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Topological Weyl semimetals (WSMs) have been predicted to be excellent candidates for detecting Berry
curvature dipole (BCD) and the related non-linear effects in electronics and optics due to the large Berry curva-
ture concentrated around the Weyl nodes. And yet, linearized models of isolated tilted Weyl cones only realize
a diagonal non-zero BCD tensor which sum to zero in the model of WSM with multiple Weyl nodes in the
presence of mirror symmetry. On the other hand, recent ab initio work has found that realistic WSMs like TaAs-
type or MoTe2-type compounds, which have mirror symmetry, indeed show an off-diagonal BCD tensor with
an enhanced magnitude for its non-zero components. So far, there is a lack of theoretical work addressing this
contradiction for 3D WSMs. In this paper, we systematically study the BCD in 3D WSMs using lattice Weyl
Hamiltonians, which go beyond the linearized models. We find that the non-zero BCD and its related important
features for these WSMs do not rely on the contribution from the Weyl nodes. Instead, they are dependent
on the part of the Fermi surface that lie between the Weyl nodes, in the region of the reciprocal space where
neighboring Weyl cones overlap. For large enough chemical potential such Fermi surfaces are present in the
lattice Weyl Hamiltonians as well as in the realistic WSMs. We also show that, a lattice Weyl Hamitonian with
a non-zero chiral chemical potential for the Weyl cones can also support dips or peaks in the off diagonal com-
ponents of the BCD tensor near the Weyl nodes themselves, consistent with recent ab initio work. In addition,
we predict specific experimental signatures of BCD induced transport such as nonlinear anomalous Hall, Nernst
and thermal Hall effects in WSMs that can be directly checked in experiments.

I. INTRODUCTION

Berry curvature dipole (BCD) in reciprocal space has re-
ceived a growing attention recently, due to the critical role it
plays in the studies of non-linear electronic and optical ef-
fects [1–8]. Prominent examples are photocurrent from the
circular photogalvanic effect and second-harmonic generation
[1, 9, 10], non-linear anomalous Hall [11–18], Nernst [19–
21], and thermal Hall effect [22], etc. Amongst them, the
most typical example should be the discovery of the non-
linear anomalous Hall effect (NLAHE) for two-dimensional
transition metal dichalcogenides with time reversal symme-
try in both theory and experiments [2, 11, 13, 23]. Since
Berry curvature tends to concentrate around regions where
more than one bands touch or nearly cross in the momentum
space, low-symmetry crystals with tilted Dirac or Weyl points
in both 2D and 3D are excellent candidates for the detection of
BCD and its related non-linear effects [2]. As a purely Fermi
surface quantity, the net value of BCD fully depends on its
density distribution on the Fermi surface. Therefore, sizable
BCD could also be found in strained graphene with a warped
Fermi surface [24], spin-orbit coupled antiferromagnets [25],
merged Dirac Fermion pairs in 2D [26], and even 2D piezo-
electric metals under uniaxial strain [27]. However, most of
the current studies on BCD focus on the 2D time reversal in-
variant systems, and only a few works have been performed
directly for 3D materials [7, 8].

Topological Weyl semimetal (WSMs) [28–30], character-
ized by pairs of non-degenerate bands linearly touching each
other at points in the reciprocal space called Weyl points, have
been experimentally found in realistic materials such as the
materials in the TaAs family [29, 31, 32] and materials in

the MoTe2 family [33, 34], among others. These classes of
WSMs, preserving time reversal symmetry but breaking crys-
tal inversion symmetry, can naturally produce an asymmetric
distribution of Berry curvature (hence, a non-zero Berry cur-
vature dipole) with large magnitude around the Weyl nodes in
the presence of a finite tilt. Therefore, 3D WSMs appear to be
an excellent platform to study BCD and the related non-linear
anomalous effects as mentioned above. Each Weyl node indi-
vidually behaves as a monopole of the flux of the Berry curva-
ture, which plays the role of a magnetic field in the momentum
space. The topological invariant called the Chern number or
chirality for a Weyl node is quantified as the surface integral of
the flux of the Berry curvature over the Fermi surface enclos-
ing the Weyl point. According to Nielsen-Ninomiya theorem
[35], the total chirality in a periodic system (e.g., the Hamil-
tonian defined in the Brillouin zone) must be zero, thus Weyl
nodes always come in pairs of opposite chirality. Normally,
there are many Weyl points existing in the Brillouin zone in a
realistic material. But one can identify and organize them by
their chiralities and symmetries. For example, the chirality of
a Weyl node remains the same under the operation of time re-
versal symmetry but reverses its sign under transformation by
inversion symmetry or mirror symmetries. Interestingly, the
transformation rules of the BCD tensor under various sym-
metry operations are the same as those of chirality under the
discrete symmetries in a WSM.

The form of the BCD tensor – namely, whether it is sym-
metric or anti-symmetric – is determined by the point-group
symmetry [2, 27]. Theoretically, based on the linearized mod-
els of Weyl cones, the contribution to the net BCD tensor for
a time reversal invariant system vanishes after being summed
over all of the Weyl nodes. However, it has been shown in a
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recent ab initio study that TaAs and related materials, which
have mirror symmetries mapping Weyl nodes of opposite chi-
rality on each other, are expected to support a large BCD ten-
sor [7]. These first principle results are in direct contradiction
to the vanishing of BCD tensor obtained from the analysis
of linearized models of 3D WSMs. Therefore, the linearized
models of WSMs are inadequate to explain important features
of the BCD tensor and the related non-linear effects expected
from ab initio numerical studies as well as in experiments.

In this work, we conduct a systematic study of BCD in
WSMs using lattice models, which, to the best of our knowl-
edge, has not yet been performed so far. The objective of this
study is to understand the true origin of the non-zero BCD in
a WSM under time reversal and mirror symmetries, and to ex-
plain the features of BCD discovered by the ab initio study
for the experimental materials [7]. It has been mentioned in
a recent work that the non-zero contribution to BCD in the
TaAs-family of material come from the proximity of pairs of
nodes of opposite chirality, even though the study itself was
conducted on only a linearized model [8]. In this work, we
calculate the non-zero BCD components for the time rever-
sal invariant Weyl Hamiltonian on a lattice, which has a band
structure more closely related to the realistic experimental ma-
terials. We also extract a low-energy model from our lattice
Weyl Hamiltonian. This model, despite being valid at low en-
ergies, is different from the linearized models of WSMs in that
it has a high-energy cutoff as well as a non-linear second-order
term that can be switched on and off (see Eq. (9)). We calcu-
late and compare the BCD for this low-energy model with that
for the lattice model, and find that the low-energy model can-
not produce the correct dependencies of BCD on the system
parameters. Consequently, the net contribution for the BCD in
WSMs should not come from the Weyl nodes. Next, we an-
alyze the effects on the magnitude of BCD of the momentum
space separation between the Weyl nodes of opposite chiral-
ity. Note that, varying the momentum space separation of the
Weyl nodes with opposite chirality results in tuning the Fermi
surface in the overlap region between the pairs of nodes of
opposite chirality. By demonstrating a non-zero BCD which
depends strongly on the momentum space separation of Weyl
nodes of opposite chirality, we conclude that the net non-zero
contribution to BCD originates from the parts of the Fermi
surface between the pairs of Weyl cones with opposite chiral-
ity, rather than the Weyl nodes themselves. We also consider
a second lattice Weyl Hamiltonian with a chiral chemical po-
tential, describing Weyl nodes that lie at finite but unequal
energies. For this model we find that there are dips and peaks
of non-zero off-diagonal components of BCD even when the
Fermi energy lies at the Weyl nodes, consistent with analo-
gous results found from first principle calculations for the re-
alistic materials [7]. We check that the non-zero BCD from
the Weyl nodes and the associated peaks and dips exist for
both type-I and type-II WSMs as long as there is a chemical
potential mismatch among the Weyl cones, while the magni-
tude of BCD turns back to zero when we remove the chiral
chemical potential.

