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The interplay of interactions and disorder in low-dimensional superconductors supports the forma-
tion of multiple quantum phases, as possible instabilities of the Superconductor-Insulator Transition
(SIT) at a singular quantum critical point. We explore a one-dimensional model which exhibits such
variety of phases in the strongly quantum fluctuations regime. Specifically, we study the effect of
weak disorder on a two-leg Josephson ladder with comparable Josephson and charging energies
(EJ ∼ EC). An additional key feature of our model is the requirement of perfect Z2-symmetry,
respected by all parameters including the disorder. Using a perturbative renormalization-group
(RG) analysis, we derive the phase diagram and identify at least one intermediate phase between
a full-fledged superconductor and a disorder-dominated insulator. Most prominently, for repulsive
interactions on the rungs we identify two distinct mixed phases: in both of them the longitudinal
charge mode is a gapless superconductor, however one phase exhibits a dipolar charge density order
on the rungs, while the other is disordered. This latter phase is characterized by coexisting super-
conducting (phase-locked) and charge-ordered rungs, and encompasses the potential of evolving into
a Grifith’s phase characteristic of the random-field Ising model in the strong disorder limit.

PACS numbers:

I. INTRODUCTION AND PRINCIPAL
RESULTS

The superconductor-insulator transition (SIT)
observed in thin layers or wires of superconduct-
ing (SC) materials is a dramatic manifestation
of quantum fluctuations enhanced by the low-
dimensionality1–3. Its most prominent signature
is a drastic change in the electric resistance at low
temperatures T → 0, which switches from zero to
infinity upon tuning of a non-thermal parameter
(e.g. a magnetic field, a reduced layer thickness,
gating etc.) beyond a critical value. This phe-
nomenon exemplifies a quantum phase transition
(QPT)4: a fundamental change in the nature of
the ground state across a T = 0 critical point.

The onset of a SIT does not necessarily involve
the breaking of Cooper pairs: it has been seen
in Josephson arrays, granular systems and disor-
dered metals where superconductivity persists lo-
cally even in the insulating phase. In such sys-
tems, the underlying mechanism is rather domi-
nated by the combined effects of repulsive interac-
tions and disorder, which tend to imped long-range
phase-coherence between SC islands in favor of a
charge-localized phase. This mechanism is well-
captured by interacting Bosons models, or equiv-
alently Josephson arrays1,5–12. In the latter, the
competition between a repulsive interaction and
the superconducting stiffness is tunable by the ra-
tio of two energy scales – the charging energy Ec
and Josephson energy EJ . The SIT occurs at a
critical value where Ec/EJ ∼ 1, corresponding to
maximal phase-charge uncertainty.

Disorder is an additional ingredient, associated

with the presence of random charge impurities
and/or spatial fluctuations in Ec/EJ . Its inter-
play with the interactions may introduce a richer
set of quantum phases, separated by more than
one critical point. Indeed, extensive studies have
suggested a variety of distinct insulating phases
including, e.g., a “Bose/Mott glass"5,6. A more
intriguing possibility is the emergence of an inter-
mediate metallic phase13–16 near the putative SIT
critical point. Alternatively, a mixed phase with
coexisting SC and charge density correlations may
form in this strongly fluctuating regime.

In the present paper, we show that several mixed
phases are supported in a relatively simple model
for a strongly fluctuating SC device. We consider
a weakly-disordered two-legged Josephson ladder,
focusing on the quantum fluctuations regime where
both intra and inter-leg charge interactions are
comparable to the Josephson coupling on the same
links (Ec ∼ EJ). A crucial property of our model
is a perfect Z2-symmetry, respected by all param-
eters including the disorder; notably, this is eas-
ier to achieve when the leg index represents a dis-
crete degree of freedom other than real-space sep-
aration. Contrary to earlier studies of Bosonic
ladders17–20, a natural description of the system
under these conditions involves a weak coupling
between Fermionic and Bosonic sectors. Utilizing
a perturbative renormalization-group (RG) analy-
sis to explore the T = 0 phase diagram, we find
evidence for a variety of intermediate phases be-
tween a full-fledged superconductor and a disorder-
dominated insulator (see Fig. 1). Most promi-
nently, we identify two distinct mixed phase where
SC correlations coexist with charge-ordering: one
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FIG. 1: Left panel: Illustration of the charge configuration on the ladder in the ordered phases; the top panel
depicts the CDW-ordered phase, and the bottom panel the SC phase. Right panel: Phase diagram as a function of
the Luttinger parameter K =

√
K+K− and disorder Dη, for V > 0 (see text); here K+/K− = 1.02, u+ = u− = 1,

Dg,− = 0.003, gθ = 0.3, gφ = 0.03, DU,s = 0; the color scale denotes ∆(`f ) obtained from the RG flow up to
`f = 20. The grey region (Dis I) corresponds to the intermediate disordered phase where D− is relevant, but the
symmetric mode maintains a LL behavior; the black region (Dis II) corresponds to the disordered insulator where
Dg is relevant.

exhibits long-range CDW order, and one (marked
Dis I in the figure) is disordered. We conjecture
that in the strong disorder limit, this latter phase
evolves into a Grifith’s phase characteristic of the
random-field Ising model23.

A key feature of the Bosonic ladder in the clean
limit is the separability of the low-energy degrees
of freedom into two independent sectors: the sym-
metric (longitudinal) and antisymmetric (trans-
verse) modes. Each of the sectors may undergo
a QPT of distinct type, associated with the break-
ing of U(1) and Z2 symmetries, respectively. In
the quantum fluctuations regime, the antisymmet-
ric mode (best represented in terms of nearly-free
Fermions) exhibits an Ising-type QPT21,22. Un-
der the extra assumption of commensurate Bo-
son density on the lattice, the symmetric mode
exhibits a Berezinskii-Kosterlitz-Thouless (BKT)
transition24,25 from a Luttinger Liquid (LL) to a
Mott insulator. Consequently, as a common pa-
rameter is tuned (e.g. Ec/EJ on the legs), an in-
termediate phase can emerge between the two sep-
arate critical points, with coexisting charge density
wave (CDW) order of the global charge and a SC

order with inter-leg phase locking.
What is the fate of this intermediate phase in

the presence of disorder? One possible scenario is
the shrinking of this phase and recovery of a sin-
gular SIT critical point. On the other hand, disor-
der supports the formation of inhomogeneity and
thus stabilizes the coexistence of spatially sepa-
rate regions with distinct local order parameters26.
Specifically in our case, two different types of
disorder effects should be considered. The first
type, resulting mainly from inhomogeneities in the
charging and Josephson energies, maintains the
Fermionic and Bosonic sectors independent, but
possibly alters the nature and position of the re-
spective critical points. The other type of dis-
order may introduce coupling terms between the
two sectors which may profoundly change the crit-
ical behavior of the combined Boson-Fermion sys-
tem: e.g., turning the continuous Ising transi-
tion into first order, or generate a novel multi-
critical point27–29. A dominant effect of the latter
type stems from the presence of random impurities
which induce spatial fluctuations in the chemical
potential along the ladder. As detailed below, we
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analyze the interplay between both types of disor-
der, and derive their combined effect on the phase
diagram.

The rest of this paper is organized as follows:
in Sec. II we introduce the model; in Sec. III
we present the RG analysis and main results; our
concluding remarks are summarized in Sec. IV.
Finally, Appendices A through D are devoted to
technical details of our analysis.

II. THE MODEL

As a starting point, we consider the clean limit of
a two-leg Bosonic ladder described by the Hamil-
tonian

H0 =

ˆ
dx [H1 +H2 +Hint] (1)

where x is a continuous coordinate along the leg
direction (in units of the lattice constant a), and
the local terms are given by

Hν =
1

2

[
Uρ2

ν + ρs (∂xφν)
2
]

(ν = 1, 2) (2)

Hint = [−Jcos (φ1 − φ2) + V ρ1ρ2] . (3)

Here U is the charge interaction and ρs the su-
perfluid stiffness within each leg, J is the inter-leg
Josephson coupling and V is the inter-leg charge
interaction; ρν(x), φν(x) are respectively the local
charge-density-fluctuation and phase operators on
leg ν. We further use the expansion30

ρν = − 1

π
∂xθν + ρ0

∑
p∈Z\0

ei·2p·(θν−πρ0x) (4)

where ∂xθν and φν are canonical conjugates, and
ρ0 denotes the uniform background charge density.

Since H0 obeys a Z2 symmetry to exchange be-
tween the legs, its low-energy approximation can
be decomposed into independent symmetric (+)
and antisymmetric (−) sectors using the transfor-
mation

θ± =
θ1 ± θ2√

2
, φ± =

φ1 ± φ2√
2

. (5)

Accounting for the leading terms in Eq. (4) [see
App. A for details], this yields H0 = H+ + H−
where each subsystem independently exhibits a
QPT tunable by a common parameter of H0, e.g.
K ∝

√
U
ρs
.

