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The O(2) model in Euclidean space-time is the zero-gauge-coupling limit of the compact scalar
quantum electrodynamics. We obtain a dual representation of it called the charge representation.
We study the quantum phase transition in the charge representation with a truncation to “spin S”,
where the quantum numbers have an absolute value less or equal to S. The charge representation
preserves the gapless-to-gapped phase transition even for the smallest spin truncation S = 1. The
phase transition for S = 1 is an infinite-order Gaussian transition with the same critical exponents δ
and η as the Berezinskii-Kosterlitz-Thouless (BKT) transition, while there are true BKT transitions
for S ≥ 2. The essential singularity in the correlation length for S = 1 is different from that for
S ≥ 2. The exponential convergence of the phase transition point is studied in both Lagrangian
and Hamiltonian formulations. We discuss the effects of replacing the truncated Û± = exp(±iθ̂)
operators by the spin ladder operators Ŝ± in the Hamiltonian. The marginal operators vanish at the
Gaussian transition point for S = 1, which allows us to extract the η exponent with high accuracy.

I. INTRODUCTION

There has been remarkable recent progress [1–7] in the
development of controllable quantum systems as quan-
tum simulators to recreate and test model Hamiltonians,
and importantly, to provide answers to open questions
that cannot be solved with classical computers. These
efforts may help elucidate properties of complex quan-
tum materials, questions involving dynamics and quan-
tum critical phenomena, as well as problems relevant to
nuclear and high energy physics. Lattice gauge theory
(LGT) offers interesting models that are introduced in
high energy physics as cutoff-regularized formulations of
gauge theories used to describe strongly interacting parti-
cles. Mappings of gauge field theories into lattice Hamil-
tonians of particles or spins [8] then allow for the pos-
sibility of quantum simulating these LGT models[9–11]
in the laboratory. For models with continuous symme-
try, the mapping leads to discrete quantum numbers for
the effective Hamiltonian that needs to be truncated for
quantum simulation. The truncations themselves may
correspond to a series of interesting models such as clock
models [12, 13], spin-S models [14] and boson models [15].
A key question that arises is how the truncation affects
the critical properties of the model for a given formu-
lation of the mapping. In this paper, we address this
question for the O(2) model by investigating the critical
behavior of its dual representation, the effects of trun-
cation and implications for its quantum simulation. We
find that spin truncations as small as S = 2 already cap-
tures its correct critical behavior. The S = 1 truncation
exhibits a multicritical point corresponding to an infinite-
order Gaussian transition that, while not capturing the
behavior of the O(2) model, is interesting in its own right.

Topological excitations (instantons, monopoles and
vortices) play an important role in the physics of gauge
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theories with continuous symmetry groups. The classi-
cal planar model in two dimensions or the O(2) model
in (1 + 1)-dimensional Euclidean space-time, was the
first discovered to have a Berezinskii-Kosterlitz-Thouless
(BKT) transition [16–18]. The BKT transition is a
very important infinite-order phase transition in two-
dimensional systems with continuous symmetry. In 1974,
Kosterlitz performed a renormalization group (RG) anal-
ysis of the O(2) model and found an essential singular-
ity in the correlation length and the same critical expo-
nents δ, η as the two-dimensional Ising universality class
[18]. In one-dimensional quantum systems, the equiv-
alence of path integral quantization to statistical me-
chanics in two dimensions assures that the same type of
phase transitions can happen driven by quantum fluctua-
tions. In (2+1) dimensions, various exotic phenomena in
both condensed matter and high energy physics belongs
to the BKT universality class, including the superfluid
transitions in 2D Bose gases [19, 20], superconducting
transitions in 2D materials [21–23] and the confinement-
deconfinement phase transitions in U(1) lattice gauge
theories [24–26].

Due to the essential singularity and the logarithmic
corrections stemming from the marginal operator, it is
difficult to detect the BKT transitions accurately using
classical methods. The O(2) model also can be seen as
the zero-gauge-coupling limit of the compact scalar quan-
tum electrodynamics (sQED) and there have been pro-
posals to quantum simulate it [9, 27, 28]. As quantum
simulators have discrete variables, proposals transform
the O(2) model into the discrete dual space where the dis-
crete variables have the physical meaning of charge and
current quantum numbers [29, 30]. By applying Gauss’s
Law, we can also go into the discrete space expanded by
electric field quantum numbers [10, 11]. These quantum
numbers takes integers from −∞ to +∞, so a truncation
is needed for quantum simulations. Some truncation ef-
fects in the mass gap and β functions for the O(2) model
have been discussed in Ref. [31]. In this paper, we discuss
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the truncation effects to the quantum phase transition in
the charge representation of the O(2) model in detail.
We are interested in determining the most economical
truncation allowing to probe the finite size effect of the
original O(2) model and preserving the BKT transition.
We investigate how the phase transitions change with the
size of the truncation. Truncation effects in a sequence of
models, such as the O(3) model with a chemical potential
[32], the O(4) model [31], the Schwinger model [33], and
the SU(2) lattice gauge theory [34], have been studied
in the context of lattice QCD, but the truncation effects
on the BKT transition in the O(2) model has not been
studied in detail in previous works. Our work employs
a combination of numerical approaches to determine the
truncation effects, and fills this gap in the progress to-
wards quantum simulation of lattice QCD [35].

Efficient tools to detect BKT transitions are needed
to study these truncation effects. Level spectroscopy
(LS) is one of the most efficient and accurate methods
for systems with a small dimension of the local Hilbert
space [36–40]. Accurate phase diagrams for various mod-
els have been determined by LS more than 15 years ago
even with modest computational resources [37–39, 41].
The LS technique requires detailed analysis of the scaling
dimensions of different types of excitations near the BKT
critical line and determining which levels cross. The level
crossing can be between different types of excitations for
different systems. After obtaining the results from LS, we
test a universal method to detect quantum phase transi-
tions: the scaling of the energy gap between the ground
state and the first excited state [42–46]. The truncation
effects in this energy gap that contains information on
the divergent behavior of the correlation length, are also
important indicators for different types of phase transi-
tions. The method does not require a prior knowledge of
the critical properties for the target systems and only re-
quires a bulk quantity: the energy gap between the lowest
two levels that can be obtained accurately by the density
matrix renormalization group (DMRG) algorithm [47–
50]. Various works [51–57] have shown similarities and
differences between the phase transition in S = 1 and
BKT transitions, with some disagreement in the location
of the phase transition and the form of the critical scaling
of the correlation length. We give concrete evidence for
the difference in the essential singularity between S = 1
and S ≥ 2 and accurate infinite-order phase transition
points by performing LS and DMRG calculations.

The paper is organized as follows. Section II A intro-
duces the O(2) model and the origin of the charge repre-
sentation. The Hamiltonian in the charge representation
and its properties are described in Section II B. We com-
pare the truncated Û± operators and the spin ladder op-
erators Ŝ± in Section II C. In Section II D, we introduce
the LS technique. The ansatz for the scaling of the energy
gap as a universal tool to detect quantum phase transi-
tions is introduced in Section II E. The parameters used
in numerical algorithms are given in Section II F. We
discuss the results in Section III. Section III A presents

the results from the Lagrangian. The determination of
phase transition points with LS for the Hamiltonian is
discussed in Section III B. In Section III C, we use the
ansatz of the scaling of the energy gap to locate the phase
transtion points and compare them with those from LS.
We emphasize the difference between S = 1 and S ≥ 2 in
each subsection of Section III. Finally, in Section IV, we
summarize the main conclusions of our work and point
out possible future work.

