 case, we numerically
solved the Langiven equation, Eq. (8), with stochastic
Heun’s scheme [28] to calculate the physical quantities
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Figure 6. (a), (b) The limit cycles for ix > 1 and (c), (d) the
homoclinic orbits for ix = r−1 = 0. (a), (b) The limit cycles,
shown by black curves, for Eqs. (8) and (9) with ix = 1.2,
r−1 = 1, where (a) A > 0 and (b) A < 0. (c), (d) The
homoclinic orbits, shown by black curves, for Eqs. (8) and
(9) with r−1 = ix = 0 where (c) A > 0 and (d) A < 0. The
red dots represent the fixed points. Note that (ϕ, q) = (π, 0)
and (−π, 0) are equivalent.

and then took an ensemble average. Numerically calcu-
lated Ix − V characteristic is shown in Fig. 2 (orange
curves). As is shown in Fig. 2(b), we can see that the
voltage drop V suddenly increases around iRc2 and −iLc2
and merges to the curve V/V0 = ix. This behavior can be
understood as the dynamical transition, from the state
where the dominant probabilistic weight is on the stable
fixed point so that the voltage drop is around zero, to the
one where the limit cycle is primarily realized and the fi-
nite voltage drop results [27, 34]. Since the system is at
the finite temperature, the transition is not sharp, but as
T → +0 this transition becomes sharper and the jump of
V from 0 to finite value occurs at ix = iRc2 and −iLc2 when
T = +0. At the same time, the relaxation time between
the two configurations diverges as T → +0, and when
the experimental measurement time is smaller than the
relaxation time, we observe the hysteresis behavior as we
discussed above for T = 0 case. In the similar manner to
T = 0 case, the large Vasym near iRc2 and −iLc2 is realized,
since iRc2 6= iLc2.

E. Nonreciprocity for various ix and r−1 at T > 0
for case (I)

Just as in the T = 0 case, we numerically solved Eq.
(8) to calculate the nonreciprocity for various ix and r−1

with T > 0, and the result of the numerical calculation
is shown in Fig. 7.

0.2 0.4 0.6 0.8 1.0 1.2

0.2

0.4

0.6

0.8

1.0

1.2

ix

r
-
1

|Vasym|

1.4×10-4
3.2×10-4
7.1×10-4
1.6×10-3
3.5×10-3
7.9×10-3
1.8×10-2
4.0×10-2
8.9×10-2
2.0×10-1

Figure 7. Nonreciprocity for various ix and r−1 for case (I) at
T > 0. Vasym(ix) = [V (ix)+V (−ix)]/[V (ix)−V (−ix)] at T >
0. For the parameter region shown in the plot, Vasym < 0. We
numerically solved Eqs. (8) and (9) with T̃ = 0.25. The jaggy
result of |Vasym| for the small |Vasym| region (|Vasym| . 10−3)
comes from the numerical error of the Langevin equation. We
note that the relative error of |Vasym| is small for large |Vasym|
region (|Vasym| & 10−2), and we focus only on this region in
the present paper.

As we can see, the nonreciprocity is enhanced for small
r−1, i.e., small dissipation, region. This is consistent with
the fact that, for r−1 � 1, we can neglect the inertia term
in Eq. (8) to obtain the usual inversion-symmetric over-
damped Langevin equation. In addition, we can see the
peak structure at finite value of ix for fixed r−1. To un-
derstand this behavior, it is useful to plot the normalized
mobility r−1µ = V/(V0ix), where V0 = RIc, as a function
of ix [34], see Fig. 8(a). We can see that for small ix, the
mobility is almost zero, but at some finite ix the mobility
jumps to µ = r and saturates. This kind of behavior can
be understood from W±(E), which is defined from the
distribution function of the energy as

P (E) =

{
N e−W+(E)/T̃ (q ≥ 0)

N e−W−(E)/T̃ (q < 0)
, E = εch(q)− cosϕ.