The symmetric part H+ is a sine-Gordon (SG)
model:

H+ =

ˆ
dx
[
H(+)
LL + g cos

(√
8θ+ − 2πρ0x

)]
,

(6)

H(+)
LL =

u
+

2π

(
K+(∂xθ+)2 +

1

K+

(∂xφ+)2

)

which exhibits a Luttinger liquid (LL) behav-
ior corresponding to a gapless plasmon mode for
generic values of ρ0. However close to integer
filling of the underlying lattice, a transition to a
Mott insulator occurs when the Luttinger param-
eter K+ ∼

√
(U+V )
ρs

exceeds a critical value; this
is a SIT where the SC phase exhibits only a quasi
long-range order.

In contrast, H− describing the antisymmetric
mode is a self-dual SG model (SDSG)31

H− =

ˆ
dx
[
H(−)
LL − gφ cos

√
2φ− + gθ cos

√
8θ−

]
,

(7)

H(−)
LL =

u−
2π

(
K−(∂xθ−)2 +

1

K−
(∂xφ−)2

)
in which the competing phase-locking and charge-
locking cosine terms arise from the corresponding
two terms of Eq. (3). In a wide range of param-
eters surrounding the self-duality point K− = 2,
gφ = gθ (accessible for U ∼ ρs in Eq. (2) and
J ∼ V ρ2

0), both of them are simultaneously rele-
vant and the SDSG is effectively described as two
independent transverse-field Ising models, one of
which is highly massive22,32. The low-energy de-
scription is therefore given in terms of a single pair
of Majorana fields ξR, ξL:

H− =

ˆ
dx
(
ξR(−iu−∂x)ξR − ξL(−iu−∂x)ξL − i∆ξRξL

)
(8)

which indicates an Ising-type transition when the
gap ∆ changes sign. This can be interpreted as a
SIT as well: the ∆ > 0 phase (realized when J in
Eq. (3) is sufficiently larger than V ρ2

0) is phase-
locked (i.e. SC), while ∆ < 0 (corresponding to
the opposite case) is a Mott insulator; both phases
are long-range ordered (with a gap |∆|). Note that
the nature of CDW order in the insulator depends
on the sign of V : for V > 0, dipoles are formed
on the rungs (θ− = ±π/

√
8), while V < 0 favors

equal charges on the two legs (θ− = 0).
We now introduce disorder resulting from ran-

dom x-dependent variations in the various param-
eters of the model. We distinguish two types of
disorder, as detailed below.

(a) Particle-hole preserving disorder. We first
consider randomness arising from spatial inhomo-
geneities in the parameter U , ρs, J and V of the
original model Eqs. (2), (3), related to the charg-
ing and Josephson energies on the legs and rungs
of the ladder. Such corrections to the Hamiltonian
do not couple linearly to the density operators, and
hence do not violate particle-hole symmetry when
the chemical potential adjusts ρ0 to a commensu-
rate filling. At the same time this type of disorder
maintains the Z2-symmetry of the model; hence it
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does not couple the symmetric and antisymmetric
sectors and is ultimately manifested as random-
ness in the parameters of H+, H− [Eqs. (6), (8)].
Notably, since the disorder is space-dependent but
not time-dependent, it breaks the Lorentz symme-
try characterizing both low-energy degrees of free-
dom; hence (as we show explicitly in the next Sec-
tion) all the parameters including the velocities u±
flow under RG.

The disorder in the symmetric sector is intro-
duced as x-dependent corrections to the parame-
ters K

+
, u

+
and g; all of these can be assumed

to originate from a term δHν(x) of the form Eq.
(2) with random charging energy δU(x) and su-
perfluid stiffness δρs(x). We further assume that
these random corrections are the same on both legs
ν = 1, 2 and correspond to a static "white noise"
characterized by the disorder averages

〈〈δU(x)〉〉 = 0 , 〈〈δρs(x)〉〉 = 0

〈〈δU(x)δU(x′)〉〉 = D
U
δ(x− x′) (9)

〈〈δρs(x)δρs(x
′)〉〉 = Dsδ(x− x′) .

As shown in the next Section, these disorder
terms renormalize the parameters K

+
, u

+
of the

quadratic part H(+)
LL in Eq. (6), but are irrelevant

under RG. More significant is their effect on the
cosine term, which we maintain as an independent
disorder term associated with random corrections
to g:

Hg =
1

2

ˆ
dx
(
δg(x)ei

√
8θ+ + δg∗(x)e−i

√
8θ+
)
(10)

where the complex parameter δg(x) contains the
oscillatory phase shift of θ+, and is characterized
by the disorder averages

〈〈δg(x)δg(x′)〉〉 = 〈〈δg(x)〉〉 = 0 ,

〈〈δg(x)δg∗(x′)〉〉 = Dgδ(x− x′) . (11)

In the antisymmetric sector, the disorder charac-
terized byD

U
, Ds [Eq. (9)] combined with random

fluctuations in the rung-interactions J , V gener-
ate x-dependence in all the parameters of Eq. (7).
However, within the regime of parameters where
the low-energy theory for H− is captured by Eq.
(8), we encode their most prominent contribution
in a single additional disorder parameter corre-
sponding to spatially-dependent corrections to the
mass ∆:

〈〈δ∆(x)〉〉 = 0 ,

〈〈δ∆(x)δ∆(x′)〉〉 = D−δ(x− x′) . (12)

Mapping to the Ising model, δ∆(x) can be inter-
preted as a random transverse field.

(b) Disordered chemical potential. We next con-
sider randomness in the chemical potential, arising

e.g. due to charged impurities in the system. How-
ever, to maintain the Z2-symmetry we assume the
local potential δµ(x) to be identical on the two
legs. The leading term added to H0 of Eq. (1) is
of the form

Hη =
1

2

∑
ν

ˆ
dx
(
η(x)ei2θν + η∗(x)e−i2θν

)
=

ˆ
dx
(
η(x)ei

√
2θ+ + η∗(x)e−i

√
2θ+
)

cos
√

2θ−

(13)

where η(x) is a complex random variable obeying

〈〈η(x)η(x′)〉〉 = 〈〈η(x)〉〉 = 0 ,

〈〈η(x)η∗(x′)〉〉 = Dηδ(x− x′) . (14)

Distinctly from all the previous disorder terms, this
introduces a non-trivial coupling term between the
symmetric and antisymmetric sectors of H0. In
terms of their low-energy degrees of freedom, it
corresponds to a many-body Boson-Fermion inter-
action, which in particular does not have a simple
local form in terms of the Fermion fields of Eq. (8).

Accounting for all types of disorder introduced
in (a) and (b) as weak perturbations of H0, we
next derive RG equations in the spirit of the anal-
ysis described, e.g., in Ref. 33 (see App. B for
details). It is noteworthy that the special case
Dη = 0, which allows treatment of the ±-sectors
independently, indeed reduces the problem to mod-
els studied elsewhere in the literature. However,
the more generic case where Dη is finite yields a
set of coupled RG equations which affects all pa-
rameters of the model, and in particular generates
all other types of disorder (most prominently, Dg

and D−) even when their bare values are zero. Be-
low we sketch the main steps and results of this
RG analysis.

III. RG ANALYSIS AND MAIN RESULTS

The various disorder terms described in the pre-
vious Section affect the behavior of the system in
different ways. We use a perturbative momentum-
shell RG method (see App. B for details) in order
to determine their effect on the system, which will
allow us to explore the different parts of the phase
diagram. We shall begin with the case Dη = 0 and
analyse the disorder terms of type (a), which affect
each of the ±-sectors independently (subsections
A,B below); in subsection C we introduce Dη 6= 0
which couples the two sectors, and yields the full
phase diagram.
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A. Symmetric Sector

First, we consider the Symmetric sector H+.
The clean part is described by Eq. (6), to which
we add three types of disorder - DU , Ds (Eq. (9))
and Dg (Eq. (10)). The full Hamiltonian for the
symmetric sector acquires the form

H+ =

ˆ
dx
[
H(+)
LL + δU(x) (∂xθ+)

2 (15)

+ δρs(x) (∂xφ+)
2

+
[
δg(x)ei

√
8θ+ + h.c.