II. MODEL AND METHODS

A. Action

On a (L− 1)× Lτ Euclidean lattice, the action of the
O(2) model is

S = −
∑
µ=τ,s

βµ
∑
x

cos(θx+µ̂ − θx)− h
∑
x

cos(θx), (1)

where βτ(s) is a coupling constant in the temporal (spa-
tial) direction, x = (xs, xτ ) is the 2D position vector, and
τ̂ (ŝ) is the unit vector in the temporal (spatial) direc-
tion. In the isotropic case, βτ = βs = β is the inverse
temperature 1/T in the context of statistical mechanics.
The parameter h is an external field. The path integral
formulation is written as

Z =

∫ ∏
x

dθx
2π

e−S . (2)

By expanding the weights with modified Bessel functions,
Eq. (2) can be rewritten as [29, 58]

Z =I0(β)2V I0(h)V
∑

lx=nx,sτ

∏
x

tnx,τ (βτ )tnx,s(βs)tlx(h)

∝
∑

nx,τ ,nx,s

∏
x

Anx−τ̂,τ ,nx−ŝ,s,nx,τ ,nx,s (3)

where the volume V = (L − 1)Lτ , the summations are
over {nx,τ , nx,s} with the condition lx = nx,sτ = nx,τ +
nx,s−nx−τ̂ ,τ −nx−ŝ,s, tn(x) = In(x)/I0(x), and In(x) is
the n-th order modified Bessel function of the first kind.
The four-rank tensor

Anx−τ̂,τ ,nx−ŝ,s,nx,τ ,nx,s

=
√
tnx−τ̂,τ (βτ )tnx−ŝ,s(βs)tnx,τ (βτ )tnx,s(βs)tlx(h).(4)

In the context of sQED, nx,τ and nx,s have the phys-
ical meaning of charge and current quantum numbers,
respectively, and are attached to the links of the space-
time lattice. We call Eq. (3) the charge representa-
tion of the path integral quantization. Without exter-
nal field, the sum of lx with time coordinate fixed at
xτ = x0,

∑
x,xτ=x0

lx = 0, giving
∑

x,xτ=x0
nx,τ =∑

x,xτ=x0
nx−τ̂ ,τ . Thus the total charges in any two near-

est time slices at xτ = x0, x0 − 1 are equal and therefore
conserved. The charge representation contains all charge
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sectors for both periodic boundary conditions (PBC) and
open boundary conditions (OBC). Note that there are
L− 1 plaquettes and L links in a time slice for this con-
figuration. The tensor reformulation of the expectation
value of an observable can be obtained in the same way.
For example, the magnetization M = 〈cos(θx∗)〉 is ex-
pressed as

M =

∑
lx∗=nx∗,sτ−1

∑
lx6=x∗=nx,sτ

∏
xA∑

lx=nx,sτ

∏
xA

, (5)

where x∗ is the position of the local spin cos(θx∗). Thus
the tensor contraction in the numerator of Eq. 5 has an
impure tensor at x∗.

B. Hamiltonian in the charge representation

Based on the equivalence of the two dimensional sta-
tistical mechanics and the (1 + 1)-dimensional quantum
field theory, we can study the model using the Hamil-
tonian approach. Following Ref. [9, 11], we obtain the
Hamiltonian in the charge representation

Ĥc =
Y

2

L∑
l=1

(Ŝzl )2 − X

2

L−1∑
i=1

(Û+
l Û
−
l+1 + Û−l Û

+
l+1) (6)

where Y = 1/βτaτ , X = βs/aτ , aτ → 0 is the lat-
tice spacing in the temporal direction, and the limit
βτ → ∞, βs → 0 is taken to keep Y and X finite. The
index l labels the links. Ŝz is the electric charge opera-
tor satisfying Ŝz|n〉 = n|n〉 (n = 0,±1,±2, ...), and the

operator Û+(−) = exp(±iθ̂) raises (lowers) the charge

of a state by one, Û±|n〉 = |n ± 1〉. With a truncation

|n|max = S, Û± and Ŝz have the following commutation
relations [

Û+, Û−
]

= D̂, (7)[
Ŝz, Û±

]
= ±Û±, (8)

where 〈n′|D̂|n〉 = δn′,nδn,2S+1 − δn′,nδn,−2S−1, which

means the matrix elements of D̂ are all zero except the
most upper-left one (〈2S+1|D̂|2S+1〉 = 1) and the most

lower-right one (〈−2S − 1|D̂| − 2S − 1〉 = −1).
The Hamiltonian in Eq. (6) has an explicit global U(1)

symmetry, so the total charge (or magnetization) is a
conserved quantum number for any spin truncation, as it
should be for the O(2) model as the matter fields of com-
pact sQED. The phase diagrams in Refs. [41, 59] show
that Eq. (6) with Y = 0, X 6= 0 is gapless for S = 1, 2.
It is expected that the X term is gapless for any S in
the thermodynamic limit, which may drive a quantum
phase transition from a gapped phase to a gapless phase
belonging to the BKT type. In the limit Y � X, Eq. (6)
is equivalent to a simple Bose Hubbard model that can
be prepared in the cold atom experiment to study the

scaling of entanglement entropy in the superfluid phase
with incommensurate charge filling [28, 60].

For S = 1, early works indicate that the quantum
phase transition in Eq. (6) belongs to the BKT type [51–
57]. However, some of these works also provide clues
that there exist some differences from BKT. Luther and
Scalapino [51] asserted that the correlation-function ex-

ponent η = 1/
√

8 inconsistent with BKT. Their approach
was revisited by den Nijs [54] who obtained η = 1/4
consistent with BKT. Ref. [53] concluded that there is
an essential singularity at the transition point but did
not extract a reliable σ assuming ξ ∼ exp [b/(Y − Yc)σ].
Ref. [52] obtained σ = 0.9(3) and Ref. [56] obtained accu-
rate values for the dynamic exponent z = 1.00(1) and for
the η = 0.26(2) that are consistent with BKT, but was
not successful in extracting reliable σ, either. With the
development of LS techniques to locate quantum phase
transitions [36, 40], the ground state phase diagram of
the spin-1 XXZ chain with single-ion anisotropy D was
mapped out in Ref. [41]. Our Hamiltonian (6) corre-
sponds to the Hamiltonian of Ref. [41] with Jz = 0,
where Jz is the coupling of Szl S

z
l+1. It resides at the

boundary between the gapless XY phase and the gapped
odd Haldane phase for small Y and is in a gapped phase
(large-D phase in Ref. [41]) for large Y . The phase tran-
sition point Yc is the intersection of three critical lines:
the BKT line separating the XY phase and the large-
D phase, the BKT line separating the XY phase and
the odd Haldane phase, and the Gaussian line separat-
ing the odd Haldane phase and the large-D phase. So
the quantum phase transition in Hamiltonian (6) with
S = 1 should be an infinite-order Gaussian transition
from a gapped phase to a gapless BKT critical line. This
kind of transition is on one of the y0 = ±yφ lines of the
RG equations for the sine-Gordon (SG) model (see Ap-
pendix A), where there is an inherent SU(2) symmetry
[61]. On the lines y0 = ±yφ, the correlation length di-
verges as Y → Yc with an essential singularity of the
form ξ ∼ (Y −Yc)−1/2 exp [b/(Y − Yc)] [62–64], the same
as for the spin-gap phase transition in the Hubbard model
[63, 65, 66], instead of as ξ ∼ exp(b/

√
Y − Yc) [18] as is

the case for the BKT transition. The connection of the
S = 1 case to the Hubbard model can be seen by writing
the spin-1 operators as an addition of two spin-1/2 oper-

ators, Ŝα = r̂α + t̂α, such that the Hamiltonian Eq. (6)
with S = 1 can be written in the form [54]

Ĥc(S = 1) = Y

L∑
l=1

r̂zl t̂
z
l

−X
4

L−1∑
l=1

(r̂+l r̂
−
l+1 + r̂−l r̂

+
l+1 + t̂+l t̂

−
l+1 + t̂−l t̂

+
l+1)

−λ
4

L−1∑
l=1

(r̂+l t̂
−
l+1 + t̂−l r̂

+
l+1 + t̂+l r̂

−
l+1 + r̂−l t̂

+
l+1) (9)

with λ = X. Using Jordan-Wigner transformation, the
first two terms of Eq. (9) can be exactly mapped to the
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Hubbard model, which exhibits SU(2) symmetry. The
last term is the inter-species hopping term and it breaks
the Hubbard SU(2) symmetry. It was pointed out by den
Nijs [54] that there should be a line of BKT transition
points emerging from the point at λ = 0 to the point
at λ = X. The fact that the system is on a BKT line
for any Y < Yc indicates that the model should have a
hidden SU(2) symmetry. This hidden SU(2) symmetry
emerges as the spin-1/2 Heisenberg chain for large nega-
tive Y [67], where Sz = 0 states are gapped out and |±1〉
states act as spin-up and spin-down states in the spin-1/2
Heisenberg chain. The new effective spin-1/2 operators

are S̃z = (1/2)Sz, S̃+ = (1/2)S+S+, S̃− = (1/2)S−S−.
As the ground state is not likely to have another sym-
metry breaking in the gapless phase, we expect that the
SU(2) symmetry of the Heisenberg chain at large nega-
tive Y smoothly connects to the hidden SU(2) symmetry
up to the phase transition point Y = Yc > 0.