(13)

where P (E) is the distribution function of E, and we
introduced two functions W+ and W−, corresponding to
the two branches of momentum q as a function of the
energy E [34]. Numerically calculated W+(E) for A > 0
and A < 0 is shown in Figs. 8(b) and (c). We can
see that, as we increase the bias ix, W+(E) at large E
becomes small and eventually the local minimum at E >
1 drops below the value at E = −1. This corresponds to
the dynamical transition of the typical trajectory from
the static one at E = −1 to the running one at E > 1.
We can see that the critical value of ix which we denote
ic2, where this transition occurs is different for A > 0
case (ic2 ∼ 0.6) and A < 0 case (ic2 ∼ 0.5). The fact
that ic2 is larger for A > 0 is consistent with the larger
ic1 where the limit cycle emerges, as is shown by blue
dot-dashed and orange dashed lines in Fig. 8(a).

Because of the presence of the thermal fluctuation, we
can discuss not only the average value of the velocity, but
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Figure 8. Normalized mobility and the distribution function of energy for case (I) at T > 0. (a) Normalized mobility r−1µ,
where r−1µ = V/(V0ix) and V0 = RIc, as a function of ix for r−1 = 0.1. The value where the limit cycle appears is shown
by the dot-dashed blue and the dashed orange curves, and the value where the stable fixed point vanishes is shown by black
dotted curve. (b), (c) W+(E), defined in Eq. (13) at r−1 = 0.1, from ix = 0.1 (blue curve) to ix = 0.6 (brown curve), where

(b) A > 0 and (c) A < 0. We set T̃ = 0.25 in Eqs. (8) and (9).

0.5 1.0
ix

0.00

0.05

0.10

0.15

V
ar

(J
T

)
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A < 0

Figure 9. Variance of JT for case (I) at T > 0. The blue
dotted and orange dashed curves are the lower bound pre-
dicted by the thermodynamic uncertainty relation, Var(JT ) ≥
2〈JT 〉2/(T σ), where σ is the entropy production rate and is

calculated as σ = ix〈JT 〉/T̃ [35]. We numerically solved the
Langevin equation (8) and (9) for 100 ensembles with time
τ = 107 and ∆τ = 10−2 by the stochastic Heun’s scheme [28],
and set T = 1000. The parameters are set to be r−1 = 0.1
and T̃ = 1.

also the whole distribution of the time-averaged current

JT =
∫ T
0
dτ dϕdτ [35]. The numerically calculated vari-

ance of JT is shown in Fig. 9. Since the system does
not have T ′ symmetry, we might have a violation of the
lower bound of the variance known as thermodynamic
uncertainty relation [35–37], as is observed in the under-
damped Langevin system with magnetic field [38], but we
did not observe any violation for the parameter region we
have calculated. As we can see, the fluctuation of JT be-
comes large for intermediate ix. This reflects the fact that
there coexists the stationary trajectory and the running
trajectory, and these two trajectories, which have quite
different average velocities, are probabilistically realized,

leading to the large fluctuation of the current. For larger
ix the fluctuation decreases, since the stationary fixed
point disappears. Reflecting the difference of the critical
current ic2, the region where the current fluctuation en-
hances is different for A > 0 and A < 0 cases, and that
leads to quite different current fluctuation as we can see
in Fig. 9.

F. Model for case (II)

As we mentioned in the introduction, the dynamics in
this case is governed by Eq. (5), and EJ/EQ character-
izes the ratio of the band gap to the bandwidth, see Fig.
10(c).

In this case, because of the periodicity of the Brillouin
zone, the system exhibits the Bloch oscillation, which
affects the Ix − V characteristic in a substantial way
[20, 39]. Physically, the Bloch oscillation in Q space
corresponds to the cooper pair tunneling through the
Josephson junction [20], and it reduces the current flow-
ing through the resistive channel of the junction, so the
voltage drop V is suppressed. The Bloch oscillation is
hindered by the Zener tunneling process where the state
is excited to higher energy bands, and Ix − V character-
istic is determined by the competition between the Bloch
oscillation and the Zener tunneling [39–41].