The rest of the paper is organized as follows: In Sec. II, we
review some basic properties of Berry curvature dipole and the

related non-linear anomalous transport phenomena. In Sec.
III, we study the Berry curvature dipole for a 3D WSM both
using a lattice Hamiltonian and a low energy Hamiltonian. In
part A, we first study the BCD for WSMs using a single lin-
earized Weyl Hamiltonian, mainly focusing on the symmetry
analysis and finding the non-zero diagonal BCD components.
Then in part B we introduce a lattice Hamiltonian for a TR-
invariant WSM with broken inversion symmetry and perform
similar calculations as that for the linearized model in part A.
Next, in part C, we compare the BCD for the lattice model
with that for the low-energy model extracted from the same
lattice Hamiltonian. To demonstrate the origin of the non-zero
net BCD in the lattice model, we analyze the effect of varying
the separation of Weyl nodes of opposite chirality on the mag-
nitude of the BCD. Finally, in part D, we introduce a second
lattice Weyl Hamiltonian with an intrinsic chemical potential
difference (chiral chemical potential), and find non-zero BCD
even from the Weyl nodes and other features such as peak and
dips, consistent with recent numerical studies of realistic ma-
terials. Using this model Hamiltonian, we also calculate BCD
induced anomalous Hall, Nernst and thermal Hall coefficients
and predict their experimental signatures in WSMs. Finally
we end with a brief conclusion in Sec. IV.

II. BERRY CURVATURE DIPOLE AND NON-LINEAR
ANOMALOUS HALL EFFECT

The Berry curvature, a geometrical quantity defined in mo-
mentum space, has been shown to be significantly important
for the anomalous transport phenomena [36–38]. It can be
written as,

Ωmk,ab = i
∑
m6=n

〈umk
∣∣∂H/∂ka ∣∣unk〉〈unk∣∣∂H/∂kb ∣∣umk 〉 − (a↔ b)

(εmk − εnk)2

(1)
where H|umk 〉 = εmk |umk 〉 with m(n) indicating the band in-
dex and umk is the Bloch state in momentum space.

In the presence of non-trivial Berry curvature, the elec-
tron motion acquires a transverse anomalous velocity term
eE × Ωk, even without any external magnetic field [36],
which leads to the anomalous Hall, Nernst and thermal Hall
effects in the linear transport regime [38, 39]. On the other
hand, in the non-linear regime, it has been found that the first
moment of the Berry curvature, namely, the Berry curvature
dipole, instead of Berry curvature itself, plays the key role in
the anomalous transport phenomena [2]. In three dimension,
the Berry curvature dipole defined in reciprocal space is writ-
ten as

Ddc =
∑
m

∫ [
dk
]∂fk
∂kd

Ωmk,c (2)

where
[
dk
]

= d3k/(2π)3. Note that, here the Berry curvature
term Ωmk,c can be related to the one defined in Eq. (1) by the
Levi-Civita anti-symmetric tensor as Ωmk,c = εabcΩ

m
k,ab.

To get a non-zero Berry curvature, the time reversal symme-
try and/or the inversion symmetry must be broken in the sys-
tem. In the presence of time reversal symmetry, T †Ω−kT =
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FIG. 1. (Color online) The distribution of Berry curvature dipole density on the Fermi surface (EF = 0.3v0) of a single Weyl node (Eq. (4)).
The colors on the surfaces represent the value for Dij with the solid lines in red and blue indicating the negative and positive isolines respec-
tively. (a1) The Fermi surface for a non-tilted 3D Weyl cone is a 2D sphere centered at the origin. Dxy is anti-symmetrically distributed along
kx as well as ky axis, as is shown in (a2), a top view of (a1). For the Weyl node turned on with a tilting along kx-axis, the Fermi surface
deforms into an ellipsoid which is also shifted along kx-axis, as is shown in panels (b) and (c). (b1), (b2) The distribution of Dxy is also tilted
in kx-direction and it is now only anti-symmetric along ky-axis. Different from Dxy , Dxx is azimuthally symmetric along kx-axis, and both
Dyy and Dzz maintains symmetry in ky and kz , as shown by the blue colors in (c1)-(c3). It should be obviously seen that the net contribution
to Dii, i = x, y, z on a given Fermi surface is non-zero while for Dxy is zero.

−Ωk, which renders the Berry curvature-dependent contri-
butions to the anomalous transport being zero in the linear
regime. On the other hand, BCD is even under time reversal
symmetry i.e., T †Ddc(−k)T = Ddc(k) leading to the fact
that the BCD-induced anomalous contributions can survive in
a TR symmetric system.

Recently, BCD-induced non-linear anomalous transport
phenomena have been intensively studied for 2D time-reversal
symmetric TMDs both theoretically and experimentally [2,
11, 13, 14]. The non-linear anomalous Hall effect coefficient
at zero temperature is directly proportional to BCD and can
be written as

χabc = εabd
e3τ

2~2
Ddc. (3)

where τ is the scattering time. It is reasonable that the non-
linear conductivity depends on the scattering time, as a scat-
tering process from impurities, phonons, etc., is required to
achieve a steady state motion for the electrons (holes). In
fact, BCD can be interpreted as a non-linear Drude weight
that plays a role in non-linear Hall effect similar as the con-
ventional Drude weight in the linear conductivity [8]. It has
been shown in recent works that the other non-linear anoma-
lous transport coefficients, namely, the non-linear anomalous
Nernst and thermal Hall coefficients are also induced by the

Berry curvature dipole and satisfy relations different from the
conventional Wiedemann-Franz law and Mott formula [22].
From these relations, it is clear that if we have a non-zero
BCD for a TR invariant system, we must also have the finite
non-linear anomalous Hall, Nernst, and thermal Hall effects.
Therefore, in this work, our discussion will be centered upon
BCD mainly, which we will calculate in 3D, and at the end we
will show the behavior of the non-linear transport coefficients
induced by BCD.

III. BERRY CURVATURE DIPOLE IN WEYL
SEMIMETALS

A. BCD for a linearized Weyl node

In general, Weyl nodes always come in pairs with oppo-
site chirality. To get a clear understanding of the contribution
to BCD from each single Weyl cone, in this section, we first
focus on a single Weyl node. The linearized Hamiltonian de-
scribing a single Weyl node with chirality +1 can be simply
given as,

H0(k) = v0
∑

i=x,y,z

kiσi + vtktσ0 (4)
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where σ0,x,y,z are the Pauli matrices, v0 is Fermi velocity and
k is the crystal momentum measured from the Weyl node. The
last term vtktσ0 describes a tilt along t-axis. Without any loss
of generality, here we consider the case kt = kx and vt = vx.
For |vx/v0| < 1, the above Hamiltonian describes a type-I
Weyl cone while for |vx/v0| > 1, the Weyl cone is strongly
tilted and corresponds to a type-II Weyl node.

It is now straightforward to write down the Berry curvature
around this single node as,

Ωk = ∓ k

2|k|
(5)

where∓ represents the Berry curvature for conduction and va-
lence bands respectively. It is important to note that the Berry
curvature of the Weyl cone does not depend on the tilt param-
eter. Different from being a pseudovector with the dimension
of length in 2D, the Berry curvature dipole defined by Eq. (2)
is a dimensionless pseudotensor in three dimension [2]. We
would like to rewrite Eq. (2) in the following form,

Ddc =

∫ [
dk
]
vdΩk,c

∂fk
∂εk

=

∫ [
dk
]
Ddc

∂fk
∂εk

(6)

where Ddc = vdΩk,c is defined as the BCD density in this
work. At zero temperature, ∂fk/∂εk = −δ(εk−µ) with δ(x)
the Dirac delta function, and Ddc turns into a surface density
quantity. Note that, the way we define the BCD density in this
work is different from that in previous works [7, 24]. In the
following discussions, we will see the dipole density defined
in this way is more beneficial for the symmetry analysis in a
3D parameter space.