The hidden SU(2) symmetry in Ĥc(S = 1) ensures
that at the transition point Yc corresponding to y0 =
yφ = 0 in the SG model, the coupling constant of the
marginal operators is zero and the multiplicative loga-
rithmic corrections to the correlation function vanishes,
but the critical exponents are expected to be the same
as BKT. Ref. [41] does not give the numeric value of
this phase transition point, but it is around 0.35 from
the phase diagram. In Ref. [53], Yc = 0.4, Ref. [56] gives
Yc = 0.50(5), Ref. [57] gives Yc = 0.475, and Ref. [68]
gives Yc = 0.347. In this work, we give a much more ac-
curate number by performing LS with L up to 21. Note
that, because the rotation of the spin around z axis by
π (Sx → −Sx, Sy → −Sy, Sz → Sz) on odd or even
sites is equivalent to a change of sign of X (X → −X),
the phase diagram does not depend on the sign of X.
For S ≥ 2, the XXZ chain with single-ion anisotropy has
a very different phase diagram [59]. A key difference is
that the Haldane phase is pushed to positive Jz values.
So our Hamiltonian (6) with S ≥ 2 truncation is deeply
inside the gapless XY phase for small Y . Decreasing Y
drives the system to go across the BKT critical line, so
the phase transition is of a true BKT type.

C. Û± and Ŝ±

Another kind of truncation is to replace Û± operators
by the spin ladder operators Ŝ±/

√
S(S + 1), which are

used in the quantum link models of LGTs [69–71]. Ŝ±

and Ŝz satisfy [Ŝ+, Ŝ−] = 2Ŝz different from Eq. (7) for

S ≥ 2 and [Ŝz, Ŝ±] = ±Ŝ± which is the same as Eq. (8)

for any S. Û± and Ŝ± operators can be related by the
following equation,

Û± = u0Ŝ
± +

S−1∑
q=1

uq

(
Ŝz
)q
Ŝ±
(
Ŝz
)q
. (10)

The coefficients uq can be found by solving the linear
equations

Au = b, (11)

where A is a S × S matrix with elements Aij =
[(S − i)(S − i − 1)]j (i, j = 0, 1, ..., S − 1), u =
(u0, u1, ..., uS−1)T , and b = (b0, b1, ..., bS−1)T with bj =

1/
√
S(S + 1)− (S − j)(S − j − 1). For the first few spin

truncations,

Û± =
1√
2
Ŝ±, S = 1; (12)

Û± =
1√
6
Ŝ± +

(
1

4
−
√

6

12

)
ŜzŜ±Ŝz, S = 2; (13)

Û± =
1√
12
Ŝ± +

(
−
√

6

72
−
√

3

9
+

3
√

10

40

)
ŜzŜ±Ŝz

+

(√
6

144
+

√
3

72
−
√

10

80

)
(Ŝz)2Ŝ±(Ŝz)2, S = 3.(14)

In particular, u0 = 1/
√
S(S + 1), which normal-

izes the amplitude of raising (lowering) |0〉 to | +

1〉 (| − 1〉). The matrix elements of u0Ŝ
± are

δi,j±1
√

1− j(j ± 1)/S(S + 1). For infinite S, the non-

zero matrix elements of u0Ŝ
± at finite i, j are all equal

to 1. In other words, Û± = Ŝ±/
√
S(S + 1) for S = 1

or S → ∞. For finite S ≥ 2, the difference between Û±

and u0Ŝ
± is small, we expect the two kinds of trunca-

tion schemes to have the same type of quantum phase
transitions. The fine structure of the linear system in
Eq. (11) is discussed in Appendix B, where we show that
the magnitude of uq decays exponentially with the index
q.

D. Level spectroscopy

The LS method for the BKT transition is based on
detailed analysis of energy excitations using conformal
field theory (CFT). For a pure Gaussian model with
PBC, each excitation classified by quantum numbers
j = (M,k, P ), where M is the total charge or magne-
tization, k is the wavenumber, and P is the parity, has
the energy gap ∆Ej and the scaling dimension xj that
are related by ∆Ej = 2πνxj/L, where ν is the spin wave
velocity. In the neighborhood of a BKT critical line, the
scaling dimensions of the marginal operators deviate from
2 in different ways, which may cause a level crossing. As
shown in Ref. [36, 40], for the BKT transition without
symmetry breaking, one of the proper choices is the level
crossing between excitations (M = ±4, k = 0, P = 1)
and (M = 0, k = 0, P = 1). In the effective SG the-
ory with coupling constants y0, yφ (see Appendix A), the
renormalized scaling dimensions for these two excitations
are 2 − y0(l) and 2 − y0(l)(1 + 4t/3) respectively, where
t is the distance to the BKT critical line. For S = 1,
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decreasing Y drives the system into a BKT line at t = 0,
we expect to see an exact degeneracy in these energy
levels for any small enough Y and any finite L. The
phase transition point corresponds to the multicritical
point y0 = yφ = 0 in the SG theory. Another method
for spin-1 truncation is to apply twisted boundary con-
dition (TBC), ŜzL+1 = Ŝz1 , Û

±
L+1 = −Û±1 [37–39], and

study the level crossing between the ground state energy
in sector (M = 0, P = 1) and the ground state energy
in sector (M = 0, P = −1). This method is mainly used
in Ref. [41] to locate the Gaussian line between the odd
Haldane phase and the large-D phase. Since at small
Y , the Hamiltonian (6) with S = 1 truncation is on the
phase boundary of the Haldane phase, TBC still induces
a Haldane gap for finite size systems. The same mech-
anism allows one to consider odd number of sites with
PBC, and study the level crossing between the ground
state energy in the sector (M = 0, k = 0, P = 1) and
that in the sector (M = 0, k = 0, P = −1). This method
is equivalent to the method in Ref. [68] where the dis-
continuity of ground-state expectation value of the per-

mutation operator Pi,j = ~Si · ~Sj + (~Si · ~Sj)2 − 1 is used
to locate the same Gaussian line. For S ≥ 2, the phase
transition is of a true BKT type and there is true level
crossing between the excitations (M = ±4, k = 0, P = 1)
and (M = 0, k = 0, P = 1).

E. Gap scaling

As any phase transition happen at the place of clos-
ing the energy gap, the energy gap between the low-
est two levels is a natural universal tool for quantum
phase transitions. Unlike LS, this method does not re-
quire a prior CFT analysis of the target model and the
inverse of the energy gap describes the divergent be-
havior of the correlation length. To apply this method
to our model, the first idea is to extrapolate the en-
ergy gap to the thermodynamic limit, and fit the data

with A (Y − Yc)1/2 exp [−b/(Y − Yc)] for S = 1 and
A exp (−b/

√
Y − Yc) for S ≥ 2 [72]. This is usually diffi-

cult and requires precise manipulations of the extrapola-
tion procedure. A more stable way is to use the following
ansatz for the scaling of the energy gap in the vicinity of
the phase transition [42–44]

L∆E [1 + g (L)] = F

(
ξ

L

)
, (15)

where the correlation length

ξ ∼ (∆E)−1 ∼

{
(Y − Yc)−1/2 eb/(Y−Yc), S = 1

eb/
√
Y−Yc , S ≥ 2

(16)

near the phase transition in the gapped phase. F (ξ/L) is
a universal scaling function and g(L) is a correction term
depending on the size of the system. The leading behav-
ior of g(L) is 1/ [2 ln(L) + C] from Weber and Minnhagen
[73]. We can also include higher order corrections

and take g(L) = 1/ [2 ln(L) + C + ln(C/2 + ln(L))] +
A/ ln2(L) [74–78] to further decrease the error. The
goal of this method is to find the best data collapse
of the rescaled energy gap ∆Es = L∆E [1 + g (L)]
near the phase transition point in the parameter space
(Yc, b, C,A). The universal function F (ξ/L) is approxi-
mated by an arbitrarily high degree polynomials of the
variable xL = ln(L/ξ). We show that the best data col-
lapse is found at C → ∞, which implies that logarith-
mic corrections are highly suppressed. The phase transi-
tion points obtained from this method without g(L) differ
from those from LS only at the third decimal place.