For the discussion of the Bloch oscillation, for simplic-
ity, we work in the lowest order approximation in EJ ,
i.e., we neglect the gap at Brillouin zone boundary but
assume the periodic structure of the energy dispersion,
Ẽch, i.e.,

Ẽch(Q) = min
n∈Z

Ech(Q− 2ne). (14)

Setting Q = eq̃, t = RCτ̃ , Ix = ĩxe/(RC), Eq. (5)
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Figure 10. Ix − V characteristic, energy dispersion and nonreciprocal Zener tunneling for case (II). (a) Ix − V characteristic
and (b) Vasym(̃ix) = [V (̃ix) + V (−ĩx)]/[V (̃ix) − V (−ĩx)], calculated from Eqs. (18) and (19), where V0 = e/C. (c) Energy

dispersion of the two lowest energy bands with the asymmetric changing energy E′ch(q̃) = q̃2/2 + Ãq̃3 + Ã′q̃4 with Ã = 0.6 and

Ã′ = 0.3, and we set EJ/EQ = 0.2, where EQ = e2/(2C), to open up a gap in the spectrum. Dotted curve represents the
energy dispersion without the Josephson coupling term EJ cosϕ in the Hamiltonian. (d) The LZ rate calculated from Eq. (20)
with EJ/EQ = 0.1 (EQ = e2/(2C)) and R/Rq = 100, where Rq = e2/(2π~).

becomes

dq̃

dτ̃
= ĩx −

∂ε̃

∂q̃
, (15)

where

ε̃(q̃) = min
n∈Z

E′ch(q̃ − 2n), E′ch(q̃) =
q̃2

2
+ Ãq̃3 + Ã′q̃4,

(16)

where Ã = αCe, Ã′ = α′Ce2. We set Ã = 0.6 and
Ã′ = 0.3 for the purpose of illustration. See Section IIIA
for the estimation of these parameters in real systems.

G. Nonreciprocal Bloch oscillation for case (II)

First, we will discuss the nonreciprocity of the Bloch
oscillation in the Josephson junction. For the energy dis-
persion (16), denoting the left and right Brillouin zone
boundary by q̃L,R, the conditions for the Bloch oscillation

to occur for ĩx > 0 and ĩx < 0 cases can be calculated as,

ĩx ≥
∂ε̃(q̃R)

∂q̃
=: ĩRc,bl, ĩx ≤

∂ε̃(q̃L)

∂q̃
=: −ĩLc,bl, (17)

respectively. The periods of the Bloch oscillation for ĩx >
0 and ĩx < 0 cases are,

τ̃R =

∫ q̃R

q̃L

dq̃

ĩx − ∂ε̃
∂q̃

, τ̃L =

∫ q̃L

q̃R

dq̃

ĩx − ∂ε̃
∂q̃

. (18)

Then, the voltage drop can be derived from Eq. (15) as
[20]

VL,R =
e

C

〈
∂ε̃

∂q̃

〉
=

e

C

(
ĩx −

2

τ̃L,R

)
. (19)

We show the voltage drop calculated from Eqs. (18) and
(19) in Figs. 10(a) and (b). As we can see, since the
critical currents where the Bloch oscillation sets in are
different for ĩx > 0 and ĩx < 0, i.e., ĩRc,bl 6= ĩLc,bl, Ix − V
characteristic exhibits nonreciprocity.

H. Nonreciprocal Zener tunneling for case (II)

Next, we discuss the nonreciprocity in Zener tunnel-
ing rate. The general expression of the Zener tunneling
rate is derived in Ref. 40, where the argument is only for
the quadratic charging energy. Generalizing their argu-
ment to include the asymmetry of the charging energy,
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we obtain

P± = exp

[
−
(
πEJ
2EQ

)2
R

Rq

1

|VC,±||v±|

]
,

(
Rq =

e2

2π~

)
(20)

where we neglected the effect of the fluctuation of the
charge. Here

VC,± =
d

dq̃
(E′ch(q̃)− E′ch(q̃ ∓ 2))

∣∣∣∣
q̃=q̃R/q̃L

,

and, as we can easily see, |VC,+| = |VC,−|. v± is the
velocity of the charge at q̃R,L given by the solution of
Eq. (15), i.e.,

v± = ĩx −
∂ε̃

∂q̃

∣∣∣∣
q̃=q̃R/q̃L

= ĩx ∓ ĩR/Lc,bl , (21)

where ĩ
R/L
c,bl are defined in Eq. (17). As we noted ĩRc,bl 6=

ĩLc,bl, so |v+(̃ix)| 6= |v−(−ĩx)| and P+ 6= P−. The Landau-

Zener tunneling probability P± obtained from Eq. (20) is
shown in Fig. 10(d). We can see the threshold behavior
coming from the dissipation [42].