Since the BCD is a Fermi surface quantity, in order to get a
better picture of it in a 3D Weyl system, we show the BCD
density on a full Fermi surface, namely, a surface satisfies
ε(kx, ky, kz) = µ in the 3D reciprocal space. The BCD
density Dij (i, j = x, y, z) on their Fermi surfaces for both
non-tilted and tilted Weyl cones are shown in Fig. 1. It is
now clear that the presence of the tilt has turned the Fermi
surface of a Weyl cone from a sphere (see Fig. 1(a)) into an
ellipsoid (see Fig. 1(b), (c)). For the linearized Weyl Hamil-
tonian given in Eq. (4), we assume the Weyl cone is tilted
along kx-axis. As a result, the Fermi surface has shifted along
−kx-direction, which, equivalently, renders the BCD distri-
bution on the Fermi surface a shift (tilt) along +kx-direction.
It can be clearly seen from Fig. 1(a) that the net Dxy for a
non-tilted Weyl cone is zero due to the anti-symmetric distri-
bution (in kx, ky) of Dxy on the Fermi sphere. Interestingly,
the net contribution forDxy vanishes even in the presence of a
finite tilt. This happens because as shown in Fig. 1(b), Dxy is
still anti-symmetric along ky-axis, though the anti-symmetry
in kx-direction has been removed by the tilt vxkxσ0. Calculat-
ing all the components of the BCD tensor individually, it turns
out the only non-zero components are Dii with i = x, y, z
when the Weyl cone is tilted, and the corresponding Dii dis-
tributions on the Fermi surface are shown in Fig. 1(c1), (c2),
(c3) respectively.

Since each component of BCD Dij is just the sum of Dij
on the Fermi surface, it is clear from Fig. 1 that only the diag-
onal components i.e., Dii with i = x, y, z are non-zero in the

case of a tilted linearized Weyl node consistent with the early
work [8]. In a TR symmetric system, the TR partner of H0

shall provide us the same BCD tensor and therefore, the net
contributions to the non-zero BCD components will be sim-
ply doubled. On the other hand, when considering the mirror
reflection counterpart of the Weyl cone described by H0, e.g.,
M†
xH0Mx, the net contribution to each BCD component is

identically zero because the chirality and BCD will reverse
their sign under the mirror symmetry.

We would like to point out that we find the off-diagonal
components of BCD to be zero individually even for lin-
earized Weyl nodes with topological charge n > 1 (multi-
Weyl node). However, the density distributions of BCD for
Weyl nodes with topological charge n = 1, as given in this
section, can straightforwardly show that Dij, i 6=j = 0 inde-
pendent of the tilt. On the other hand, the off-diagonal com-
ponents of BCD are found to be large in some realistic TR
invariant WSM materials, e.g., TaAs family materials based
on the first principle calculations [7]. Following the above
point, it is now clear that an analysis based on a reduced Fermi
surface can not show us a full picture of BCD density distribu-
tion in 3D WSMs and therefore, the dependence of the BCD
off-diagonal components on the tilt strength for a single Weyl
node, as analyzed earlier on a projected Fermi plane [7], is not
correct. As a result, there is an inconsistency between the re-
sults due to the linearized model Hamiltonian and the realistic
3D WSM materials, leaving the origin of the large BCD un-
clear. In order to investigate the BCD, we would now consider
a lattice model of TRI Weyl system which is beyond the lin-
earized model and can provide us band structure more closely
related to the realistic materials.

B. BCD in a TR invariant lattice Weyl Hamiltonian

A major difference between a lattice model and a low-
energy model (normally linearized around the band touching
points) is the ultra-violet energy cutoff. This can be essen-
tial because it involves band bending in the Brillouin zone. It
has been shown that linear anomalous Nernst effect can exist
in lattice models as well as linearized models with an appro-
priate energy cutoff [40], while this effect is absent for lin-
earized models without this energy cutoff [41]. As has been
demonstrated in the previous section, a linearized model for
single Weyl cone cannot explain the existence of the non-zero
off-diagonal components of the BCD tensor that has been dis-
covered in TRI Weyl materials [7]. In this section, we will
show that the BCD in lattice model is different from that in
the linearized models.

In the context of real materials, time reversal symmetric but
inversion asymmetric WSMs like the TaAs-family of materi-
als [29, 31, 32], which have a polar axis breaking its inversion
symmetry naturally, are good candidates for studying BCD
and non-linear anomalous transport phenomena. The TaAs-
type compounds have a non-centrosymmetric body-centered
tetragonal lattice structure (belonging to space group I41md)
and contain twelve pairs of Weyl points in the first Brillouin
zone, which can be organized by mirror symmetry Mx,My
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FIG. 2. (Color online) The distribution of Dzx on the Fermi surfaces of a time reversal invariant Weyl system based on the lattice model
in Eq. (7). The colors on the surfaces indicate the value of BCD density Dzx, and the top view of each Fermi surface is also given as the
corresponding bottom panels. (a) The Fermi surface for a non-tilted lattice Weyl Hamiltonian (γ = 0, EF = 0.2t) are four isolated closed
surfaces, which are respectively centered at the Weyl nodes (±k0, 0,±π/2). As is shown by the insert of (a), the distribution of Dzx among
the Weyl nodes can be related by mirror symmetry and time reversal symmetry. The contributions to Dzx from the mirror symmetric pairs
(along kx, kz respectively) will be canceled and in effect, the net contribution of each of the separated closed region around the Weyl nodes
is zero. (b) Fermi surface and the distribution of Dzx density for a tilted lattice model (type I, γ = 1.5t, µ = 1.0t). Now the Fermi surface
is a connected open surface and the contribution to Dzx from the surfaces around each Weyl node will still be canceled due to the remained
symmetry. Thus the net contribution mainly comes from the part of the Fermi surface that lie between the mirror symmetric Weyl pairs (the
blue color around kz-axis). (c) Similar as panel (b) but for a tilted system with four type-II Weyl nodes (γ = 2.5t, µ = 0.2t). For this case,
contributions from the valence band are also present, shown as the connected Fermi surface (in blue) around the origin and the four open Fermi
surfaces (in light blue) in the kx − ky plane in panel (c). The parameters used here are t = 1, tx = 0.5t,m = 2t, k0 = π/2.

[29, 30].
We first consider a time reversal symmetric and inversion

broken lattice model describing two pairs of Weyl nodes [42],
written as below,

H1(k) = N(k)σ +N0(k)σ0,

N0(k) = γ(cos (2kx)− cos k0)(cos kz − cos k0),

Nx(k) =
[
m(1− cos2 kz − cos ky) + 2tx(cos kx − cos k0)

]
Ny(k) = −2t sin ky, Nz(k) = −2t cos kz

(7)

Here N0 is the tilting term which causes a different shift in
both bands, and σ0,σ are Pauli matrices in terms of the degree
of freedom for orbitals. For this spinless lattice model, one
can define the time reversal and inversion symmetry operators
respectively as

T = K, P = σx (8)

where K is the anti-Hermitian complex conjugation opera-
tor. Using these operators, it can be easily checked that
T †H1(−k)T = H1(k), P†H1(−k)P 6= H1(k). In addition,
H1(k) has mirror symmetry in kx, kz , i.e.,

M†
xH1(kx, ky, kz)Mx = H1(−kx, ky, kz),

M†
zH1(kx, ky, kz)Mz = H1(kx, ky,−kz)

(9)

which are important in determining the non-zero BCD com-
ponents. The Hamiltonian H1(k) contains four gapless band
touching points localized at (±k0, 0,±π/2) with energy ε =
0. Now in the presence of a finite tilt (γ is finite), the sys-
tem H1(k) describes four type-I Weyl nodes for |γ/2t| < 1

whereas the Weyl nodes described by H1(k) become type-II
for |γ/2t| > 1.