F. Parameters in numerical algorithms

The tensor contraction in the path integral Eq. (3)
can be calculated efficiently by the higher order tensor
renormalization group (HOTRG) method [79]. The local
observables such as the magnetization M = 〈cos(θ)〉 can
be calculated using the impure tensor method [80, 81].
When contracting the four-rank tensor in Eq. (3), the
tensorial bond dimension grows exponentially. We re-
strict the maximal bond dimension to beDbond in the cal-
culation. The maximal lattice size we use is V = 224×224,
where the calculated quantities converge within 12 signif-
icant numbers such that we are effectively in the thermo-
dynamic limit. The maximal tensorial bond dimension is
set to be Dbond = 60 for S = 1 and Dbond = 42 for S ≥ 2
to ensure that the dependence of the results on the bond
dimension is small.

For the Hamiltonian approach, we use the finite-size
DMRG [47, 48, 50] algorithm with matrix product state
(MPS) [82] optimization to calculate the energy gap be-
tween the lowest two levels. The calculations are per-
formed with ITensor C++ Library [83]. We increase the
number of Schmidt states gradually during the finite-
size sweeping procedure until the truncation error ε is
less than 10−10, which requires the largest bond di-
mension for the data used in this paper to be around
665, 782, 698, 601, 537 for S = 1, 2, 3, 4, 5 respectively.
The number of sweeps is large enough for the difference
in the energy between the last two sweeps to be less than
10−12. The smallest energy gap we calculate is of order
10−3 with a typical error ∼ 10−8 estimated by compar-
ing the results to those for ε = 10−12. The largest bond
dimension for ε = 10−12 is around 1400. By subtract-
ing the results for ε = 10−12 from those for larger ε, we
show the dependence of the error in eigenenergies and
the energy gap on the truncation error and the bond di-
mension in Fig. 1. One can see that in the logarithmic
scale, the error is linear with ε, which means that the
error is a power-law scaling function of ε. The power
for the energy gap is 1.31(10), larger than 1.043(9) for
the eigenenergies. The errors in the lowest two eigenen-
ergies are almost the same, thus the energy gap has a
significantly smaller error. It is also seen that the error
decreases exponentially with the bond dimension, which
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FIG. 1. The dependence of the error in the lowest two eigenen-
ergies and the energy gap on the truncation error (a) and
the bond dimension (b) in DMRG calculations. The error in
energy is obtained by subtracting the results for ε = 10−12

from those for larger truncation errors. The results are for
Ŝ± operators with S = 2, L = 512, Y = 0.94. Linear fits
give E0(ε) − E0 = 103.99(6)ε1.043(9) and |∆E(ε) − ∆E| =

103.7(7)ε1.31(10).
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FIG. 2. (Color online) The magnetic susceptibility of O(2)
model with h = 4×10−5 as a function of inverse temperature
β for different spin truncations. The data for S = 3, 4 are on
top of each other. The volume of the lattice is V = 224× 224.
The tensorial bond dimension is Dbond = 40.

is consistent with the results in Ref. [48]. These observa-
tions guarantee that our results are accurate enough so
that the error from DMRG is negligible in the following
analysis. We set X = 1 in all the calculations for the
Hamiltonian unless otherwise specified.
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h
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p

S = 1, 0.523(12)h0.124(4) + 1.268(4)
S = 2, 0.408(19)h0.161(7) + 1.1235(20)
S = 3, 0.388(18)h0.156(7) + 1.1220(21)
S = 4, 0.408(20)h0.164(7) + 1.1195(19)

FIG. 3. (Color online) Power-law extrapolations of the peak
positions of χM to zero external field for truncations S =
1, 2, 3, 4. The tensorial bond dimension Dbond = 60 for S =
1, and Dbond = 42 for S ≥ 2. The data for S = 3 and
S = 4 have invisible difference and stay on top of each other.
The extrapolated results are consistent with the Monte-Carlo
result βc = 1.11996(6) for O(2) model in Ref. [84].

III. RESULTS

A. Lagrangian: magnetic susceptibility

Since the charge representation seems to preserve the
infinite-order quantum phase transition from gapped to
gapless phase for any spin truncation (Gaussian for S = 1
and BKT for S ≥ 2), a natural question is how the
transition point βc or Yc changes with spin truncation.
The first step is to check the magnetic susceptibility
χM = (1/V )∂2 lnZ/∂h2 in the path integral formula-
tion in Euclidean space-time. In practice, the magnetic
susceptibility at h is calculated by symmetric numerical
differentiation

χM (h) =
M (h+ δh)−M (h− δh)

2δh
(17)

where the magnetization M(h) is calculated by HOTRG
with impure tensor method [80, 81]. The magnetic sus-
ceptibility χM as a function of β is presented in Fig. 2.
At weak external field h = 4× 10−5, the peak of χM for
spin-1 truncation is around β = 1.12, while for spin-2 and
above, the peaks are all around β = 1.04. The values of
χM at spin-2 truncation already effectively converges to
their large-S value. At small β, χM is close to 0 because
it is in the disordered gapped phase at high temperature,
while it has a high plateau at large β across the peak.
Both the peak and the height of the plateau diverges
when the external field approaches zero. These facts in-
dicate that for all spin truncations, the low temperature
phase is a gapless phase with infinite correlation length.
The results agree with the picture of the BKT transition
in classical O(2) model.

Ref. [30] uses HOTRG with Dbond = 40 to calculate
the magnetic susceptibility and obtains Tc = 0.8921(19)
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for O(2) model, consistent with other works. For spin-1
truncation, the result is more sensitive to the bond di-
mension in HOTRG. We test the bond dimension and
find that using Dbond = 60 for S = 1 and Dbond = 42
for S = 2, 3, 4 is good enough for χM to converge within
0.1% error. Performing the same procedure as described
in Ref. [30], we extrapolate the position of the peak
of χM to zero external field by a power law. Fig. 3
shows that the extrapolated critical inverse temperatures
βc = 1.268(4), 1.1235(20), 1.1220(21), 1.1195(19) for S =
1, 2, 3, 4 respectively. Within uncertainties, βc already
converges at S = 2. It is expected that the phase transi-
tion point converges at least exponentially fast with spin
truncation, which is also confirmed in the following sec-
tions using the Hamiltonian approach. For the charge
representation with S ≥ 2, where there should be a BKT
transition, the exponent in the power law βp − βc = ahb

is close to the value b = 0.1768 obtained in Ref. [30]
and b = 0.162(1) obtained in Ref. [85], while it is very
different for S = 1, indicating a different type of phase
transition.

Another question is whether the smallest spin trun-
cation changes the magnetic critical exponent δ in the
power law of magnetization M ∼ h1/δ. Instead of do-
ing a curve fit for M(h), we perform a linear fit for the
plot of ln(χ∗M ) versus ln(h), where χ∗M is the peak height
of χM . The slope of the linear fit is expected to be
1/δ − 1 = −14/15 for the BKT transition. Fig. 4 de-
picts this procedure. It is found that the fitted slopes
are −0.9355(28),−0.9330(4),−0.9334(4),−0.9333(4) for
S = 1, 2, 3, 4 respectively, which gives the magnetic criti-
cal exponent δ = 15.5(7), 14.93(9), 15.02(9), 14.99(9). All
the values are consistent with the predicted value for
the BKT transition δ = 15. As discussed before, the
phase transition for the charge representation with S = 1
should be an infinite-order Gaussian transition at the end
of a BKT line, the agreement on the δ exponent between
S = 1 and S ≥ 2 is consistent with this picture.