]]
;

(16)

note that here we assume a generic filling for which
the oscillatory cosine term in Eq. (6) can be elimi-
nated. The quadratic disorder parameters are bet-
ter written in a dimensionless form:

DU/s =
DU/sΛ

(2π)4u2
+

(17)

where Λ is the upper momentum cutoff. Along
with the definition from Ref. 33

Dg =
Dg

Λ3u2
+

(18)

one can write the RG equations for the symmetric
sector:

dK+

d`
=4

(
DsK2

+
+
Dg
K

+

− DU
K2

+

)
K

+

du
+

d`
=− 4

(
DsK2

+
+
Dg
K

+

+
DU
K2

+

)
u

+

dDs/U
d`

=−Ds/U
dDg
d`

=

(
3− 4

K+

)
Dg

(19)

where ` is the logarithmic rescaling factor. One
readily observes that the disorder in the quadratic
terms (Ds/U ) is always irrelevant, and so it just
renormalizes the parameters K

+
and u

+
(see App.

C 1). The Luttinger parameter K
+
can be renor-

malized either upwards or downwards, while the
velocity is always corrected downwards – this re-
sults from breaking the Lorenz invariance of the
system. As these disorder terms only contribute
corrections to the parameters of the clean model,
and are never relevant, in the forthcoming more
complex analysis we will ignore them and just use
the effective values of K

+
, u

+
.

On the contrary, Dg turns relevant at Kc = 4
3 .

This critical value might be modified due to Ds/U ,
but the general structure is the same. The ex-
act value depends on the parameters, but around
K

+
= Kc one can find a critical manifold where the

symmetric sector undergoes a SIT. The supercon-
ducting phase is a LL with power-law correlations
which manifests zero resistance only in the limit
T → 0, and the insulating phase is a disordered
insulator, dominated by Dg.

B. Antisymmetric Sector

Next, we turn to the Antisymmetric sector H−.
The clean part of the Hamiltonian is given most
generally by Eq. (7). One should note that for very
low values of K− (K− < 1), the term gθ cos

√
8θ−

turns irrelevant and the CDW order it tends to
induce is completely suppressed. In that case, the
system will be a gapped superconductor, where the
relative phase φ− is locked by the Josephson cou-
pling. Similarly, for high values of K− (K− > 4),
the system is a gapped insulator with CDW order
parameter.

For values of K− in the intermediate regime
between these two extremes the system is well-
described by the Fermionic Hamiltonian Eq. (8),
on which we focus. Apart from the disorder terms
Ds/U , whose effects we will include in the defini-
tions of u− and K− , here the dominant disorder
will be in the gap parameter ∆ – i.e., D− defined
in Eq. (12). This disorder can be treated similarly
to Dg, but as D− is always relevant we account
for second order contributions to get a more ac-
curate description of the behavior. We define the
dimensionless disorder parameter

D− =
D−

(2π)2u2
−

Λ
; (20)

along with the normalized gap δ ≡ ∆
u−Λ one can

write the equations:

dD−
d`

=D− +
4

3

δ2

(1 + δ2)2
D2
−

du−
d`

=− D−
1 + δ2

u−

dδ

d`
=

(
1− 2D−

1 + δ2

)
δ .

(21)

The above form hints towards a normalized dis-
order parameter, which accounts better for the si-
multaneous growth of δ: D̃− ≡ D−

1+δ2 , that obeys
the equation

dD̃−
d`

= D̃−
1− (1− 16

3 D̃−)δ2

1 + δ2
. (22)

This yields a threshold value D̃− = 3
16 below which

the disorder D̃− is less relevant than δ, and the
system in dominated by the clean limit (see further
discussion in C 2).
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FIG. 2: Left panel: Phase diagram of the antisymmetric sector for Dη = 0, as a function of the gap ∆ and disorder
in the gap D−. Here u− = 1; the color code denotes ∆(`f ) obtained from the RG flow up to `f = 10. The black
region corresponds to the disordered phase where the perturbative analysis breaks down. Right panel: the same
phase diagram, parametrized by the Luttinger parameter of the antisymmetric sector K− ; the dependence of the
gap on K− is monotonic but non-linear, taken from Ref. 22. In both panels, red is superconductor and blue is
insulator

The resulting phase diagram is depicted in Fig.
2. For low enough initial ∆,D− one finds that
the disorder dominates in a triangle in parameter
space, |δ| ≤ αD− with some constant α. Higher
initial values of D− introduce non-linearity in the
behavior, but the qualitative behavior is the same
– phase-locked superconductor for large positive ∆
(low K−), disorder for small ∆ (intermediate K−),
and charge-locked insulator for large negative ∆
(high K−).

The primary conclusion is that here, the SIT oc-
curs via an intermediate phase characterized by a
wide distribution of the gap parameter ∆, with
tails in either signs. While a full characteriza-
tion of its behavior requires a non-perturbative
method, we interpret this phase as a Bose glass
which exhibits local CDW or SC order in random
locations in space (and likely developes to a Grif-
fith’s phase in the strong disorder limit). Inter-
estingly, this T = 0 phase diagram resembles the
finite T characteristic of a clean Ising transition in
1+1-dimensions, with D− providing the analogue
of temperature; a direct transition from CDW to
SC occurs only at the singular QCP D− = ∆ = 0.

C. Disordered Coupling Term

We next analyze the disorder term Hη [Eq.
(13)], which couples the ±-sectors. As a basis for a
perturbative RG analysis of this term, we assume
Dη � u2

±Λ3 and take advantage of the known
correlations of the operators cos

√
2θ−, e±i

√
2θ+

in their respective independent unperturbed states
dictated byH± [Eqs. (6), (7)]. Notably, the former
operator controlling the coupling to the antisym-
metric mode does not have a simple representation
in terms of the Fermions characterizing the low-
energy degrees of freedom for intermediate values
of K− [Eq. (8)]. However, its space-time correla-
tions are well-characterized in terms of the order
and disorder Ising fields32, and are crucially de-
pendent on the sign of ∆. In particular, for ∆ > 0
where the antisymmetric sector is in the SC phase,
its correlations are exponentially decaying.

In the insulating phase of H− established for
∆ < 0, the disorder termHη couples to a more rele-
vant operator compared to the SC phase. However,
its ultimate effect on the behavior of the system de-
pends on an additional ingredient of the model: the
sign of the inter-leg interactions V [see Eq. (3)],
or equivalently the coefficient gθ in Eq. (7). As
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noted in Sec. II, in the clean limit this determines
the charge ordering pattern on the rungs: for re-
pulsive interactions (V > 0), the charge field is
locked at either one of the minima θ− = ±π/√8

for which 〈cos
√

2θ−〉 = 0; in the case of attrac-
tive interactions (V < 0), θ− = 0, π/

√
2 yielding

〈cos
√

2θ−〉 6= 0, and hence Hη couples to the
total-charge mode via a highly relevant operator
cos
√

2θ+. We therefore separate these two cases
in our analysis.

We first consider the repulsive interaction case
V > 0, which turns out to yield a richer phase
diagram. In this case, cos

√
2θ− has no expecta-

tion value, and its correlators decay exponentially.
As a result, the only contribution of Hη to the
RG equations to leading (linear) order in Dη will
be manifested as shifts of the parameters g, gθ in
the clean model. The leading non-trivial contri-
bution beyond that arises from fourth-order in the
perturbation expansion; it can be interpreted as a
quenched disorder term of a higher scaling dimen-
sion compared to all types of terms introduced in
Sec. II, and is irrelevant in all the ordered phases
of the Dη = 0 case (see App. B for details). Con-
sequently, the latter effect of a finite Dη on the RG
equations can be neglected.

To set up the derivation of RG equations at fi-
nite Dη, we first define the dimensionless disorder
parameter

Dη ≡
Dη

u2Λ3
; (23)

here a velocity scale u ≈ min
{
u+ , u−

}
is intro-

duced, noting that Dη couples to both sectors.
As discussed above, the effect of Dη on the RG
flow strongly depends on the behavior of the anti-
symmetric mode in the clean limit. We therefore
consider below three limits, classified most conve-
niently by the (bare) value of the parameter K− :
the Bosonic superconductor, the Bosonic insulator,
and the intermediate Fermionic regime.

Bosonic superconductor (K− < 1). This regime
is established when the last term in Eq. (7) is irrel-
evant, and H− reduces to a standard sine-Gordon
model dominated by the single cosine term describ-
ing Josephson coupling on the rungs. The anti-
symmetric mode is then in a gapped phase where
the relative phase field φ− is locked at φ− = 0;
low-energy quantum fluctuations in φ− are well-
described by a massive Bosonic model. We note
that this behavior is not significantly altered even
if randomness in the mass is introduced (see App.
D). As already noted, in this case any operator of
the form cos γθ− coupling to the dual field is ex-
ponentially irrelevant. As a result, the sole effect
of Dη is to provide corrections to the other param-
eters of the model which can be absorbed in their
bare values, and hence practically ignored.