Let us take Dxx for H1(k) in Eq. (7) as an example. Be-
cause Ωk,x and vx in Eq. (6) are even and odd with respect to
Mx respectively, Dxx = 0. Therefore, in the presence of Mx

and Mz , we obtain two non-zero BCD components Dzx and
Dxz for Hamiltonian H1(k), which can be easily verified by
numerical calculations as shown in the following discussions.
The associated BCD densities (Dzx) on the Fermi surface for
the lattice model are shown in Fig. 2. In the absence of tilt,
as shown in Fig. 2(a), there are four isolated Fermi surfaces
circling around each Weyl node located in the ky = 0 plane
and the BCD density on these four isolated Fermi surfaces
are related by TR symmetry as well as the mirror symme-
try along kx, kz axes. When the chemical potential is close
to the Weyl nodes, the Dzx component for each Weyl node
vanishes because Dzx on each isolated Fermi surface is anti-
symmetric in kz-direction as shown in Fig. 2(a). In this limit,
the non-tilted lattice model is equivalent to a combination of
four isolated Weyl nodes related by symmetries. Now, with
increasing chemical potential, each isolated surface expands
and are connected with each other. In this limit, the net Dzx

remains zero in the absence of tilt because, despite the changes
of the shape of the Fermi surface, the distribution of Dzx
on the Fermi surfaces around each Weyl node remains anti-
symmetric between the mirror symmetric pairs. Interestingly,
the net Dzx rises to a finite value in the presence of tilt. This
is attributed to the fact that the anti-symmetry along kz-axis
(the tilt direction) is broken for the density distribution in the
presence of tilt and the Dzx distribution in the overlap regions
(in blue color, mainly localized around kz-axis) between Weyl
nodes, in particular between the Weyl nodes at (±k0, 0, π/2)
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or (±k0, 0,−π/2), becomes symmetric in the tilting direction
(kx-axis) as shown in Fig. 2(b), (c). Since the density dis-
tribution on the Fermi surfaces around the tilted Weyl nodes,
as shown in Fig. 2(b),(c), do not contribute to the net Dzx, it
is therefore clear that the contributions to Dzx mainly come
from the overlap regions between the Weyl nodes. Addition-
ally, in the case of type-II WSM (γ > 2t), the density Dzx of
both valence band and conduction band can contribute to the
net BCDDzx as clearly indicated in Fig. 2(c) where the Fermi
surface in light blue around the origin and the four smaller sur-
faces in the middle of edges, in effect, belong to the valence
band while the rest of the Fermi surfaces belong to the conduc-
tion band. That is why it is always advantageous to consider
type-II WSM than type-I WSM to study BCD.

In summary, the net value ofDzx is finite only when the tilt
is present as clearly depicted in Fig 2. We would like to point
out that, based on the symmetries, another component of BCD
tensor,Dxz will also be non-zero for HamiltonianH1(k). The
non-zero BCD components i.e., Dzx and Dxz as a function of
the tilt strength γ are shown in Fig. 3. It is important to note
that it has been predicted only the anti-symmetric components
of the BCD tensor are allowed to exist, namely, Dij = −Dji

for TaAs-family materials (C4v). However, we show that the
non-zero BCD components Dzx and Dxz do not have such
relations for the TRI lattice HamiltonianH1(k) (see Fig. 3 (a)
and the insert).

It is obvious from Fig. 3(a) that the non-zero BCD com-
ponents for H1(k) shows an asymmetry in terms of chemi-
cal potential, namely Dzx(µ) = −Dzx(−µ), which renders
Dzx(µ = 0) = 0 (see the orange solid lines in Fig. 3). How-
ever, this asymmetry is not necessary for all the lattice models,
which we will discuss in detail in the following section (see
Part D). Since BCD by its definition is a purely Fermi surface
property, only one of the two bands (the band where µ lies)
will always contribute to the net BCD for the type-I WSMs
(γ < 2t) as shown in Fig. 3(b), (c). On the other hand, both
bands actually can contribute to net BCD in type-II Weyl sys-
tem (γ > 2t). In particular, at µ = −0.2t (Fig. 3(b)), both
the electron and hole pockets appear at the Fermi surface in
type-II WSMs and the contribution from the conduction band
(dotted lines) starts to cancel that from the valence band (dash-
dotted lines) whereas for type-I WSM, only the valence band
contributes. Moreover, when µ lies at the charge neutral point,
as shown in Fig. 3(c), there is no contribution from each band
for type-I Weyl fermions due to the absence of Fermi surface.
On the other hand, for type-II WSMs described by H1(k),
contributions from electron and hole pockets are both equal
and opposite and therefore result in a zero net Dzx.

C. BCD for a pairs of linearized Weyl fermions decorated with
symmetries

Based on the results of the linearized models we have in
Section III. A, the only non-zero BCD components for each
Weyl node are Dii, i = x, y, z. Considering the symmetry re-
strictions, in particular, in the presence of both TR and mirror
symmetries, the net value of each diagonal BCD component

FIG. 3. (Color online) (a) Berry curvature dipole Dzx as a function
of tilt parameter γ at fixed chemical potential µ = 0,±0.2t for lat-
tice Weyl Hamiltonian given in Eq. (7). Dzx is anti-symmetric in
terms of chemical potential µ and Dzx(µ = 0) = 0 with any tilt for
the lattice model given in Eq. (2). The insert shows the plot of Dxz

versus γ, which similarly shows that Dxz(µ = 0) = 0 and also im-
plies that Dxz has no direct relation with Dzx (e.g., Dxz = −Dzx)
for H1(k) in Eq. (7). At chemical potentials µ = ±0.2t, a finite
tilt is indispensable for both Dzx, Dxz to be non-zero. Panel (b), (c)
show the contribution from each individual band to the net Dzx in
(a) at chemical potential µ = −0.2t (solid blue) and µ = 0 (solid or-
ange), respectively. The dotted lines represent the contribution from
the conductance band while the dash-dotted line represent that from
the valence band. When the chemical potential lies in the valence
band with µ = −0.2t, the conduction band starts to contribute only
when the Weyl node is over-tilted (γ > 2t). When it lies right at the
charge neutral point, each band start to contribute oppositively at the
critical point γ = 2t for tilt strength. The other parameters used here
are same as Fig. 2.

sums to zero (and all the off-diagonal components are identi-
cally zero for each Weyl node). These predictions based on
the linearized model decorated with symmetries are inconsis-
tent with what we have shown for the lattice model in Fig. 3.
Since the linearized model discussed earlier lacks the ultra-
violet energy cutoff, in this section, we will consider a TRI
linearized model with an energy cutoff to unveil the true ori-
gin and get a deeper understanding of the non-zero BCD in
3D WSMs. Here, we will analyze the effect of energy cutoff
as well as the separation of the Weyl nodes on the BCD.