B. Hamiltonian: Level spectroscopy

In Sec. II D, we mention three ways to perform LS to
locate the phase transition point for S = 1. We first
discuss the TBC method. As shown in Refs. [36–38, 41],
for small Y and X = −1, the ground state is on the
boundary of the odd Haldane phase with P = −1, T =
−1, where T is the spin reversal symmetry. For large Y
and X = −1, the ground state is in the large-D phase,
where P = 1, T = 1. There must be a level crossing
between the two parity sectors. Note that for X = −1,
the level crossing only exists for even total number of
sites. This is because if X = −1 and TBC is applied,
the bulk spins are coupled with positive coefficients and
the edge spins are coupled with a negative coefficient.
On boundary of the odd Haldane phase at finite system
size, the bulk spins form valence bonds which are singlets
with P = −1, T = −1, while the edge spins form a triplet

15.5 15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5
ln(h)

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

ln
(

* M
)

S = 1, 0.9355(28)ln(h) 1.48(4)
S = 2, 0.9330(4)ln(h) 1.383(5)

S = 3, 0.9334(4)ln(h) 1.389(5)
S = 4, 0.9333(4)ln(h) 1.387(5)

FIG. 4. The maximal magnetic susceptibility as a function
of external field for S = 1, 2, 3, 4. The data for S = 2, 3, 4
have invisible difference and stay on top of each other. The δ
exponents are found to be 15.5(7), 14.93(9), 15.02(9), 14.99(9)
for S = 1, 2, 3, 4 respectively.

with P = 1, T = 1. The number of sites needs to be even
to form odd number of singlets such that P = −1, T =
−1 for the whole system. For odd number of sites and
X = −1, there is no level crossing between the two parity
sectors. However, when using X = 1 with TBC, an odd
number of total sites can form a singlet with P = −1, T =
−1 for the edge spins, while the bulk spins form triplets
with P = 1, T = 1 for small Y . Therefore level crossings
exist for all even and odd number of sites.

In practice, we calculate the ground state in the sec-
tor M = 0, P = −1 with energy E0,M=0,P=−1 and
the ground state in sector M = 0, P = 1 with en-
ergy E0,M=0,P=1, and locate Y0 where the energy gap
∆G = E0,M=0,P=1 − E0,M=0,P=−1 changes sign from
positive to negative by increasing Y . The procedure is
depicted in the inset of Fig. 5(a), where the energy gap
as a function of Y in the vicinity of Y0 for L = 14 is
shown as an example. As the model is on the bound-
ary of the Haldane phase, the energy gap should go to
zero in the thermodynamic limit for Y < Yc. This is
confirmed in Fig. 5(b), where the energy gap as a func-
tion of 1/L is plotted for Y = 0.1. The data is fitted
by a 4-degree polynomial and it is seen that the extrap-
olated energy gap is indeed zero. We repeat this pro-
cedure for L = 7, 8, ..., 20 and determine each Y0 with
∼ 10−9 precision, and then extrapolate the critical point
as Y0(L) = Yc+aL−2 + bL−4 + .... As shown in the main
plot of Fig. 5, the extrapolated Yc is 0.3506694(3). The
error is estimated by changing the degree of the polyno-
mial.

The level crossing also exists for X = −1, PBC and
odd number of sites. In this case, the total parity P = −1
for small Y because there is an odd number of sin-
glets in the ground state. The total parity is still +1
in the large-D phase. We can calculate the energy dif-
ference between the ground state energy in the sector
M = 0, k = 0, P = 1, E0,M=0,k=0,P=1, and that in the
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FIG. 5. (Color online) The extrapolation procedure of finite
size Yc for S = 1, X = 1, TBC. The finite size Yc for L up
to 20 is found by locating the position of the level crossing
between the ground state energy of the sector M = 0, P = 1
and the ground state energy of the sector M = 0, P = −1.
The extrapolated Yc = 0.3506694(3). The inset (a) shows the
level crossing near Y0 for L = 14. The inset (b) shows the
energy gap as function of 1/L for Y = 0.1.
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FIG. 6. DMRG calculation of the permutation operator
Pi0,i0+1 (i0 = (L+ 1)/2) as a function of Y for L = 21, 23, 41
with PBC. The discontinuity is between 0.348 and 0.349,
0.349 and 0.350, 0.350 and 0.351 for L = 21, 23, 41, respec-
tively, consistent with Yc obtained in Fig. 5.

sector M = 0, k = 0, P = −1, E0,M=0,k=0,P=−1 and
locate the position of level crossing. The values of Y0
are exactly the same as those in Fig. 5 for odd num-
ber of sites. Because the Hamiltonian with X = −1,
PBC and odd L can be transformed to the one with
X = 1, TBC and odd L just by rotating the spins on
even or odd sites by an angle π. In Ref. [68], the same
method is used but Yc is extrapolated with a power law
and Yc = 0.347 is obtained, different from our extrapola-
tion. We check the result with the permutation operator

Pi,j = ~Si · ~Sj + (~Si · ~Sj)2 − 1 proposed in Ref. [68] for
the odd-L ring. The discontinuity in the permutation
operator signals a phase transition changing parity. By

using DMRG for L = 41 with PBC, we show in Fig. 6
that the discontinuity is located between Y = 0.350 and
Y = 0.351, consistent with our extrapolation. We also
check for L = 21 and L = 23, and find that the disconti-
nuity is between Y = 0.348 and Y = 0.349, and between
Y = 0.349 and Y = 0.350, respectively. So the power law
extrapolation underestimates the phase transition point.
The sudden jump in the permutation operator shrinks
as we increase the system size. It is expected that the
discontinuity disappears in the thermodynamic limit, be-
cause the charge representation with S = 1 is always gap-
less for Y < Yc where the energy levels in the two parity
sectors are degenerate.

Since the spin-1 truncation corresponds to the Jz = 0
limit of the XXZ model with single-ion anisotropy, Yc is
also the end point of the two BKT lines [41]. The level
crossing across the BKT critical line can also be applied
here. Fig. 7 depicts our results for the level crossing be-
tween excitations classified by (M = 4, k = 0, P = 1)
and (M = 0, k = 0, P = 1). The inset shows the proce-
dure to locate Y0 for L = 16. As expected, the two levels
are exactly degenerate for Y < Y0 because the system is
on a BKT line. Again, this level crossing only happens
for even L if X = −1, but exists for all L if X = 1.
The extrapolated value for Yc is 0.35066928(2) for this
method, consistent with the TBC method up to the 7-th
decimal place. Finally, we see that Y0 at finite size from
the TBC method is much closer to its thermodynamic
value than this method for the same L. In principle, the
operator content of BKT transitions with PBC can be re-
lated to the k = 1 SU(2) Wess-Zumino-Witten model by
applying TBC [39], where level crossings between lower
excitations for finite size systems can be used to locate a
Y0 value that is closer to the thermodynamic value. Our
results show that the extrapolation procedure is very sta-
ble, and we will just apply the method described in Fig. 7
for spin-2 truncation and above.

Fig. 8 shows the extrapolation procedure for S = 2.
In contrast to S = 1, there is no exact degeneracy for
Y < Y0(L) and it is a true level crossing, as shown in
the inset of Fig. 8. The extrapolated value for Yc is
1.101304(6). This true level crossing persists for all S ≥ 2
truncations, which means that the phase transitions re-
ally go across the BKT critical lines. In addition, we
also calculate the transition points for the spin ladder
operators Û± → Ŝ±/

√
S(S + 1). In Table I, we summa-

rize the transition points for S = 1, 2, 3, 4, 5 for both Û±

and Ŝ± operators. The maximal L in the extrapolation
procedure is 13, 11, 10 for S = 3, 4, 5, respectively. For
S = 5, we only do the calculations with Ŝ± operators. It
is seen that Yc converges much faster with S for Û± than
it does for Ŝ±. We expect the convergence to be expo-
nentially fast and fit Yc versus S with c+A exp(−αS) for

Û± in Fig. 9. We find α = 3.4394(6) and the extrapo-
lated value for Yc at infinite S is 1.126188(13). Note that

Ŝ±/
√
S(S + 1) differs from Û± in matrix elements that

corresponds to raising (lowering) charges larger than 1.