Bosonic insulator (K− > 4). In this regime of
parameters, the last term in Eq. (7) is dominant
while the Josephson coupling on the rungs turns
irrelevant. As a result, one obtains a strong ten-
dency for charge-locking in the antisymmetric sec-
tor at a CDW pattern obeying 〈cos

√
8θ−〉 ≈ −1,

andH− can be approximated by a massive Bosonic
model with gap |∆| (in terms of the definitions of
Sec. II, ∆ < 0). However, since at the same time
〈cos
√

2θ−〉 ≈ 0, the leading contribution to the
RG equation for the disorder term arises from or-
der D2

η (see App. B). The linear order in Dη, on
the other hand, generates terms which can be re-
garded as corrections to the various parameters of
H0. Combining them all, we get the following set
of coupled equations:

dK
+

d`
=4(DsK2

+
+

2Dg
K

+

− DU
K2

+

)K
+

+
(u

+

u

)
Dη

du
+

d`
=− 4(DsK2

+
+

2Dg
u

+

+
DU
K2

+

)u
+

−
(u

+

u

) u
+

K
+

Dη

dK−
d`

=4(DsK2
−
− DU
K2
−

)
K−

1 + δ2

+
(u−
u

)
Dη

du−
d`

=− 4(DsK2
−

+
DU
K2
−

)
u−

1 + δ2

−
(u−
u

) u−
K−
Dη

dδ

d`
=δ − δ2/K−−1 u+

u−
Dη

dDU
d`

=−DU
dDs
d`

=−Ds

dDg
d`

=

(
3− 4

K
+

)
Dg + cD2

η

dDη
d`

=

(
3

2
− 2

K+

− 2

K− (1 + δ2)

)
Dη

(24)

where c is a constant of order unity.
It is noteworthy that the two Bosonic descrip-

tions mentioned above are valid approximations
even when both cosine terms are relevant, if one
of them has a significantly larger effect on the sys-
tem, as quantified by the gaps they induce22; see
App. A.

Fermionic regime (intermediate values of K−).
In this regime where the clean part of the an-
tisymmetric sector is best approximated by the
Fermionic model Eq. (8), the effect of Dη on the
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RG equations is similar in nature to the previous
case; the primary difference is that the operator
cos
√

8θ− which couples to the leading terms gen-
erated by the disorder can be more conveniently
expressed in terms of Fermion fields. This yields
the following set of coupled equations (see App. B
for details):

dK+

d`
=4(DsK2

+
+

2Dg
K+

− DU
K2

+

)K+

+
(u+

u

)
Dη

du
+

d`
=− 4(DsK2

+
+

2Dg
K

+

+
DU
K2

+

)u+

−
(u

+

u

) u
+

K+

Dη

du−
d`

=− 4(DsK2
−

+
DU
K2
−

)
u−

1 + δ2

−
(u−
u

) u−
K−
Dη −

D−
1 + δ2

u−

dδ

d`
=δ − Cgθ

u
+

u−
Dη −

2D−
1 + δ2

δ

dDU
d`

=−DU
dDs
d`

=−Ds

dDg
d`

=

(
3− 4

K+

)
Dg + c1D2

η

dD−
d`

=D− +
4

3

δ2

(1 + δ2)2
D2
− + c2D2

η

dDη
d`

=

(
1

2
− 2

K
+

)
Dη .

(25)

Here c1, c2 are constants of order unity; Cgθ =(
16πgθ

u−K−Λ2

) 2/K−−1

2−2/K− does not change significantly in
the regime of parameters where Eq. (25) is valid,
so one can consider it as a constant as well.

It is evident from the above two sets of equations
that in both cases, Dη turns relevant for high val-
ues K

+
which exceed the critical point (K

+
= 4

3 )
for Dg to become relevant. Beyond this critical
point which indicates a localization transition in
the symmetric sector, the perturbative analysis
breaks down, leading to a rapid growth of K

+
and

consequently of Dη. We therefore conclude that
there is effectively a unique disordered insulating
phase. Within the framework of the weak-disorder
approximation, it is not possible to infer the pre-
cise nature of the charge-density pattern on the
rungs in this phase, though it may survive locally
in randomly distributed disconnected domains.

It should be noted, however, that while Dη does
not tune a phase-transition separable from the one
dominated by Dg, its coupling to both the sym-

metric and antisymmetric sectors generates a flow
of all the other parameters [see Eqs. (24), (25)]. As
a result, it can serve as the tuning parameter for
various transitions, as can be seen in Fig. 1. This
figure was obtained by setting the bare parameters
to the Fermionic regime where the RG flow is de-
termined by Eq. (25), and exhibits a pronounced
effect of Dη. We identify four distinct phases, ac-
cessible e.g. by tuning Dη upwards: for relatively
low values of Dη and K, the symmetric mode is a
gapless LL while the antisymmetric mode under-
goes a transition from a phase-locked SC phase to
a CDW-ordered insulator via a disordered inter-
mediate phase, whose nature is described in sub-
section B above; the fourth phase realized beyond
a critical line in the Dη–K plane is a disordered in-
sulator, characterized primarily by localization of
the symmetric charge mode. Since Dη couples the
sectors, this will be the case in the antisymmetric
sector as well.

Although Figure 1 captures the richness of the
phase diagram for typical parameters, tuning the
parameters differently can introduce other phases.
Specifically, the tuning parameter

K
+

K−
can change

the order of the transitions: Dg may turn relevant
before D∆. Two exemplary figures with different
topology of the phases diagram can be seen in Fig.
3. It is suggestive that a variety of distinct disor-
dered phases are generated (see black regions and
different shades of grey in the figure).

Based on the weak-disorder approximation ap-
plied in our study, one can not reliably deduce the
exact nature of these phases. However, it appears
that within the regime where a disordered insulator
is established in the symmetric sector, some of the
independent behavior of the antisymmetric sector
still persists. In particular, there appears to be a
regime whereD∆ is relevant and dominates the an-
tisymmetric sector, denoted by "Dis I+II" in Fig.
3; more interestingly, there is potentially a mixed
phase where the antisymmetric sector still exhibits
robust superconductivity, denoted "Dis II+SC" in
the figure.

We finally consider the crucially different case
where the interactions on the rungs of the ladder
are attractive, V < 0. The most significant effect
of this change of sign is manifested in the sign-
reversal of the parameter gθ in Eq. (7); it is there-
fore equivalent to performing a shift θ− → θ−+ π√

8
in the last cosine term in H− while maintaining
the other parts of the clean Hamiltonian the same.
The resulting effect on the behavior of Dη is dra-
matic: the CDW pattern in the insulating phase of
the antisymmetric sector favors θ− = 0, which cor-
responds to equal charge densities on the two legs
of the ladder. In this ground state, the operator
cos
√

2θ− in Hη [Eq. (13)] has a finite expectation
value.
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Dis II+SC

SC

Dis I+II

Dis II

Dis I

FIG. 3: Phase diagrams as a function of K and Dη for V > 0, and different values of the ratio K
+/K− . In

both panels u+ = u− = 1, Dg = D− = 0.002, gθ = 0.2, gφ = 0.05 and DU,s = 0. Left: K
+/K− = 0.98; Right:

K
+/K− = 1.08. The titles of the phases match the definitions from Fig. 1, Dis I+II is a phase where both disorder

terms are relevant, and Dis II+SC is a potential intermediate phase where SC order in the antisymmetric sector
coexists with disorder in the symmetric sector.

As a result, Dη has a much larger contribution,
and in the charge-locked phase of the antisymmet-
ric mode yields the following RG equation:

dDη
d`

= (3− 1

K
+

)Dη . (26)

This corresponds to a highly relevant disorder,
with critical Luttinger parameter of K+c = 1

3 . We
conclude that once the antisymmetric sector tran-
sitions into the insulating phase (which happens for
K− way above this critical value), Dη turns rele-
vant. Notably, since its effect on the other disorder
parameters is similar to what we have obtained in
the V > 0 case, this induces their divergence and
consequently the formation of a disordered insu-
lating phase. The prominent change in the phase
diagram as compared to Fig. 1 is that the interme-
diate phase manifesting CDW order on the rungs
will disappear; the sole intermediate phase separat-
ing the SC from a disordered insulator will be the
mixed phase marked by a grey region in Fig. 1,
where randomness in established in the antisym-
metric sector while the symmetric mode remains
gapless.