Now we consider the low energy Hamiltonian with an ap-
propriate energy cutoff approximated from the lattice Weyl
Hamiltonian given in Eq. (7). This Hamiltonian can be writ-
ten as

H linear
1 =γ

[
∓ (kz ∓

π

2
)− cos k0

]
σ0+[

−m1(kz ∓
π

2
)2 ∓ 2tx sin k0(kx ∓ k0)

]
σx−

2tkyσy ± 2t(kz ∓
π

2
)σz

(10)

The above Hamiltonian consists of four Weyl nodes located at
(±k0, 0,±π2 ) which are tilted along kz-axis. Here, m1 = m

or m1 = 0 (expanded from −m cos2 kz in Eq. (7)) switch
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FIG. 4. (Color online) Spectrum (E(ky = 0)) in momentum
space along path A1(−π, 0,−π) − Γ(0, 0, 0) − A2(π, 0, π) for
the time reversal invariant Weyl system based on lattice Hamilto-
nian H1(k)(Eq. (7), orange circled line), linearized Hamiltonian
Hlinear

1 (k) with m1 = 0 (blue dotted blue) and m1 = m (solid
green), respectively. Both the two linearized models can well de-
pict the energy dispersion around the Weyl nodes in the momentum
space, while the linear model with m1 = m matches better with the
lattice model when it is away from the Weyl nodes. The tilt parame-
ters for each panel are given in the title and the other parameters used
here are same as Fig. 2.

on or off the second-order expansion on kz for Hamiltonian
H linear

1 (k) respectively and k0 represents the separation be-
tween Weyl node pairs. By replacing the ± sign along with
kx, kz in Eq. (10) with −sign(kx) and −sign(kz) respec-
tively, we naturally add an appropriate energy cutoff for each
Weyl node. In this way, the band structure for the linearized
model given by Eq. (10) becomes more similar to that for
its corresponding lattice model H1(k). The energy spec-
trum of H linear

1 (k) and H1(k) are depicted in Fig. 4, where
the circled orange line represents the bands for the lattice
model H1(k) and the blue dotted and solid green line rep-
resent the bands for the linearized Hamiltonian H linear

1 (k)
with m1 = 0,m respectively. It is evident from Fig. 4 that
the linearized model with m1 = 0 (blue dotted line), having
purely first-order expansion around the Weyl node in each di-
rection, can only give us a consistent description mainly for
the Weyl nodes with respect to its lattice Hamiltonian (orange
circled line). On the other hand, when we keep the term upto
second-order in kz by considering m1 = m in Eq. (10), the
band structure of the linearized Hamiltonian H linear

1 (k) be-
comes close (for a very limited vicinity) with that givenn by
the lattice Hamiltonian H1(k), as shown by the solid green
lines in Fig. 4.

In Fig. 5, we show the chemical potential dependencies of
the non-zero BCD componentsDzx, Dxz based on Eq. (7) and
Eq. (10). We find that, considering the term second-order in
kz (m1 = m), some of the features of the µ dependence on
Dzx become more closely related to that of the lattice model
(see the solid green lines in the top panels of Fig. 5). On the
other hand, the µ dependence of Dxz for the case m1 = m
is still very different compared to the lattice model. This is
attributed to the fact that the term (kz ± π/2)2 (m1 = m)

FIG. 5. (Color online) Top panels : Dzx as a function of chemical
potential µ with tilt parameter γ/t = 0.5 (left panel) and γ/t = 1.5
(right panel). The linear model Hlinear

1 (k) with m1 = 0 (blue
dotted) lost all the features for the Dzx calculated from the lat-
tice model H1(k) except around the Weyl nodes (µ = 0), while
Hlinear

1 (k) with m1 = m (solid green), i.e., with a second-order
term (kz±π/2)2 counted into the linearized Hamiltonian in Eq. (10),
gives a more accurate description of Dzx(µ) (see the solid green in
top right panel). Bottom panels : Similar as top panels but are plots
of Dxz as a function of chemical potential µ with tilt γ/t = 1.0, 2.5
in left and right panel, respectively. Different from that for Dzx, the
linear models Hlinear

1 (k) fails to collect the corresponding contri-
butions for the Berry curvature dipole component Dxz . The other
parameters used here are the same as that in Fig. 2.

only brings a second-order effect along the kz-direction. Note
that, the value of BCD component Dzx and Dxz calculated
based on the linearized model withm1 = 0 in Eq. (10) is zero.
Hence, the results in Fig. 5 are consistent with the symmetry
analysis in the previous sections.

Following the above observations, it is now clear that the
linearized model H linear

1 (k) with an appropriate energy cut-
off and with or without considering higher order terms (i.e., k2z
term) can not produce the correct behavior as well as magni-
tude of BCD compared to the lattice Hamiltonian. Therefore,
we conjecture that the Fermi surface in the overlapping region
between the mirror symmetric Weyl cones, present only in the
lattice Hamiltonian, is the origin of the non-zero BCD in the
full lattice model. We will now prove this point by investigat-
ing the effect of separation of the Weyl nodes on the magni-
tude of the non-zero BCD components in the 3D WSMs.

Let us revisit the model Hamiltonian of the TRI Weyl sys-
tem defined in Eq. (7), where the Weyl cones at (k0, 0, π/2)
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FIG. 6. (Color online) Effects from the Weyl node separation k0
along kx-axis on the Berry curvature dipole. Top panels : D0

zx, nor-
malized BCD component Dzx by Dzx|k0=

π
2

, as a function of k0 at
different chemical potentials with small tilting γ/t = 0.1 (left panel)
and γ/t = 0.3 (right). D0

zx is non-monotonic with respect to k0,
with one or two maximum points. D0

zx at all the three chemical po-
tentials shows a gradual increase when the separation k0 increases
from 0 towards π/2, and then decreases. Bottom panels : Similar as
top panels but are plots for D0

xz as a function of k0. Comparing with
D0

zx, the effect from k0 on D0
xz is more obvious, especially on D0

xz

with γ/t = 0.3 (right panel), where a maximum D0
xz ∼ 90 appears

around 0.25π at chemical potential µ = 1.6t . For D0
xz , a separation

k0 away from k0 = π/2 gives higher contribution. Note that, D0
zx

reverses its sign once while D0
xz reverses its sign twice, as shown in

the figure. The other parameters used here are same as Fig. 2.

and (−k0, 0, π/2) are mapped to each other by Mx and 2k0
is the separation between this Weyl node pair along kx direc-
tion. Likewise, the Weyl cones (related by mirror symmetry
Mz) located at (k0, 0, π/2) and (k0, 0,−π/2) are separated
by π along kz direction. To show the effect of the separation
of Weyl nodes on BCD, we study the dependence of BCD as
a function of k0 within a range k0 ∈ [0, π]. Note that, when
k0 = 0, π, the Weyl nodes related by mirror symmetry Mx

coincide, and the Hamiltonian describes two Dirac cones that
can be mapped to each other by TR symmetry (or Mz). Since
the inversion symmetry of Hamiltonian H1(k) remains bro-
ken by term Nz(kz) which is independent of k0, the Berry
curvature and Berry curvature dipole density are still present.
This result in effect is consistent with a very recent study of
non-linear transport in the 2D Dirac semimetals [26].