Those matrix elements in Ŝ±/
√
S(S + 1) have a common



9

0.00 0.02 0.04 0.06 0.08 0.10 0.12
1/L

0.26

0.28

0.30

0.32

0.34
Y 0

G = E0, M = 4, k = 0, P = 1 E1, M = 0, k = 0, P = 1

S = 1, X = 1, PBC
0.350669

6.4 6.6 6.8 7.0 7.2
Y 1e 6+3.2879e 1

0.00
0.25
0.50
0.75
1.00
1.25
1.50

G
1e 7

L = 16

FIG. 7. (Color online) Same as Fig. 5. The results are for
S = 1, X = 1, PBC. The finite size Y0 up to L = 21 is found by
locating the position where the energy difference ∆G between
the ground state energy of the sector M = 4, k = 0, P = 1 and
the first excited state energy of the sector M = 0, k = 0, P = 1
just closes. The inset shows ∆G versus Y near Y0 for L = 16.
The extrapolated Yc = 0.35066928(2).
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FIG. 8. (Color online) Same as Fig. 7, but for S = 2. The
system size used is up to L = 15. The extrapolated Yc =
1.101304(6). The inset shows the level crossing near Y0 for
L = 10.

Û± Ŝ±

S = 1 0.350666928(2) 0.350666928(2)
S = 2 1.101304(6) 0.932201(4)
S = 3 1.125614(17) 1.03308(3)
S = 4 1.125898(19) 1.07103(2)
S = 5 1.08952(3)
S =∞ 1.126188(13) 1.12614(8)

TABLE I. Values of phase transition points Yc for different S.
Results are obtained by LS.

0.0 0.1 0.2 0.3 0.4 0.5
1/[S(S + 1)]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Y c

U±

S±

FIG. 9. The dependence of the BKT critical point Yc on spin
truncation S. The solid line on solid circles is a curve fit
with exponential convergence function of S. The solid line
on cross symbols is a curve fit with a polynomial function
of 1/ [S(S + 1)]. The extrapolated Yc = 1.126188(13) and
1.12614(8) respectively.
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FIG. 10. Extrapolated energy gaps of O(2) Hamiltonian in the
charge representation for spin truncations S = 1, 2, 3, 4 in the
thermodynamic limit, as a function of Y . The solid lines on
the symbols are curve fits with A

√
Y − Yc exp [−b/(Y − Yc)]

for S = 1 and A exp(−b/
√
Y − Yc) for S ≥ 2.

factor 1/
√
S(S + 1). We expect that Yc has polynomial

scaling for Ŝ± and fit the data with a polynomial func-
tion of 1/ [S(S + 1)] in Fig. 9. The extrapolated value for
Yc is 1.12614(8) and agrees extremely well with that for

Û± as expected. The exponential convergence behavior
for Û± would help save atoms or qubits in the quantum
simulation.

C. Gap scaling

We have shown that the results from LS are extremely
accurate. In this section, we use the scaling of the en-
ergy gap for the first excited state to detect the infinite-
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FIG. 11. The logarithm of the extrapolated energy gaps of
O(2) Hamiltonian in the charge representation for spin trun-
cations S = 1, 2 as a function of x(Y ). The definition of x(Y )
is described in the legend. The curves are shifted for a better
view. The linearity of blue circles and red pluses confirms the
different essential singularities for S = 1 and S = 2.

order phase transitions in the charge representation, and
compare it with the LS method. For all S truncations,
the ground state is inside the charge-0 sector, and the
first excited state is inside the charge-1 sector. Fig. 10
shows the extrapolated energy gaps in the thermody-
namic limit, ∆E∞, as a function of Y for different spin
truncations S = 1, 2, 3, 4. The extrapolation procedure
uses gaps of systems with up to 1024, 768, 512, 384 sites
for S = 1, 2, 3, 4 respectively and fit the data with high
degree polynomials. We see similar behaviors as the mag-
netic susceptibility shown in Fig. 2. The energy gap for
S = 1 is very different from those for S ≥ 2. It converges
very fast with the spin truncation S and almost already
converges at S = 2. The data points for spin-3 and spin-
4 truncation have differences that are not visible by eye
and stay on top of each other in the plot of Fig. 10.
The energy gap vanishes at small Y for all S, indicat-
ing a gapped-to-gapless phase transition. These results
are consistent with exponential convergence of the phase
transition points obtained by LS. As for a small enough
distance to the phase transition point ∆Y = Y − Yc,

exp (−b/∆Y ) < exp
(
−b′/
√

∆Y
)

, the energy gap for

S ≥ 2 is much larger than that for S = 1 for the same
∆Y . In other words, the energy gap for S = 1 stays ex-
tremely small for a large range of Y > Yc, which makes
it difficult to determine the place where the gap closes.
We can take an initial estimate for the point where the
gap closes by looking at where the center of the marker
symbol approaches zero in Fig. 10. For S = 1, Yc < 0.6,
while for S ≥ 2, Yc < 1.17.

Now we fit the extrapolated energy gap with ∆E =
A
√
Y − Yc exp [−b/(Y − Yc)] for S = 1 and ∆E =

A exp
(
−b/
√
Y − Yc

)
for S ≥ 2. As the essential singu-

larity results in a tiny energy gap near the critical point,
the extrapolated data needs high precision in the curve
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FIG. 12. (a) Contour plot of the sum of squared resid-
uals S(Yc, b, C) for S = 1. S(Yc, b, C) is minimized at
Yc = 0.3512, b = 2.501, C =∞. (b) The best data collapse of
∆EL v.s. xL = ln(L)− b/(Y − Yc) + ln(Y − Yc)/2 for S = 1.
The inset shows ∆EL as a function of Y .

fit. Our DMRG data has small enough error (∼ 10−8)
thus the main error comes from the extrapolation pro-
cedure. The results for S = 1, 2, 3, 4 are summarized in
Table II. They are all close to the results from LS and

Yc b
S = 1 0.368(7) 2.45(4)
S = 2 1.120(5) 3.21(6)
S = 3 1.144(6) 3.08(7)
S = 4 1.147(7) 3.06(8)

TABLE II. Values of phase transition points Yc and b
for different S with Û± operators. Results are obtained
by fitting the extrapolated energy gaps in Fig. 10 with
∆E = A

√
Y − Yc exp [−b/(Y − Yc)] for S = 1 and ∆E =

A exp
(
−b/
√
Y − Yc

)
for S ≥ 2.

only differ in the second decimal place, which means that
our polynomial extrapolations are accurate. In particu-
lar, the result for S = 1 has about 5% relative error,
while the results for S ≥ 2 have less than 2% error. All
the results are larger than those from LS because the es-
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sential singularity has corrections away from the phase
transition point in the gapped phase. If we use the BKT
formula of energy gap for S = 1, we obtain Yc = 0.514(8),
far from the result from LS. We can also discriminate
the two essential singularities by plotting the logarithm
of the extrapolated energy gap as described in Fig. 11.
We see that ln(∆E∞) is more linear when plotted versus
1/(Y − Yc) than versus 1/

√
Y − Yc for S = 1, while it is

more linear as a function of 1/
√
Y − Yc for S = 2.

Another observation is that the extrapolated energy
gaps become negative near Yc (not shown here): around
0.365 for S = 1, around 1.115 for S = 2, and around 1.130
for S = 3. The numbers are even closer to Table I than
those in Table II are. Obviously, the negative extrap-
olated energy gaps are not correct. The reason is that
there should be logarithmic corrections in the scaling of
energy gaps in the gapless phase. The polynomial fitting
is not enough to accurately capture the finite size scaling
of the energy gap. However, the smallness of these nega-
tive numbers (of order of 10−6 or less) indicates that the
logarithmic corrections are small, which explains why we
obtain good results from the polynomial extrapolation of
the energy gap. In the following, we apply the ansatz
of the scaling of the energy gap at finite size and show
that the logarithmic corrections near Yc are indeed highly
suppressed, at least for OBC considered here.