Here we note the importance of the effect of dissipa-
tion in obtaining the nonreciprocal Zener tunneling rate.
In the present semiclassical approximation, there occurs
no quantum tunneling when the classical solution does
not reach the band crossing point due to the dissipa-
tion. Then the asymmetric threshold current is the ori-
gin of the nonreciprocal tunneling rate, and hence the
dissipation is required for the nonreciprocity. On the
other hand, it is shown in Ref. 2 that the nonreciprocal
Landau-Zener tunneling occurs if we have nonzero shift
vector even without the dissipation. Here, as we noted
before, we are considering the system where P ′ and T ′ is
broken by the asymmetry of the dispersion relation, but
the system still has P ′T ′ symmetry. Then, from the gen-
eral transformation rule [4], the shift vector is identically
zero. Furthermore, we can show that, in the absence of
the shift vector, there is no nonreciprocity in the LZ rate
even in the presence of the asymmetry in the band energy
for the dissipationless system. To show this, we observe
that, in the absence of shift vector, the amplitude for the
tunneling process during one cycle of Bloch oscillation
under the electric field E = −Ex < 0 is given as [2],

a
(−Ex)
+ = iei argA+−(−π)

∫ π

−π
dk1|A+−|(k1)e−i

∫ k1
−π dk2

∆(k2)
−eEx ,

(22)

where A+− = 〈u+|∂k|u−〉, |u±〉 is the wavefunction for
upper/lower band, and ∆(k) is the k dependent differ-
ence of the upper and lower band energy. Although the
standard estimation utilizes the integration path in the
complex k plane, here we only consider the integration
path on the real k line. From Cauchy’s theorem, this
does not spoil any generality of our result. Then, the

expression for the reverse process with the electric field
E = Ex > 0 is given as,

a
(Ex)
+ = iei argA+−(π)

∫ −π
π

dk1|A+−|(k1)e−i
∫ k1
π

dk2
∆(k2)
eEx ,

Then, by taking the complex conjugate of Eq. (22), we

can show that
(
a
(−Ex)
+

)∗
= eiχa

(Ex)
+ , where

χ = − argA+−(−π)− argA+−(π)−
∫ π

−π
dk2

∆(k2)

eEx
.

Therefore, we conclude that
∣∣∣a(−Ex)+

∣∣∣ =
∣∣∣a(Ex)+

∣∣∣ in the ab-

sence of shift vector, even if the system breaks P ′ symme-
try. The situation is different if we include the dissipation
to the system, as we can see from Eq. (20). Since the
semiclassical dynamics of Q reflects the asymmetry of the
dispersion through the dissipative term, the nonrecipro-
cal LZ effect is realized.

III. DISCUSSION

A. Nonlinear capacitance

Here, we estimate the nonlinear capacitance α [22–26]
defined in Eq. (6) using the scaling form derived by the
Thomas-Fermi approximation [25, 26]:

α ∝
[

(4π)2

εF,2

(
Sλ2λ

−2
2 e−2

)−2 − (4π)2

εF,1

(
Sλ1λ

−2
1 e−2

)−2] 1

e3
,

∝
[

1

n2
− 1

n1

]
4π

eS2
(23)

where S is the area of the cross section of the Josephson
Junction, λ1,2 and n1,2 are the Thomas-Fermi screen-
ing lengths and carrier density of the bulk superconduc-
tors, and we replaced the derivative operator d/dε with
1/εF (εF is the Fermi energy) for the order estimation.
From this expression, we can see that α is enhanced for
the junctions with largely different values of n1 and n2.
From now on, we consider the junctions consisting of a
superconductor with small n1, e.g., FeSe, where the car-
rier density is of the order of |n1| ∼ 1020 cm−3 [43], and
one with larger n2, e.g., a conventional superconductor,
where |n2| ∼ 1022 cm−3. Now, the linear capacitance in
the Thomas-Fermi approximation can be written as

C =
εr
4π

S

a+ λ1 + λ2
, (24)

where εr and a are the relative dielectric constant and
thickness of the thin film, respectively.