In Fig. 6, we plot the D0
zx and D0

xz as a function of k0
in the top and bottom panels respectively. Here D0

ij(k0) =
Dij(k0)/Dij(k0 = π/2) is the normalized value which is
beneficial to show the changes in the BCD magnitude vary-

FIG. 7. (Color online) Energy spectrum for time reversal invariant
Weyl systems based on lattice models. The conduction and valence
band are plotted as the dashed and dotted line respectively. The col-
ors represent the associated Berry curvature, and the green dotted
lines indicate the Fermi level where the Weyl nodes locate at. Top
panel : Spectrum based on lattice Weyl Hamiltonian in Eq. (7) along
path A1(π, 0, π) − Γ(0, 0, 0) − A2(−π, 0,−π) − A3(−π, 0, π) −
Γ(0, 0, 0) − A4(π,−π) in momentum space. As shown above, the
Berry curvature is mainly concentrated around the four Weyl nodes
at µ = 0. Here, the tilt parameter γ = 2.5t, and the other param-
eters used are same as Fig. 2. Bottom panel : Similar as the top
panel but is the spectrum based on the Hamiltonian in Eq. (11) along
the momentum path B1(π, π, 0) − Γ(0, 0, 0) − B2(−π,−π, 0) −
B3(−π, π, 0) − Γ(0, 0, 0) − B4(π,−π, 0). Here a pair of type-II
Weyl nodes are localized at µ = −t and another pair are localized
at µ = 0.5t. The other parameters used here for Hamiltonian in
Eq. (11) are t1 = t, t2 = 0.5t, δ = −0.5t, kw = π/4. For both the
two panels, the density distribution of negative (blue) Berry curva-
ture are more intense than the positive one (orange) (see the inserts)
around the Weyl nodes due to their tilt.

ing with the separation k0. Moreover, to suppress the tilting
effect on BCD, we have considered the smaller tilt cases, i.e.,
γ = 0.1t, γ = 0.3t. It turns out that the magnitude of BCD
components are highly dependent on k0, especially D0

xz (see
the bottom panels in Fig. 6). We find thatD0

zx changes its sign
once whileD0

xz changes twice when the k0 increases from 0 to
π. Apart from that, BCD at different chemical potentials show
different dependencies on k0, e.g., D0

zx at µ = 0.8t, 1.2t (see
top panel). Therefore, it is apparent from Fig. 6 that the be-
havior of BCD is definitely affected by k0 which can tune the
area or the shape of the Fermi surface between the Weyl nodes
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FIG. 8. (Color online) Left panel : Fermi surface EF = 0 in the
kx − kz plane associated with the density of Berry curvature dipole
component Dxz (indicated by the colors) for lattice model H1(k) in
Eq. (7). In the type-II Weyl semimetal regime, electron (solid black)
and hole (dash-dotted black) pockets form near the Weyl nodes as
well as around k = (0, 0, 0), (0, 0,±π). For Hamiltonian H1(k),
the contributions to BCD Dzx from electron and hole pockets are
canceled resulting in a zero net value. Right panel : Fermi surface
EF = −t in the kx − ky plane associated with the density of Berry
curvature dipole component Dxy (indicated by the colors) for lattice
model H2(k) in Eq. (11). Different from the left panel, for Hamil-
tonian H2, only the electron pocket (solid black) contributes to Dxy

at the Fermi plane EF = −t. In addition, negative BCD density
Dxy (blue) dominates over the positive one (orange) at the two nodes
((±kw,±kw, 0)). The results in this figure are consistent with Fig. 9.
Here, the color scale is [−0.1, 0.1] with a style similar as Fig. 2 and
the parameters used are same as Fig. 7.

in the overlap region. This proves that the source for the BCD
lies on the Fermi surface in the overlapping region between
the pairs of Weyl cones, whose appearance in the lattice Weyl
Hamiltonian can not be replicated by any simple linearized
model Hamiltonian. The conclusion here is consistent with
our early discussions.

D. BCD with time reversal invariant Weyl Hamiltonian with
chiral chemical potential

In the previous section, we demonstrated that the linearized
model can not explain the non-zero BCD in a realistic WSM
while the lattice model with natural energy cutoff as well as
irreproducible overlap regions between the Weyl nodes can
offer us a much more appropriate description for the BCD be-
havior in 3D WSMs. Interestingly, it has been predicted that
TaAs, an inversion broken TRI WSM containing Weyl nodes
at different energies, shows a strong dip in the amplitude of
BCD when the energy crosses a type-II Weyl node. However,
the TRI lattice model Hamiltonian given in Eq. (7), exhibits
Dzx(µ = 0) = Dxz(µ = 0) = 0, which holds for arbitrary
tilt strength. It is important to note that the Hamiltonian given
in Eq. (7) contains four Weyl nodes lying at µ = 0 (i.e., no en-
ergy difference between the Weyl nodes), while in most of the
inversion broken WSMs discovered experimentally, the Weyl
nodes are located at different energies. In this section, we con-
sider a TRI lattice Weyl Hamiltonian with weyl nodes located
at different energies and investigate the BCD in these systems.

The model Hamiltonian for a TRI lattice model different

FIG. 9. (Color online) Non-zero components of Berry curvature
dipole based on different lattice models for time reversal invariant
Weyl systems. (a) Dzx, Dxz for H1(k) in Eq. (7) as a function of
chemical potential with tilt parameter γ = 2.0t (dash-dot line) and
γ = 2.5t (solid line) for Hamiltonian H1 (Eq. (2)). As is shown in
panel (a), though Dzx, Dxz show different dependencies on chemi-
cal potential, both of them are identically zero at charge neutral point
µ = 0, marked by the green dashed line. (b) For HamiltonianH2(k)
(Eq. (11)) which has two pairs of Weyl nodes at non-zero energy lev-
els (i.e., µ = −t, 0.5t), Dxy, Dyx show extremal (peaks and dips)
non-zero values when chemical potential crosses the Weyl node’s en-
ergies (see the green dashed lines, or the black dotted lines). The dif-
ference in the behavior of the components of Berry curvature dipole
at the energies of Weyl nodes between Hamiltonian H1, H2 can be
explained by the results given in Fig. 8.

from H1(k), where two pairs of Weyl nodes are lying at dif-
ferent chemical potentials, can be written as [43],

H2(k) =t2
[

cos (kx + ky) + δ cos (kx − ky)
]
σ0+

t1 sin kzσy+

t1
[
(cos kw − cos ky) + δ(1− cos kz)

]
σx+

t1
[
(cos kw − cos kx) + δ(1− cos kz)

]
σz

(11)

where t1, t2 are hopping amplitudes, and the tilt strength is de-
termined by t2 and δ together. For this Hamiltonian, the four
Weyl nodes are located at (±kw,±kw, 0) and two of them ap-
pear at energy Ea = t2

[
cos(2kw) + δ

]
while the other two

are located at energy Eb = t2
[
1 + δ cos(2kw)

]
. Therefore,

by tuning t2 and δ, one can realize type-II (as well as type-I)
WSMs with an finite effective chemical potential difference
between the Weyl nodes.

In Fig. 7, we show the energy dispersion for Hamiltonian
H2(k) along a specific path that goes through the four Weyl
nodes in momentum space and compare this with the spec-
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(a) (b)

(c) (d) (e)

(f)

FIG. 10. (Color online) (a) Nonlinear anomalous Hall coefficient σ′
zxy as a function of chemical potential µ and parameter δ based on

Hamiltonian H2(k) in Eq. (11). The black dashed lines correspond to µ = 0.5t and µ = 0.5δ respectively, implying for the different chiral
chemical potentials for the Weyl nodes. (b) Line cuts at δ/t = −1, 0, 1, 2 of panel (a) for σ′

zxy as a function of chemical potential µ. Panel
(a), (b) clearly show that one of the peaks (of σ′

zxy) appears around µ = 0.5t (e.g., black dashed line in (b)) for different chemical potentials
while the position of the other peak depends on the value of δ/t. Nonlinear transport coefficients σ′

zxy, α
′
zxy, l

′
zxy as a function of chemical

potential µ/t and temperature kBT with δ = 2t are plotted in panel (c), (d), (e) respectively. The normalized values i.e., f/|f |max for
f = σ′

zxy, α
′
zxy, l

′
zxy with T = 50K (line cuts of panel (c), (d), (e), respectively) are plotted in panel (f). In this panel, the relations of