The above method will fail in a system with a very
large b � 1, where the gap may be below the ma-
chine precision even though Y − Yc is not so small,
and the extrapolation will be highly unreliable. We
apply a more stable method using the ansatz of the
scaling of the energy gap in Eq. (15). This method
does not require extrapolation of the energy gap, and
is more accurate. The correction term is taken to be
g(L) = 1/(2 lnL + C). Following [42–44], we first calcu-
late the energy gap for different values of Y and different
system sizes. We adjust Yc, b, C, calculate the rescaled
gap ∆Es and xL = lnL− b/(Y − Yc) + ln(Y − Yc)/2 for
S = 1 and xL = lnL − b/

√
Y − Yc for S ≥ 2, fit ∆Es

versus xL with an arbitrary high degree polynomial, and
find the best Yc, b, C that minimize the sum of squared
residuals S(Yc, b, C). In practice, we choose the data set
that is robust to adding or removing data. The results
for S = 1 are depicted in Fig. 12(a), the sum of squared
residuals is minimized at Yc = 0.3512(10), b = 2.501(13)
using data with L ≥ 320, and C is arbitrarily large as
expected for Gaussian points. The error is estimated by
adding or removing nearby data. The result for Yc is
much closer to Table I than that from extrapolated en-
ergy gaps. The perfect data collapse of ∆EL versus xL
is seen in Fig. 12(b), where all the rescaled energy gaps
for L = 128, 192, 256, 320, 384, 512, 640, 768 collapse onto
a single smooth curve.

For S = 2, the result is much more stable, with
smaller uncertainty. As shown in Fig. 13(a), the sum
of squared residuals is minimized at Yc = 1.10706(7), b =
3.2553(21), and C is again arbitrarily large. The best
data collapse is depicted in Fig. 13(b). Comparing
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FIG. 13. The same as Fig. 12, but for S = 2 and xL =
ln(L)−b/

√
Y − Yc. The sum of squared residuals is minimized

at Yc = 1.10706, b = 3.2553, C =∞.

Fig. 12(a) and Fig. 13(a), it is seen that the structure
of the contour map of S(Yc, b, C) for S = 1 is very
different from that for S = 2. For S = 2, the con-
tours form a clear ellipse in a very narrow region of
(Yc, b), while it is difficult to see an ellipse for S = 1,
indicating that the gradient of S(Yc, b, C) in one direc-
tion is very small. We also consider adding a higher
order correction term A/ ln2(L), and find that Yc =
1.1033(3), b = 3.334(6), A = −0.295(14). By adding this
correction term, Yc is closer to the result obtained by LS
1.101304(6). Adding the A/ ln2(L) correction term only
changes the third decimal place for Yc, but minimization
of S(Yc, b, C,A) in four parameter space takes much more
time. We will only consider three parameters for other
cases. The results from the ansatz of the scaling of the
energy gap is summarized in Table III. Compared to Ta-
ble I, the difference in Yc from the gap scaling ansatz is
order of 10−3, less than 0.5%.

Note that C = ∞ for all the cases, which means that
the logarithmic corrections are highly suppressed near
the phase transition. This also happens for the one-
dimensional Bose Hubbard model with OBC [43], and
the spin-3/2 XXZ chain with OBC [44]. In Refs. [43, 44],
PBC is also considered and C is finite. These models,
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Û± Ŝ±

S = 1
0.3512(10)
2.501(13)

0.3512(10)
2.501(13)

S = 2
1.10706(7)
3.2553(21)

0.93978(15)
3.647(4)

S = 3
1.13191(14)
3.110(5)

1.03933(8)
3.367(2)

S = 4
1.13213(16)
3.117(5)

1.0767(1)
3.281(3)

S = 5
1.0948(3)
3.25(1)

TABLE III. Values of phase transition points Yc (first line)
and b (second line) for different S. Results are obtained by the
gap scaling ansatz with g(L) = 1/ [2 ln(L) + C]. C = ∞ for
all cases. Including a higher order correction A/ ln2(L) can
further improve the results, e.g. Yc = 1.1033(3) for S = 2.

including ours, are all bosonic and have a global U(1)
symmetry, and it seems that OBC suppresses the first
order logarithmic corrections near the phase transition
point. For fermionic systems with OBC, C is also finite
[44]. If a phase transition goes across a BKT critical line,
near the BKT line, the finite size effects of the scaling di-
mensions related to the excitation in the critical phase
behave differently from that in the gapped phase. This
effect appears in the energy gap as a crossing point of
the rescaled gap ∆EL (1 + g(L)) near but larger than the
phase transition point, as shown in the inset of Fig. 13(b)
for S = 2. In the procedure of finding the best data col-
lapse, the variable Y is first rewritten as−b/

√
Y − Yc and

then shifted by lnL, the single crossing point separates
into multiple points that the universal function must go
through, which largely suppress the uncertainty in the
optimization procedure and pull the value of optimized
Yc to the gapped side. For the infinite-order Gaussian
transition to a BKT critical line (S = 1), the rescaled
energy gap as a function of Y would just approach to
the thermodynamic value from below without a crossing
point near Yc. This behavior is presented in the inset
Fig. 12(b), where the gapped side (Y > Yc) is similar to
the finite-order Gaussian transition [45, 46]. In this case,
on one hand, there is still a point, where the rescaled
energy gaps have minimal distances, that plays the same
role as the crossing point in BKT transition. On the
other hand, all the values of ∆EL are below the true
collapsed line in the thermodynamic limit, so is the best
fitted data collapse using finite-size energy gaps. There-
fore, Yc should be smaller to compensate this difference.
Overall, we obtain a result that has the smallest discrep-
ancy from that by LS.

Finally, we believe that the discrepancy between Ta-
ble III and Table I is from higher order corrections for
the energy gap near the critical point. One evidence is
that the result for S = 2 becomes closer to that from LS
by adding a higher order correction term A/ ln2(L). It
is expected to have more accurate result by considering
more correction terms. However, the results only have an
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FIG. 14. (Color online) Log-log plot of the correlation func-
tion Cr as a function of r (r = 1, 3, 5, ...) for S = 1, Y =
0.35067. The linear fit is performed with r = 21, 23, ..., 39.
The inset shows the extrapolation of correlation exponent to
η∞ = 0.24997(6).

order of 10−3 discrepancy from LS by considering only
the leading correction term. This is the advantage of this
method in locating infinite-order phase transitions.

D. Correlation-function exponent

The multiplicative logarithmic corrections stemming
from the marginal operators often stand in the way of
calculating the critical exponents accurately. An advan-
tage of S = 1 truncation is that the coupling constant of
the marginal operators becomes zero at the infinite-order
Gaussian transition point connecting the BKT critical
lines, where the logarithmic corrections vanish with the
same critical exponents as BKT. We can then extract the
critical exponents accurately without going to very large
system sizes. As an example, we calculate the correlation
function

Cr = 〈U+
L/2−(r−1)/2U

−
L/2+(r−1)/2+1〉 ∼

1

rη
(18)

for S = 1. Fig. 14 shows the plot of ln(Cr) versus ln(r) for
L = 1024. Far from the boundary, the plot is perfectly
linear, and a linear fit for data with r = 21, 23, ..., 39
gives the correlation-function exponent η = 0.25034(2),
close to the expected value for BKT transitions 1/4. The
same procedure is performed for L = 128, 192, ..., 768
and the results are presented in the inset of Fig. 14.
A polynomial fit of η(L) versus 1/L2 gives the extrapo-
lated η = 0.24997(6). The accurate determination of the
correlation-function exponent from just linear fits in turn
confirms that there are no multiplicative logarithmic cor-
rections to the correlation function at the quantum phase
transition for S = 1 truncation.
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IV. CONCLUSIONS

In the context of compact sQED, the O(2) model is
the zero-gauge-coupling limit where only matter field in-
teraction exists. By Fourier transforming the compact
variables, a dual representation called the charge repre-
sentation can be obtained where the discrete variables
have the physical meaning of electric charge quantum
numbers. The quantum Hamiltonian can be obtained by
taking the time continuum limit. In (1 + 1) dimensions,
the O(2) model has a nontrivial BKT phase transition
that is important to explain fundamental phenomena of
condensed matter physics and gauge theories. However,
due to the essential singularity of the correlation length
resulting in an exponentially small energy gap, and the
logarithmic corrections stemming from the marginal op-
erator, it is difficult for classical computing to detect the
BKT transition for both the path integral formulation
and the quantum Hamiltonian. We expect that the ac-
curate manipulation and measurement of atoms or qubits
in the future would overcome this difficulty. Spin-1 mod-
els can be realized by a spin-1/2 two-leg ladder [86]. A
two-species Bose-Hubbard model is suitable for quantum
simulating the charge representation with spin S trunca-
tion [9, 27], where large onsite interactions and a chemical
potential are tuned so that there are 2S particles per site.
Building these models allows us to study more intrigu-
ing dynamics in quenches from one phase to another as
is done in Ref. [87], which may also present interesting
truncation effects.