First we consider the case (I), where the dynamics is
governed by Eqs. (8) and (9). Then, in the dimensionless
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unit, we get

A = αC3/2
√
EJ

∝
[

εr
n2S(a+ λ1 + λ2)

− εr
n1S(a+ λ1 + λ2)

]√
EJ

2EQ
.

(25)

Now, we set the typical values εr ∼ 10, S ∼ 0.1µm2,
a = 1 nm, EQ/EJ ∼ 10−1 and assume a � λ1,2. Then,
A ∼ 10−3.

If we consider the case (II), where the dynamics is gov-
erned by Eqs. (15) and (16), in dimensionless unit,

Ã = αCe ∼
[

εr
n2S(a+ λ1 + λ2)

− εr
n1S(a+ λ1 + λ2)

]
.

(26)

Since EJ ∝ S and EQ ∝ 1/S, EJ/EQ � 1 is satisfied
for the system with small S. Therefore, we assume small
Josephson junction and set S = 0.01µm2, εr ∼ 10, a =
1 nm and assume a� λ1,2. Then, Ã ∼ 10−2.

B. Experimental measurement

From the above estimate, A ∼ 10−3 for case (I) and

Ã ∼ 10−2 for case (II), so the asymmetry is rather small
in the experimental settings, but we can measure the 2ω
response V2ω to the AC driving current Ix(t) = Ia cosωt
with small ω with a high precision. Assuming ω is small
compared to the characteristic frequency of the dynam-
ics, we can calculate the 2ω component of the response
voltage by the adiabatic approximation:

V2ω =
ω

2π

∫ 2π/ω

0

dt cos(2ωt)V (Ia cosωt)

=
1

4π

∫ 2π

0

dτ cos τ
[
V
(
Ia cos

τ

2

)
+ V

(
−Ia cos

τ

2

)]
.

(27)

Now, we estimate V2ω for three cases: (A): case (I) with
T = 0, (B): case (I) with T > 0 and (C): case (II). As

we discussed, the asymmetry of V is pronounced near the
critical value of ix or ĩx, so, to obtain large V2ω we set the
amplitude of the external voltage Ia near these critical

currents, i.e., (A) Ic, (B) ic2Ic and (C) ĩ
L/R
c,bl e/(RC).

For the case (A), i.e., case (I) with T = 0, if we
set I0 > IC , the above measurement of 2ω component
reflects the difference of iRc1 and iLc1. We set the crit-
ical current density Ic/S = 100 A/cm2 and the resis-
tance times area RS = 10−5 Ω cm2, and the capaci-
tance C/S ∼ 10−5 F/cm2, where we used Eq. (24) with
a = 1 nm and εr = 10. Then we get r−1 ∼ 0.1, and for
A ∼ 10−3, A′ = 0.5A, the numerical calculation yields
V2ω ∼ 10−3RIc ∼ 1µV.

Next, we consider the case (B), i.e., case (I) with T >
0. We use the same parameters as the case (A) and
set T = 50 K. Then, the numerical calculation yields
V2ω ∼ 10−3RIc ∼ 1µV.

For the case (C), i.e., case (II), for Ã = 10−2 and Ã′ =

0.5Ã, the numerical calculation yields V2ω ∼ 10−2e/C ∼
1µV, where we used the parameters C/S ∼ 10−5 F/cm2

and S = 0.01µm2.
In summary, V2ω is about 1µV for junctions with low

carrier density, e.g., FeSe, on one side of the junction,
and a conventional superconductor with higher carrier
density on the other side of the junction, and it can be
measured by the current experimental technology.

C. Conclusion

We have shown that, in inversion asymmetric Joseph-
son junctions, the nonreciprocal Ix − V characteristic
is realized if we include the asymmetry of the charg-
ing energy both for the system with EJ/EQ � 1 and
EJ/EQ � 1. As we discussed, the nonreciprocity in-
duced by the nonlinear capacitance can be experimen-
tally measured.
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