α′
zxy ∝ σ′

zxy and l′zxy ∝ ∂σ′
zxy/∂µ are evidently shown, consistent with the analysis in Ref. [22]. Note that, here σ′

zxy is given in units of
e3τ/~2, while α′

zxy and l′zxy are given in units of eτk2B/~2 respectively. The results in this figure are calculated based on Eq. (12) numerically.
Here we have temperature T = 20K for panels (a), (b), and the other parameters used are the same of that in Fig. 8.

trum for Hamiltonian H1(k). In this figure, the black dashed
lines and black dotted lines represent the conduction and va-
lence band respectively, the colors attached to the bands indi-
cate the corresponding Berry curvature, and the green dashed
lines indicate the energy levels of the Weyl nodes. As shown
in Fig. 7, there are four Weyl nodes lying at µ = 0 for H1(k)
(top panel) while for H2(k) (bottom panel), two Weyl nodes
lie at µ = −t and other two lie at µ = 0.5t. It is worthy
to note that, the four band touching points (Weyl nodes) for
H1(k) (top panel) and H2(k) (bottom panel) respectively lie
in the ky = 0 and kz = 0 planes. In the presence of tilt, the
Berry curvature, which mainly concentrates around the Weyl
nodes, shows different density of distribution on their tilted
bands. As shown in insets of Fig. 7, the negative Berry cur-
vature in blue color is more dense than the positive one in
orange color, which inevitably leaves a non-zero net value at
the given Fermi levels. Besides the differences on the band
structure and the Weyl nodes’ energy levels, another major
difference between H1(k) and H2(k) is the BCD density dis-
tribution on the Fermi surface with energy right at their Weyl
nodes.

In Fig. 8, we show the BCD density on the Fermi surface

in the Weyl node’s plane, namely, kx − kz-plane for H1(k)
in the left panel and kx − ky-plane in the right panel. Inter-
estingly, for H1(k) both the electron (black dash-dotted) and
hole pockets (solid black) are present at the Fermi level and
their contributions to BCD Dzx are canceled by each other,
rendering the net Dzx to zero value. On the other hand, only
the hole pocket (solid black) contributes to the net BCD Dxy

for Hamiltonian H2(k). In addition, there is larger, negative
BCD density at the Weyl nodes at ±(k0, k0, 0), effectively re-
sulting in a non-zero BCD. It is important to note that the BCD
density distribution is even in the third axis for both Hamilto-
nians as depicted in Fig. 8, i.e., Dzx(−ky) = Dzx(ky) for
H1(k) and Dxy(−kz) = Dxy(kz) for H2(k). Therefore one
expects a similar density distribution of BCD on the Fermi
surface as shown in Fig. 8 even after integrating the third axis
for both H1(k) and H2(k). The different BCD density pat-
terns right at the Fermi plane crossing the Weyl node between
the lattice model H1(k), H2(k), will lead to the different be-
haviors for their BCDs at the energies of the Weyl nodes. In
Fig. 9, we plot the non-zero BCD components as a function of
chemical potential for both the lattice models given in Eq. (7)
and Eq. (11) in panel (a), (b) respectively. In Fig. 9 (a), both
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Dzx (in blue) and Dxz (in red) identically equal to zero when
the energy level crosses the Weyl nodes at µ = 0 (indicated
by the green dashed line) for the Hamiltonian H1(k). Dxy

(in blue) and Dyx (in red) for Hamiltonian H2(k) show ap-
parent peak (or dip) at the energy levels of the Weyl nodes,
indicated by the green dashed lines for δ = −2t, and black
dotted lines for δ = 2t respectively. It is not hard to conceive
that the strong dip or peak for Dyx and Dxy originate from
the large BCD density right at the Weyl nodes, as shown by
the right panel of Fig. 8. Regarding the µ dependencies of
the BCD components, we find that both Dxy(µ) and Dyx(µ)
show a similar dependence with µ for H2((k)) because of
H2(k) = H2(kx ↔ ky, kz). However, this type of symme-
try is not present in H1(k) hence, Dzx and Dxz show totally
different µ-dependence.

Following the above discussions, we now investigate the
BCD-induced nonlinear anomalous Hall, Nernst and thermal
Hall effects using the lattice model of WSMs. We consider the
nonlinear anomalous transport coefficient σ′

zxy, α
′
zxy, l

′
zxy ,

delineating a nonlinear Hall, Nernst and thermal Hall current
flowing along z-direction respectively [2, 20–22]. These co-
efficients can be written as,

σ′
zxy =

e3τ

2~2

∫ [
dk
]
Dxy

∂fk
∂εk

=
e3τ

2~2
Dxy,

α′
zxy = −eτk

2
B

~2

∫ [
dk
]
Dαxy

∂fk
∂εk

l′zxy =
eτk3BT

~2

∫ [
dk
]
Dlxy

∂fk
∂εk

(12)

Here Dxy is the BCD density defined in Eq. (6) whereas
Dαxy = vxΩk,y(εk − µ)2/k2BT

2 and Dlxy = vxΩk,y(εk −
µ)3/k3BT

3 are the modified BCD density defined for the non-
linear anomalous Nernst and thermal Hall coefficients re-
spectively. The prime symbol indicates the response in the
nonlinear regime. As shown in Fig. 10 (a) and (b), the
nonlinear anomalous Hall coefficient σ′

zxy , directly propor-
tional to BCD Dxy , shows stable peak at µ = 0.5t and
µ = 0.5δ (indicated by the black dashed lines). Based on
Eq. (11) and Eq. (12), we also investigate the dependencies
of nonlinear anomalous transport coefficients (response func-
tions), i.e., σ′

zxy, α
′
zxy, l

′
zxy on the chemical potential µ and

temperature T , as shown in Fig. 10 (c-d). It is clear that
σ′
zxy and α′

zxy have an identical dependencies on µ and T
(namely, α′

zxy ∝ σ′
zxy [21]), while l′zxy shows an evident

sign change behavior when µ = 0.5t,−t, which can in effect
be conceived as the consequences of the first-order deriva-
tive of BCD with respect to the chemical potential (namely,
l′zxy ∝ ∂σ′

zxy/∂µ [22]). These behaviors are more clearly
conveyed in Fig. 10(f), where all the three response functions
are normalized by their own maximum absolute values (i.e.,
f/|f |max). These specific experimental signatures of the non-
linear transport response functions and their fundamental re-
lations in the nonlinear regime are different from the conven-
tional Wiedemann-Franz law and Mott relations valid in the
linear response regime [22]. Here they have been obtained
using a general Lattice model and can be directly tested in
experiments in realistic WSMs.

In summary, in this section we have considered two pairs of
type-II Weyl nodes at different energies based on H2(k). Us-
ing the lattice mode given in Eq. (11), we have checked that
type-I Weyl nodes located at different energies also generate a
finite BCD magnitude and even peaks when the Fermi energy
crosses the Weyl nodes. However, these phenomena disappear
if we remove the energy difference among the type-I Weyl
cones by setting t2 = 0 in Eq. (11) (e.g., δ/t = 0 in Fig. 10
(b)). Therefore, taking into account the effective chemical po-
tential difference in the lattice Weyl Hamiltonian is essential
to explain the nontrivial topological properties such as Berry
curvature and BCD induced anomalous effects (e.g., Eq. (12))
in realistic WSMs.