IV. DISCUSSION

In this work we have discussed a two-leg ladder
model of a strongly fluctuating superconductor in
the presence of various types of quenched disor-
der, and examined the resulting T = 0 phases. We
found that by tuning a parameter K – which is
controlled by the ratio of charging and Josephson
energies – or the disorder strength, the system typ-
ically undergoes a sequence of quantum phase tran-
sitions rather than a direct SIT. Between the two
extreme phases – a SC phase manifesting robust
phase-locking on the rungs, and a disordered insu-
lator – at least one intermediate phase is formed.
Particularly, in the case of repulsive interactions
across the rungs, two distinct intermediate phases
are identified: one ordered and one disordered.
The ordered phase is characterized by a dipolar
CDW order on the rungs, while the disordered in-
termediate phase exhibits Grifith’s singularities in-
terpolating between phase and charge locking on
the rungs; in both these mixed phases, as well as
in the SC phase, the longitudinal plasmon mode
(corresponding to fluctuations in the total charge)
maintains a gapless LL behavior and perfect con-
duction (R→ 0) is achieved in the limit T = 0. At
the opposite extreme, a full-fledged localization of
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this mode occurs only in the disordered insulator
phase (see Fig. 1).

The richness of this phase diagram rests on the
symmetry between the two legs, which restricts
spatial variations in the parameters to the longi-
tudinal direction. This ensures a relative resilience
to weak disorder of the separability between an-
tisymmetric (transverse) and symmetric (longitu-
dinal) phase/charge fluctuation modes. As a con-
sequence, in the former sector we observe traces
of behavior characteristic to the Ising model in a
random transverse field23. Most prominently, in
the case where the inter-leg charge interaction is
repulsive, the system supports the two (duality-
related) gapped phases reminiscent of the clean
Ising model, separated by a mixed phase where
segments of phase-locked rungs are embedded in a
background of charge-locked rungs, or vice versa.

Our findings suggest that engineered Josephson
ladders in the strong quantum-fluctuations regime
(EC ∼ EJ) can serve as a compelling platform
for simulating the physics of the random-field Ising
model, as well as coupled Boson-Fermion systems
in 1D – as long as they possess the above men-
tioned Z2-symmetry. Moreover, provided separate
contacts to the edges of the two legs are accessible,
probing of the various phases is possible via mea-
surement of different conductance components22.
In practice, accurate control of the parameters
in Josephson arrays which ensures a perfect sym-
metry is quite challenging. However, as long as
symmetry-breaking corrections are small, they do
not affect the model qualitatively. We note that
the effect of uniform Z2-symmetry breaking terms
was discussed in earlier literature, showing that
they can be accounted for perturbatively. Specifi-
cally, small corrections to the quadratic terms are
marginal22,35. A more relevant perturbation is im-
posed by a uniform voltage bias between the two
legs, which (following a duality transformation) is
equivalent to a perpendicular magnetic field as in-
troduced in 21. Once again, there is a range of
stability where such corrections merely shift the
critical lines but the phase diagram maintains its
structure. The random counterparts of the above
mentioned terms are less relevant. We therefore
conclude that a weakly broken Z2-symmetry will
not affect our main results, save for quantitative
modifications (e.g., the CDW phase in Fig. 1 will
somewhat shrink).

An alternative realization of the model, which
allows to better control and even fully guarantee
the Z2-symmetry, can potentially be achieved in
a platform where the discrete degree of freedom
is not spatial, but rather some internal degree of
freedom (e.g., a spin, valley or orbital index). The
most promising candidate is a (Bosonic) cold atom
system, where a "synthetic dimension" is intro-

duced via manipulations of internal degrees of free-
dom of the atoms36–38. Another suggestive plat-
form can be served by van der Waals materials
with long-range disorder, where valley-symmetry
can be controlled to a reasonable degree. Such re-
alization in bilayer graphene subjected to a strong
magnetic field was discussed in Ref. 22. The rapid
progress in design and fabrication of hybrid lay-
ered material in the recent years offers a richer va-
riety of systems with suitable ingredients - e.g., a
graphene-black phosphorus bilayer, which exhibits
a nearly flat quasi-1D band-structure39; a design
of realizations for our model in such platforms is
left for future studies.

As a concluding remark, it would be interest-
ing to test our results and their limitations in a
numerical study. For that purpose, it would be
useful to utilize an equivalent lattice model effi-
ciently tractable by standard numerical methods
such as classical Monte Carlo or Density Matrix
Renormalization Group (DMRG). We propose two
general routes to this end: first, it is possible to
map our quantum model into an equivalent clas-
sical spin model in 2D and address it in Monte
Carlo, similarly to the study of a single Josephson
chain40. An alternative route could be mapping
to a model of interacting-Fermions ladder, where
competing interactions can be tuned to generate
emergent Bosons (tightly-bound pairs) with repul-
sive interactions. Such models are tractable by
DMRG – see e.g. Refs. 41,42 (in the latter, a
compelling evidence for the Ising transition of the
clean limit was already seen).
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Appendix A: Derivation of the low-energy
theory

The ladder model in the clean limit is described
in Eqs. (1)-(3). In this Appendix we detail the
derivation of its low-energy approximation, Eqs.
(6)–(8), used as a basis for the remains of the anal-
ysis.

As a first stage, in the definition of ρν in terms of
θν [Eq. (4)] we keep only the leading harmonics,
coming from p = ±1. The Hamiltonian acquires
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the structure

Hν =
U

2π2
(∂xθν)

2
+
ρs
2

(∂xφν)− 2ρ0U

π
∂xθν cos (2 (θν − πρ0x)) + 2Uρ2

0 cos (2 (θν − πρ0x))
2

Hint =
V

π2
∂xθ1∂xθ2 −

2ρ0V

π
[∂xθ1 cos (2 (θ2 − πρ0x)) + ∂xθ2 cos (2 (θ1 − πρ0x))]

+4ρ2
0V cos (2 (θ1 − πρ0x)) cos (2 (θ2 − πρ0x)) .

(A1)

The terms combining gradients with cosines must
vanish, as they are not symmetric to inversion
(x 7→ −x). We re-write Eq. (A1) in terms of

θ±, φ± as defined in Eq. (5), describing the sym-
metric (+) and antisymmetric (−) sectors to get
the following Hamiltonian:

H =

ˆ
dx

[
U + V

2π2
(∂xθ+)

2
+
ρs
2

(∂xφ+)
2

+ 2ρ2
0V cos

(√
8θ+ − 4πρ0x

)
+
U − V

2
(∂xθ−)

2
+
ρs
2

(∂xφ−)
2

+ 2ρ2
0V cos

(√
8θ−

)
− J cos

(√
2φ−

)
+ Uρ2

0 cos
(√

8θ+ +
√

8θ− − 4πρ0x
)

+ Uρ2
0 cos

(√
8θ+ −

√
8θ− − 4πρ0x

)]
.

(A2)

The first two lines correspond to Eqs. (6) and (7)
in the main text. The terms on the third line are
less relevant, being higher harmonics which we al-
ready neglect in the density operator ρν .

We now identify the quadratic part of each sec-
tor as a Luttinger Liquid, with u± =

√
(U ± V ) ρs

andK± =
√

U±V
π2ρs

. We see that for the bare values,
K+ > K− for repulsive interactions, andK+ < K−
for attractive interactions. However, as we show in
App. C 2, disorder terms of the type DU/s mod-
ify each of these parameters independently; there-
fore, this hierarchy of the Luttinger parameters is
not necessarily maintained once disordedr is intro-
duced.

To further analyze the antisymmetric sec-
tor, a slight modification of the standard
Fermionization30 is helpful:

ψr =
Ur√
2πa

e−i[
rφ−(x)/

√
2−
√

2θ−(x)] (A3)

with r = R,L for right- and left-moving Fermions,
a the lattice constant, and Ur the Klein factor.
For K− = 2, one can exactly map Eq. (7) to non-

interacting Fermions:

ψ†R (−i∂x)ψR − ψ†L (−i∂x)ψL

=
2 (∂xθ−)

2
+ (∂xφ−)2

2

π

ψ†RψL + h.c. =
1

πa
cos
(√

2φ−

)
ψLψR + h.c. =

1

πa
cos
(√

8θ−

)
(A4)

Now one can decompose these Fermions to Ma-
jorana (real) fields

ψr =
ξr1 + iξr2√

2
(A5)

and the Hamiltonian decouples into two indepen-
dent sectors: one with ξ↑R ≡ ξ1R and ξ↑L ≡ ξ2L,
and the other with ξ↓R ≡ ξ2R and ξ↓L ≡ ξ1L. The
Hamiltonian in terms of these Majorana fields is

H =
∑
ν=l

ˆ
dxu− [ξRν (−i∂x) ξRν − ξLν (−i∂x) ξLν ]

− i∆νξRνξLν .
(A6)

In the case ofK− = 2, ∆l = ∆θ±∆φ where ∆θ,φ

are linear in gθ,φ, the coefficients of the cosines in
Eq. (7). However, if K− 6= 2, there is an inter-
action term ∝

(
K− − 2

)
ξ↑Rξ↑Lξ↓Rξ↓L. Provided
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there is a separation of energy scales between the
l-sectors, this can be treated in mean-field; the ef-
fective gaps have the same structure, but with ∆θ,φ

the gap of the corresponding sine-Gordon model.
This approximation is self-consistent if ∆θ ≈ ∆φ

(∆↓ � ∆↑), in which case integrating over the ↑
sector is justified and yields the low-energy the-
ory. In this case, the effective Hamiltonian is dom-
inated by the sector with the smaller gap ∆↓ [Eq.
(8) in the main text where we have dropped the
subscript ↓ on ∆], which undergoes a transition as
∆↓ changes sign. This allows us to analyze the be-
havior of the transition in the antisymmetric sector
and identify it as an Ising transition22. Note that
∆↑ and ∆↓ change their classification when the in-
teraction term gθ ∝ V changes its sign; we define
them such that |∆↑| = |∆θ| + |∆φ| and so ∆↑ is
always the larger in magnitude.