In order to stimulate the efficient manipulation of an
increasing number of atoms or qubits in the near future,
it is important to figure out what truncations and sys-
tem sizes are needed to study BKT transitions. In this
paper, we discussed the truncation effects of the quan-
tum phase transition in the charge representation. We
found that there is always an infinite-order phase transi-
tion for any integer S in the charge representation, but
the S = 1 truncation is different from S ≥ 2 truncations.
There is a hidden SU(2) symmetry in the charge repre-
sentation for S = 1, where the phase transition is from
a gapped phase into a BKT critical line. The transition
point is an infinite-order Gaussian point described by the
k = 1 SU(2) Wess-Zumino-Witten CFT. The same type
of phase transition can be observed in the explicit SU(2)
symmetric models such as the Hubbard model [63] and
the J1 − J2 antiferromagnetic Heisenberg spin-1/2 chain
[88]. The originally defined BKT transition in the O(2)
model is observed in S ≥ 2 truncations. The essential
singularities are different and the correlation length di-
verges as (Y − Yc)

−1/2 exp [b/(Y − Yc)] for S = 1 and
exp(b/

√
Y − Yc) for S ≥ 2. By applying the level spec-

troscopy (LS) method, we obtained the phase transi-
tion point accurately and found that the phase transition
point converges exponentially with S for the truncated

Û± = exp(±iθ̂) operators, while it converges polynomi-

ally with 1/S for the spin ladder operators Ŝ± that are
often used in quantum link models.

As LS is accurate, our models are prime candidates
to test other universal methods for detecting quantum
phase transitions. Those methods only require calculat-
ing the low energy states and no prior analysis of crit-
ical properties of the model is needed. In (1 + 1) di-
mensions, the powerful DMRG algorithm can make these
methods efficient and accurate. One of them is to make
use of the energy gap between the lowest two levels with
OBC. We first extrapolated the energy gap to the ther-
modynamic limit, and fit the extrapolated values with
∆E ∼ (Y − Yc)

1/2 exp [−b/(Y − Yc)] for S = 1 and
∆E ∼ exp(−b/

√
Y − Yc) for S ≥ 2. The results have

only order of 10−2 discrepancy with those from LS. We
then used the ansatz for the scaling of the finite-size en-
ergy gap described in Eq. (15). By calculating the energy
gaps for various values of Y and L near the phase transi-
tion point in the gapped phase and minimizing the sum
of squared residuals in the procedure of finding the best
data collapse, we were able to locate the phase transition
points with discrepancy of order of only 10−3. Using
the correct essential singularity behavior for the correla-
tion length for S = 1 truncation is crucial to obtain the
accurate result. We also found that the logarithmic cor-
rections in the finite-size energy gap is highly suppressed,
which is also seen in the one-dimensional Bose Hubbard
model [43] and the spin-3/2 XXZ chain [44]. It is be-
lieved that it is the open boundary condition (OBC) that
suppresses the logarithmic corrections in these bosonic
models, while the fermionic Hubbard models have non-
negligible logarithmic corrections even with OBC [44].
A similar cancellation of logarithmic corrections in the
XXX spin-1/2 chain can be derived with a large edge
magnetic field in the x direction [89].

Finally, S = 1 truncation moves the BKT transition
point to a Gaussian point where the logarithmic correc-
tions vanishes but critical exponents δ, η stay the same.
Thus we can measure the critical properties of BKT tran-
sitions without going to very large systems where the
logarithmic corrections is not important. It is interest-
ing if this phenomena can be seen in other models that
have BKT transitions. In general, one may think about
whether we can manipulate the truncation nontrivially
to impose explicit SU(2) symmetry, in such a way that
the BKT transition becomes infinite-order Gaussian. It
is difficult to see the trivial truncations with a hidden
SU(2) symmetry unless an accurate phase diagram is
determined in advance as is done in this paper, but it
is interesting to study in what kind of systems this can
happen. These types of considerations can be explored
in the design of minimal experimental implementations
required for quantum simulations of given critical prop-
erties.
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function of q. Inset (c) shows the slopes of the linear fits, p1,
as a function of log10 S.
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Appendix A: The sine-Gordon theory of BKT
transitions

Generally, the BKT transitions can be described by an
effective sine-Gordon model [36]

L =
1

2πK
(∇φ)2 +

yφ
2πα2

cos
(√

8φ
)
, (A1)

where α is a ultraviolet cutoff. Writing K = 1 + (1/2)y0,
the RG equations under change of cutoff α→ elα are

dy0(l)

dl
= −y2φ(l),

dyφ(l)

dl
= −yφ(l)y0(l) (A2)

Solving the RG equations, one obtains a line of stable
fixed points for yφ = 0, y0 > 0. The BKT critical lines are

y0 = |yφ| > 0, where the scaling dimension of cos
(√

8φ
)

is 2 (marginal). In the region |yφ| < y0, the term

cos
(√

8φ
)

becomes irrelevant and all the points are renor-
malized onto the Gaussian fixed line, and are therefore
massless. Outside this region, the field becomes relevant,
all the points are renormalized away from the Gaussian
fixed line, and are therefore massive. The BKT transition
happens when a phase-transition-driving term moves the
system across a BKT critical line. Near each BKT line in
the massive phase, the energy gap scales as exp(−b/

√
δt),

where δt is the distance to the BKT line [18]. If a system
stays on the lines y0 = ±yφ, there is a phase transi-
tion from a massive phase into a BKT line across the
SU(2)×SU(2) point at y0 = yφ = 0, where the marginal

fields disappear and the gap scales as
√
|y0| exp(−b/|y0|)

[63]. As the SG model becomes SU(2) symmetric on
the BKT lines [61, 90], systems with true BKT transi-
tions would have an enhanced SU(2) symmetry at the
phase transition point, from which one can enumerate 7
conditions for BKT transitions [13]. Systems staying on
y0 = ±yφ lines should have a SU(2) symmetry for all pa-
rameter values. It has been shown that the O(2) model
is equivalent to the SG model at y0 > 0, yφ > 0 and have
a true BKT transition [91].

Appendix B: Linear equations relating Û± and Ŝ±

We discuss the solution for the linear system in
Eq. (11). The matrix elements Aij are exponentially
large with j for each i < S − 1, so we expect the co-
efficients uq to be exponentially small with q. Fig. 15
depicts the dependence of the magnitude of the coeffi-
cients |uq| on the index q and confirms this expectation.
Moreover, the absolute value of uq presents perfect ex-
ponential decay at first, then deviates up slightly. We
emphasize that the arbitrary precision arithmetic is re-
quired to obtain these results. We do linear fit in the
linear part and the slope becomes more negative as S
increases. From the inset Fig. 15(a), it is seen that the
number of data points on the linear fits, Nfit, is propor-
tional to the spin truncation. Then we plot the sign of uq
as a function of q in Fig. 15(b) for S = 20. The signs are
initially consecutively positive for q = 0, 1, ..., 7, and then
oscillate between + and − for q ≥ 8. This behavior is
seen for all S. The number of consecutive positive signs
before oscillation, Nplus, as a function of S is plotted in
Fig. 15(a), where we see that Nplus is also proportional
to S, and Nplus ≈ Nfit. Finally, the slope of the linear
fit in the main plot is a linear function of logS, as shown
in Fig. 15(c).
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