IV. SUMMARY AND CONCLUSION

Starting with a symmetry analysis of the Berry curvature
dipole for the single linearized Weyl fermion model (Eq. (4)),
we find that the only non-zero components areDii, i = x, y, z
for a 3D WSM. We also point out that analyzing the BCD dis-
tribution (and the corresponding symmetries) using a reduced
Fermi surface (or integrating out the third momentum) can-
not give us the correct description in 3D systems. By com-
paring the low energy Weyl Hamiltonian with an appropriate
high-energy cutoff derived from a lattice model with the cor-
responding lattice Hamiltonian, we find that the low-energy
model cannot generate the correct results for BCD, in com-
parison to that found by the lattice model. Our results show
that the value of the non-zero net BCD does not rely on the
contributions from the individual Weyl nodes. We further in-
vestigate the effect of the Weyl node separation on the mag-
nitude of BCD in a 3D WSM. We find that the magnitude of
BCD strongly depends on the separation of the Weyl nodes
for a given WSM lattice model. It follows, therefore, that the
net non-zero contributions to BCD in WSMs originates from
the reciprocal space overlap regions between the Weyl nodes,
rather than from the Weyl nodes themselves. Considering the
fact that in realistic materials Weyl points are often located at
unequal energy levels in the Brillouin zone, we apply a sec-
ond lattice Hamiltonian with intrinsic chemical potential mis-
match, or chiral chemical potential, in the Weyl cones. Based
on this Hamiltonian we find several interesting features of
BCD, namely, peaks in the non-zero off-diagonal components
at the Weyl nodes themselves, consistent with recent ab ini-
tio studies for realistic WSMs [7]. Moreover, the behavior of
Berry curvature dipole in an inhomogeneous WSM or integer-
spin Weyl systems are another interesting avenues, which we
will explore in future [44, 45].

In conclusion, we have systematically studied the Berry
curvature dipole in lattice models of TR-invariant but inver-
sion broken topological WSMs. We find that using the lattice
Hamiltonians one can not only explain the origin of the net
non-zero BCD for the WSMs in 3D which are not captured by
the linearized models of WSMs but are present in numerical
ab initio calculations, but also reproduce and explain some of
the important features that might appear in the experiments
for BCD and the related non-linear transport phenomena in
topological WSMs.



12

V. ACKNOWLEDGMENTS

C. Z. and S. T. acknowledge support from ARO Grant
No. W911NF-16-1-0182. C. Z. also acknowledges support

from the National Key R&D Program of China (Grant No.
2020YFA0308800).

[1] T. Morimoto, S. Zhong, J. Orenstein, and J. E. Moore, Semi-
classical theory of nonlinear magneto-optical responses with
applications to topological dirac/weyl semimetals, Phys. Rev.
B 94, 245121 (2016).

[2] I. Sodemann and L. Fu, Quantum nonlinear hall effect induced
by berry curvature dipole in time-reversal invariant materials,
Phys. Rev. Lett. 115, 216806 (2015).

[3] J. I. Facio, D. Efremov, K. Koepernik, J.-S. You, I. Sodemann,
and J. van den Brink, Strongly enhanced berry dipole at topo-
logical phase transitions in bitei, Phys. Rev. Lett. 121, 246403
(2018).

[4] H. Rostami and M. Polini, Nonlinear anomalous photocurrents
in weyl semimetals, Phys. Rev. B 97, 195151 (2018).

[5] S.-Y. Xu, Q. Ma, H. Shen, V. Fatemi, S. Wu, T.-R. Chang,
G. Chang, A. M. M. Valdivia, C.-K. Chan, Q. D. Gibson,
J. Zhou, Z. Liu, K. Watanabe, T. Taniguchi, H. Lin, R. J. Cava,
L. Fu, N. Gedik, and P. Jarillo-Herrero, Electrically switchable
Berry curvature dipole in the monolayer topological insulator
WTe2, Nature Physics 14, 900 (2018).

[6] J.-S. You, S. Fang, S.-Y. Xu, E. Kaxiras, and T. Low, Berry
curvature dipole current in the transition metal dichalcogenides
family, Phys. Rev. B 98, 121109 (2018).

[7] Y. Zhang, Y. Sun, and B. Yan, Berry curvature dipole in weyl
semimetal materials: An ab initio study, Phys. Rev. B 97,
041101 (2018).

[8] O. Matsyshyn and I. Sodemann, Nonlinear hall acceleration
and the quantum rectification sum rule, Phys. Rev. Lett. 123,
246602 (2019).

[9] T. Morimoto and N. Nagaosa, Topological nature of nonlinear
optical effects in solids, Science Advances 2, e1501524 (2016).

[10] J. E. Moore and J. Orenstein, Confinement-induced berry phase
and helicity-dependent photocurrents, Phys. Rev. Lett. 105,
026805 (2010).

[11] Z. Z. Du, C. M. Wang, H.-Z. Lu, and X. C. Xie, Band signatures
for strong nonlinear hall effect in bilayer WTe2, Phys. Rev.
Lett. 121, 266601 (2018).

[12] B. T. Zhou, C.-P. Zhang, and K. Law, Highly tunable non-
linear hall effects induced by spin-orbit couplings in strained
polar transition-metal dichalcogenides, Phys. Rev. Applied 13,
024053 (2020).

[13] Q. Ma, S.-Y. Xu, H. Shen, D. MacNeill, V. Fatemi, T.-R. Chang,
A. M. M. Valdivia, S. Wu, Z. Du, C.-H. Hsu, S. Fang, Q. D. Gib-
son, K. Watanabe, T. Taniguchi, R. J. Cava, E. Kaxiras, H.-Z.
Lu, H. Lin, L. Fu, N. Gedik, and P. Jarillo-Herrero, Observa-
tion of the nonlinear hall effect under time-reversal-symmetric
conditions, Nature 565, 337342 (2019).

[14] K. Kang, T. Li, E. Sohn, J. Shan, and K. F. Mak, Nonlinear
anomalous hall effect in few-layer WTe2, Nature Materials 18,
324 (2019).

[15] Z. Z. Du, C. M. Wang, S. Li, H.-Z. Lu, and X. C.
Xie, Disorder-induced nonlinear hall effect with time-reversal
symmetry, Nature Communications 10, 10.1038/s41467-019-
10941-3 (2019).

[16] L.-k. Shi and J. C. W. Song, Symmetry, spin-texture, and tun-
able quantum geometry in a WTe2 monolayer, Phys. Rev. B 99,

035403 (2019).
[17] J. Son, K.-H. Kim, Y. H. Ahn, H.-W. Lee, and J. Lee, Strain

engineering of the berry curvature dipole and valley magnetiza-
tion in monolayer MoS2, Phys. Rev. Lett. 123, 036806 (2019).

[18] S. Nandy and I. Sodemann, Symmetry and quantum kinetics of
the nonlinear hall effect, Phys. Rev. B 100, 195117 (2019).

[19] R. Nakai and N. Nagaosa, Nonreciprocal thermal and thermo-
electric transport of electrons in noncentrosymmetric crystals,
Phys. Rev. B 99, 115201 (2019).

[20] X.-Q. Yu, Z.-G. Zhu, J.-S. You, T. Low, and G. Su, Topological
nonlinear anomalous nernst effect in strained transition metal
dichalcogenides, Phys. Rev. B 99, 201410 (2019).

[21] C. Zeng, S. Nandy, A. Taraphder, and S. Tewari, Nonlinear
nernst effect in bilayer WTe2, Phys. Rev. B 100, 245102 (2019).

[22] C. Zeng, S. Nandy, and S. Tewari, Fundamental relations for
anomalous thermoelectric transport coefficients in the nonlinear
regime, Phys. Rev. Research 2, 032066 (2020).

[23] A. A. Burkov, Chiral anomaly and diffusive magnetotransport
in weyl metals, Phys. Rev. Lett. 113, 247203 (2014).

[24] R. Battilomo, N. Scopigno, and C. Ortix, Berry curvature dipole
in strained graphene: A fermi surface warping effect, Phys. Rev.
Lett. 123, 196403 (2019).

[25] D.-F. Shao, S.-H. Zhang, G. Gurung, W. Yang, and E. Y. Tsym-
bal, Nonlinear anomalous hall effect for néel vector detection,
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