We next derive the disorder term Hη originating
from randomness in the chemical potential µ(x).
Assuming a perfect symmetry between the legs and
employing the leading harmonics in the expansion
Eq. (4), the coupling to µ(x) is given by

Hµ =−
ˆ
dxµ (x) [ρ1 (x) + ρ2 (x)]

=

ˆ
dxµ (x)

[
1

π
(∂xθ1 + ∂xθ2)

− 2ρ0 (cos (2θ1 − 2πρ0x)− cos (2θ2 − 2πρ0x))]

=

ˆ
dx

√
2µ (x)

π
∂xθ+

−
ˆ
dx4ρ0µ (x) cos

(√
2θ+ − 2πρ0x

)
cos
(√

2θ−

)
(A7)

The first term can be "gauged out" with the shift
by a random phase:

θ+ 7→ θ+ + ϕ(x) ,

ϕ(x) ≡
√

2π

(U + V )

ˆ x

µ (x)
(A8)

which yields

cos
(√

8θ+ − 4πρ0x
)

7→ 1

2
ei(
√

8θ+−4πρ0x+
√

8ϕ(x)) + h.c. .
(A9)

Substituting in the cosine of Eq. (6), we obtain

2ρ2
0V e

i(
√

8ϕ(x)−4πρ0x) ≡ δg (x) (A10)

where the correlations of δg are approximated to
be totally non-correlated. Note that the amplitude
g might also change because of randomness in V .

The second term of Hµ [Eq. (A7)] is different.
With the random phase from the first term, we can

write it as

Hη =

ˆ
dx
[
η (x) ei

√
2θ+ + h.c.

]
cos
(√

2θ−

)
,

η (x) ≡4ρ0µ (x) ei(
√

2ϕ(x)−2πρ0x) .
(A11)

Here η(x) has both random amplitude and ran-
dom phase, so we once again approximate it to be
totally non-correlated.

Appendix B: Derivation of the RG Equations

In this Appendix we will discuss the method
used to derive the RG equations in this work, pre-
sented in Sec. III. We particularly focus on the
contribution of the disorder term in chemical po-
tential (Dη) in different regimes of the parameter
space, primarily on the regime where the antisym-
metric sector is well-described by Majorana fields.

Generally, we consider a disorder term with the
operator Ô (x, τ) of the form

Sdis =

ˆ
dxdτ

[
δgO (x) Ô (x, τ)

]
(B1)

in which the random coefficient δgO (x) obeys
〈〈δgO〉〉 = 0 and the short-range correlations:

〈〈δgO (x) δgO (x′)〉〉 = DOδ (x− x′) (B2)

where 〈〈· · · 〉〉 stands for statistical averaging over
the realizations of the disorder. We substitute this
as a term in the action, write the expression for the
partition function, and expand to second order in
Sdis. Averaging over disorder and using Eq. (B2)
leads to the main contribution:

〈〈S2
dis〉〉 =

ˆ
dxdτdτ ′DOÔ (x, τ) Ô (x, τ ′) (B3)

and one should subtract the disconnected terms,
resulting from 〈〈Sdis〉〉2.

To derive RG equations, we write the action de-
scribing our model in momentum space. Now we
would like to apply momentum-sell renormaliza-
tion group, so we begin by introducing a high mo-
mentum cutoff Λ and splitting the fields represent-
ing the free part of the action to their slow and
fast momentum components:

ξ (r) =ξ< (r) + ξ> (r)

ξ< (r) =
1√
Lβ

∑
||q||<Λ′

eiq·rξ (q)

ξ> (r) =
1√
Lβ

∑
Λ′<||q||<Λ

eiq·rξ (q)

(B4)

where ξ stands for either of the Majorana fields
ξR, ξL or the Bosonic fields φ+, θ+; here Λ′ =
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e−d`Λ is a slightly smaller momentum cutoff, q =(
ω
u , k

)
, r = (uτ, x), and ||q||2 = ω2

u2 + k2 with the
appropriate velocity u; L and β are respectively
the length of the system and the inverse tempera-
ture.

If the operator Ô (x, τ) can be directly writ-
ten in terms of the fields in the free action, in
our case θ+, φ+, ξR, ξL, one can integrate over the
fast modes (θ>+ , φ

>
+, ξ

>
R , ξ

>
L ) to get an effective ex-

pression for the action of the slow modes. Below
we demonstrate how this procedure can be imple-
mented, and show that this effective expression can
be cast in the following form:

ˆ
dxdτdτ ′eγd`DOÔ

< (x, τ) Ô< (x, τ ′)

+
∑
i

ˆ
dxdταid`Ô

<
i (x, τ)

(B5)

where
{
Ôi

}
is a set of local operators and αi are

coefficients proportional to DO; the exponent γ is

related to the scaling dimension of Ô; finally, Ô< is
just Ô with all the fields replaced with their "slow"
low-momentum component.

This effective action is defined to fulfill the fol-
lowing equation:

e−S
<
eff =

ˆ
Dξ>e−S (B6)

where we integrate over fast modes of all fields.
To obtain S<eff , we expand the exponent around
the quadratic part of the action S0, which results
with a perturbative description of the way DO

scales and its effects on the other parameters of
the model.

We begin with a simple example, the case of ∆
disorder [Eq. (8), (12)], where δgO (x) = δ∆ (x)

and Ô = iξRξL. The disorder-averaged expression
for S2

dis is then given by

〈〈S2
dis〉〉 =−D∆

ˆ
dxdτdτ ′ξR (x, τ) ξL (x, τ) ξR (x, τ ′) ξL (x, τ ′)

=−D∆

ˆ
d3kd2ωξR (k1, ω1) ξL (k2,−ω1) ξR (k3, ω3) ξL (−k1 − k2 − k3,−ω3) .

(B7)

In momentum space we split the 5-dimensional
integral to different regimes according to the de-
composition in Eq. (B4). That means the inte-
gration regime is split into sixteen different parts,
as each momentum vector can be in the smaller
ball (|q| < Λ′, "slow") or on the momentum shell

(Λ′ < |q| < Λ, "fast"). However, expectation val-
ues over an odd number of fields vanish, which
means a large part of the terms cancel. Among
those remaining we can use some symmetries, and
essentially get the following expression:

〈〈〈S2
∆〉>〉〉 =− LβD∆

ˆ
d5qξRξLξRξL − 2βD∆

ˆ
dkdωξR (k, ω) ξL (−k,−ω)

˛
dk′dω′ 〈ξR (k′, ω′) ξL (−k′,−ω′)〉>

−2D∆

ˆ
dkdωξR (k, ω) ξL (−k,−ω)

˛
dk′ 〈ξL (k′,−ω) ξR (−k′, ω)〉>

+D∆

ˆ
dkdωξR (k, ω) ξR (−k,−ω)

˛
dk′ 〈ξL (k′, ω) ξL (−k′,−ω)〉>

+D∆

ˆ
dkdωξL (k, ω) ξL (−k,−ω)

˛
dk′ 〈ξR (k′, ω) ξR (−k′,−ω)〉>

−Lβ
˛
d5q 〈ξRξLξRξL〉>

(B8)

where d5q = dk1dk2dk3dω1dω3, and the integrals´
dk and

´
dω are over the smaller momentum ball

|qi| < Λ′, while those denoted by
¸
dkdω′ are over

the shell;
¸
dk′ means that (k′, ω) should be on the
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momentum shell. Also, note we have used the fact
that 〈ξ (q) ξ (−q′)〉 = f (q) δq,q′ .

Among the resulting six terms, the first one will
give us the rescaling of D∆, the next four will be
corrections to local terms like the second line of
Eq. (B5), and the last one is a non-interesting
constant. The expectation values are all over fast
modes and with respect to the quadratic action S−
(the antisymmetric part of S0). They are known,
and using the approximation ω/u−, k � Λ all the

integrals are quite simple as well.

We now note that Eq. (B8) yields the de-
sired correction to S<eff [Eq. (B6)] only after re-
exponentiating. To leading order in D∆, the cor-
rection is given by 1

2

(
〈S2
dis〉 − 〈Sdis〉2

)
where the

disconnected terms cancel. After performing the
integrals over the momentum-shell and transform-
ing back to the real-space representation, we ob-
tain

〈〈〈S2
dis〉>〉〉 − 〈〈〈Sdis〉2>〉〉

2
=− D∆

2

ˆ
dxdτdτ ′ξ<R (τ) ξ<L (τ) ξ<R (τ ′) ξ<L (τ ′)

− 2D∆∆

u2
−

(
1 + (∆/u−Λ)

2
) ( 1

Λ′
− 1

Λ

)ˆ
dxdτiξ<Rξ

<
L

− D∆

2u2
−

(
1 + (∆/u−Λ)

2
) ( 1

Λ′
− 1

Λ

)ˆ
dxdτ

(
ξ<R∂τξ

<
R + ξ<L ∂τξ

<
L

)
.

(B9)

The last step in the RG procedure is to rescale
the coordinates and fields. In momentum-space,
we re-write q 7→ qed` for q to restore the original
cutoff Λ. The differentials dx, dτ correspondingly
are multiplied by a factor ed` each, and ξ are mul-
tiplied by eyξd` where yξ is their scaling dimension.
In the clean model, yξ = − 1

2 ; however, here there

is a correction of order D∆ required to compensate
for the last term in Eq. (B9), adjusting the over-
all coefficient of the term ξ∂τξ in the effective ac-
tion to have a coefficient unity. Substituting these
rescaling factors, the leading term with coupling to
four Fermion fields becomes

e(3+4yξ)d`D∆

ˆ
dxdτdτ ′ξR (x, τ) ξL (x, τ) ξR (x, τ ′) ξL (x, τ ′) (B10)

which gives the RG equation for D∆. The equa-
tions for ∆ and u− arise from the appropriate
rescaling of the fields and coordinates in the last
two terms of (B9). This concludes our derivation
of Eq. (21) in the main text.

The above derivation relied on the ability to
switch between real-space and momentum-space in
a straightforward manner. This is useful for addi-
tional disorder terms that are quadratic in the free
fields of S0, such as δU (x) (∂xθ+)

2 in the symmet-
ric sector. However, when there are non-quadratic
operators involved, the procedure is more compli-
cated as the coupling between fast and slow fields is
tighter, and a simple representation of Ô in (k, ω)-
space is lacking.

To deal with this type of disorder terms, certain
approximations will need to be implemented in the

procedure of integrating the fast modes. We em-
ploy the strategy described below for a general dis-
order term. Subsequently, we apply this approach
to analyze the chemical potential disorder term Hη

[Eq. (13)].
We begin by splitting the double-time integral

of Eq. (B3) to two different terms, τ ≈ τ ′ and τ 6≈
τ ′, where the former accounts for time-differences
∆τ ≡ τ − τ ′ within the short-time cutoff (uΛ)

−1:

S2
dis =

ˆ
τ 6≈τ ′

dxdτdτ ′DOÔ (x, τ) Ô (x, τ ′)

+

ˆ
τ≈τ ′

dxdτdτ ′DOÔ (x, τ) Ô (x, τ ′) .

(B11)

Generally, different local operators Ôi are gener-
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ated from local expansions of the term Ô (x, τ ′):

Ô (x, τ ′) = Ô (x, τ) + (∆τ) ∂τ Ô (x, τ) + . . . (B12)

One can expand to leading orders in ∆τ , resulting
with a set of local operators (independent of τ ′)
multiplied by some function of ∆τ :

S2
dis =

ˆ
τ 6≈τ ′

dxdτdτ ′DOÔ (x, τ) Ô (x, τ ′)

+
∑
i

ˆ
τ≈τ ′

dxdτd (∆τ)DOFi (∆τ) Ôi (x, τ) .

(B13)
We now turn to integrating over the fast modes.

In the first term, we know that the correlation of
the fast modes 〈Ô> (τ) Ô> (τ ′)〉 decays, so that un-
der the approximation τ 6≈ τ ′ averaging over the
fast modes will not depend on ∆τ . The second
term is already composed only from local terms
by construction. We therefore only need to calcu-
late local expectation values. The result can be
brought to the following structure:

S<2
dis =eγOd`

ˆ
τ 6≈τ ′

dxdτdτ ′DOÔ
< (x, τ) Ô< (x, τ ′)

+
∑
i

eγid`
ˆ
τ≈τ ′

dxdτd (∆τ)DOFi (∆τ) Ô<i (x, τ)

(B14)
where γi and γO are related to the scaling dimen-
sions of the operators, as will be seen in what fol-
lows.

To restore back the effective S2
dis in the slow

modes sector to the form of (B5), one must unite
the τ 6≈ τ ′ and τ ≈ τ ′ contributions to one term.
A part of the local term is "absorbed" back in the
non-local term, to reconstruct the structure of a
disorder term. Following integration over ∆τ we
obtain

S<2
dis =eγOd`

ˆ
dxdτdτ ′DOÔ

< (x, τ) Ô< (x, τ ′)

+
∑
i

(
eγid` − eγOd`

)ˆ
dxdτDOCiÔ

<
i (x, τ)

(B15)
where Ci ≡

´
d (∆τ)Fi (∆τ), in which the integral

is bounded by the cutoff (uΛ)
−1 and yields a non-

universal constant. The exact value of Ci is not
important – only its sign and dependence on the
parameters of the model. Note that eγid`−eγOd` ≈
(γi − γO) d`, so this can be understood as a cor-
rection to the coefficient of Ôi (an operator that
typically exists in the free action S0) of order d`.

To complete the RG transformation, we have to
restore the cutoff Λ. Similarly to the discussion of
the quadratic case, dx and dτ will each be mul-
tiplied by a factor of ed`. In the limit d` → 0,

this rescaling can be neglected in the second line of
Eq. (B15). However, in the first, non-local term it
yields an overall prefactor e(3+γO); we interpret the
resulting coefficient as the renormalized disorder.
Noting that γO < 0, the exponent y

DO
≡ 3 + γO

is the scaling dimension of the disorder operator,
which will determine the condition for it to be rel-
evant. The second, local term provides a set of
corrections to the parameters of S0.

The last step is re-exponentiation – once again
leading to subtraction of the disconnected term
〈Sdis〉2. This yields the final form Eq. (B5).

To demonstrate the general procedure described
above, we now briefly review the analysis the disor-
der term Hg [Eq. (10)]. The operator in this case
is Ô = cos

√
8θ+. We will use intermediate calcu-

lations that match appendix E of Ref. 30, and the
final result will be identical to Ref. 33. Averaging
over the fast modes we have

〈Ô (x, τ)〉> = e−
2
K Ô< (x, τ) (B16)

and therefore γO = − 4
K , so the scaling of Dg is

dDg
d` =

(
3− 4

K

)
Dg.

Looking at the short-range regime τ ≈ τ ′,
the product Ô (τ) Ô (τ ′) can be simplified using
trigonometrical identities and the expansion Eq.
(B12). The result yields two local terms in the
leading orders:

Ô1 (τ) = cos
√

32θ+

Ô2 (τ) = (∂τθ+)
2
.

(B17)

The operator Ô1 is not very interesting, as its di-
mension is very low, 2 − 8

K and so it is irrelevant
in our regime of interest. The operator Ô2, on the
other hand, will lead to the corrections to u

+
and

K
+
as they appear in (24)-(25)

We next turn to apply this approach for
the analysis of Hη [Eq. (13)], where Ô =

cos
(√

2θ+

)
cos
(√

2θ−
)
. As we follow the same

procedure, to linear order in Dη one straightfor-
wardly obtains the corrections to various terms
which couple to local operators Ôi. However,
the RG transformation of the disorder term itself
poses a challenge: as long as the gap ∆ in the
antisymmetric sector is finite, the correlations of
cos
(√

2θ−
)
never decay as a power-law for ∆τ →

∞. Rather, employing the decomposition

cos
√

2θ− = 〈cos
√

2θ−〉+ : cos
√

2θ− : (B18)

the second term has exponentially decaying cor-
relations. For V > 0, the first term vanishes
(cos
√

2θ− couples to the disorder field in the Ising
representation32); hence Ô is exponentially irrele-
vant to the present order in the perturbative ex-
pansion of Hη.
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To derive RG flow equations forDη, we therefore
need to consider the next order in the perturbative
expansion. This yields a disorder term coupling to
the operator cos

√
8θ−, which has a simple rep-

resentation in terms of either the Fermion fields
ξR,L, or the massive Bosonic field θ−. Indeed, the
fourth order term S4

dis (with a coefficient propor-
tional to D2

η) contains a specific four-point com-
bination Ô (x, τ) Ô (x, τ) Ô (x, τ ′) Ô (x, τ ′) which
possesses power-law decaying correlations. Us-
ing cos2

(√
2θ−

)
= 1

2 [1 + cos
(√

8θ−
)
], this con-

tributes several terms: some of them are lo-
cal and can be interpreted as corrections to δ
and g (the latter renormalizing Dg as well);
the leading non-local (“disorder-like") term is
therefore associated with the operator ˆ̃O =
cos
(√

8θ+ (x, τ)
)

cos
(√

8θ− (x, τ)
)
, with a coeffi-

cient ∝ D2
η.

Proceeding with the analysis of the latter disor-
der term is made possible by implementing the ap-
proximate representation of cos

(√
8θ±

)
in terms

of the free fields, and explicitly evaluating 〈 〉>.
In particular, the operator cos

(√
8θ+

)
is already

included in Hg and yields the same scaling expo-
nent; the scaling dimension of cos

(√
8θ−

)
can be

inferred from either the Fermionic or the massive
Bosonic representations, depending on the value
of K− (see main text). This yields the following
scaling dimensions:

y
Dη

=

{
1
2 −

2
K

+
Fermionic behavior

3
2 −

2
K

+
− 2

K− (1+δ2) Bosonic behavior
(B19)

with δ the dimensionless gap in the Bosonic regime.
Note that in any case, Dη is always less relevant
than Dg; hence the emergence of a disordered in-
sulating phase is dominated by the critical value of
Dg, and is only indirectly dependent on Dη via the
corrections it generates to the other parameters.

We now comment on the contribution to the RG
equations coming from linear order in Dη. These
arise from corrections to the coefficients of the fol-
lowing local operators

{
Ôi

}
:

Ô1 (τ) = (∂τθ+)
2

Ô2 (τ) = cos
√

8θ−

Ô3 (τ) = (∂τθ−)
2

;

(B20)

these result in the contribution of Dη to Eqs. (24)
and (25).

We finally note that in the regime where the
antisymmetric sector is a gapped superconductor,
any operator which contains non-trivial factors of
cos γθ− (with arbitrary γ) is exponentially irrele-
vant, and contributes nothing to any order in Dη.
The only contributions come from terms in the ex-
pansion that couple only to θ+, and therefore, at

least to leading (second) order, the effect of Dη is
just creating a shift in Dg:

Dg → Deff
g = Dg + αD2

η . (B21)

For this reason, deep in the SC phase Hη can be
ignored altogether and the ±-sectors are effectively
decoupled.

Appendix C: Analytic Solutions of the RG
Equations

The set of equations described in Eq. (25) is cou-
pled, and an analytic solution will be complicated
if it even exists. However, some special cases can
be helpful to understand the type of flow expected
in each phase.

1. Quadratic Disorder

As discussed in Sec. IIIA of the main text,
the disorder in quadratic terms of the symmetric
(gapless) sector δU (x) (∂xθ+)

2, δρs (x) (∂xφ+)
2 is

always irrelevant, and therefore we have not dis-
cussed it in detail in the main text. However, in
the presence of this disorder alone one can exactly
solve the equations, and understand its effect on
the system.

The equations for the disorder itself are simple:

dDU/s
d`

= −DU/s (C1)

so the solution is just an exponent

DU/s (`) = D0
U/se

−` (C2)

This can be substituted in the equations for
K+ , u+ :

dK
+

d`
=4

(
D0
sK

2
+
− D

0
U

K2
+

)
e−`K

+

du
+

d`
=− 4

(
D0
sK

2
+

+
D0
U

K2
+

)
e−`u

+

(C3)

Generally solving these equations is hard, but to
leading order in DU/s the renormalization of K

+

inside the round brackets can be neglected. The
resulting flow is of the form dQ

d` = Ae−`Q, with
the solution Q(`) = Q0e

A·(1−e−`). The asymptotic
values (at `→∞) are

u
+

(∞) =u
+
e
−4

(
D0
sK

2

+
+
D0
U

K2
+

)

K
+

(∞) =K
+
e

4

(
D0
sK

2

+
−D

0
U

K2
+

)
.

(C4)
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As this flow converges very fast, we generally ig-
nored it and assumed the values of K

+
and u

+
we

were using are the stable ones (in terms of DU/s).
One should also consider the effect of these disor-

der terms on the antisymmetric sector. Generally
the effect should be similar, but adding a factor
of
(
1 + δ2

)
complicates the calculations. We can

note that qualitatively, the effect on the antisym-
metric sector will be weaker. This is what gives us
the option to tune the ratio

K
+

K−
to be above or be-

low 1, independently of the sign of V (which does
constrain the bare values) – a strong Ds term will
push the ratio up, and a strong DU term will push
it down.

2. Antisymmetric Sector

The disorder in ∆ in the antisymmetric sector is
special, as D− always diverges: dD−

d` > D−, which
indicates an exponential divergence. Yet, there is
an ordered phase in the sector: as D− is the vari-
ance in the dimensionless gap δ, if

√
D− � δ the

randomness in the gap is actually small compared
to the average gap δ, and the clean limit is effec-
tively recovered. Indeed, in the RG equations D−
is always divided by 1 + δ2.

As diverging D− is not a good indicator for the
nature of the phase, one should look instead on
the "normalized disorder" parameter D̃− = D−

1+δ2

defined in Sec. IIIB, which obeys Eq. (22) in the
case Dη = 0. The RG equations for the velocity
u− and δ become

du−
d`

= −D̃−u− ,
dδ

d`
= (1− 2D̃−)δ . (C5)

Therefore, diverging D̃− will lead to u− , δ → 0,
which characterizes a disordered phase. However,
from Eq. (22) it is clear that D̃− = 3

16 is a turning

point. If D̃− > 3
16 ,

dD̃−
d` > 0 and the disorder will

diverge. On the other hand, if D̃− < 3
16 , there

is a critical value of δ above which D̃− will flow
downwards and turn irrelevant: δc = 1

1−16/3D̃−
.

As a rule of thumb, for low initial values there is
no strong coupling between δ and D̃− (no linear
contributions from one parameter on the other)
and the main question is what will happen first
– either δ will reach a value of order 1, or D̃−
will approach the critical value 3

16 or close to it.
As δ and D̃− scale the same close to the point(
δ = 0, D̃− = 0

)
, one expects linear critical lines

yielding the V-shape D̃− ∝ |δ|, as can be seen
in Fig. 2. We finally note that to get the right
panel of this figure, one may use the explicit K−-
dependence of ∆ [e.g. Eq. (D2), or Eqns. (25)-

(27) in22]; this leads to the curving of the phase-
boundary in the top and bottom of the figure.

Appendix D: Bosons with a random mass

In this Appendix we consider a type of disor-
der which was not discussed in the main text:
randomness in the gap characterizing the mas-
sive Bosonic regimes of the antisymmetric sector.
Specifically, deep in the superconducting phase,
one can write the following effective Hamiltonian
to describe fluctuations in the relative phase φ−:

H− =
u−
2π

ˆ
dx

[
K− (∂xθ−) +

1

K−
(∂xφ−)

2
+ ∆2φ2

−

]
(D1)

where we have replaced gφ cosφ− with the gap
term ∆2φ2

− following the gap equation for a sine-
Gordon model30:

∆

u−Λ
=

(
2π2K−gφ

Λ2u−

) 1
2−K−/2

. (D2)

As ∆ is affected by various parameters like u− , K−
and gφ, once either of them develops randomness
it must also fluctuate in space. We therefore re-
place ∆ 7→ ∆ + δ∆(x), with 〈〈δ∆(x)δ∆(x′)〉〉 =
Dφδ (x− x′).

Defining the dimensionless parameters Dφ =
πDφ
u2
−

Λ , δ = ∆
u−Λ and performing an analysis along

the lines described in App. B, the RG equations
to leading order in Dφ are given by

dδ

d`
=δ

(
1−

8K−Dφ
1 + δ2

)
dDφ
d`

=Dφ
(D3)

which can flow either to (δ = 0,Dφ =∞) or to
(δ =∞,Dφ =∞). The former is a disordered su-
perconductor, with strong randomness in the gap
– some kind of vortex-glass, perhaps34; the ex-
act nature can not be determined from this ap-
proximate, perturbative approach. The latter case
obeys Dφδ → Const. < 1, which means that the
width of the distribution of δ gets smaller com-
pared to δ itself.

This behavior exists, of course, in the Bosonic in-
sulator as well. However, it will never change the
structure of the phase diagram, as it does not affect
the Fermionic intermediate sector. The supercon-
ducting phase, the intermediate disordered phase
and the intermediate ordered phase will all exist,
and the main effect of this disorder in θ will be
just inside the disordered insulating phase, where
Dη is dominating anyway and drives the system to
a disordered insulator state.
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