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The Anderson Impurity Model (AIM) is a canonical model of quantum many-body physics. Here
we investigate whether machine learning models, both neural networks (NN) and kernel ridge re-
gression (KRR), can accurately predict the AIM spectral function in all of its regimes, from empty
orbital, to mixed valence, to Kondo. To tackle this question, we construct two large spectral
databases containing approximately 410k and 600k spectral functions of the single-channel impurity
problem. We show that the NN models can accurately predict the AIM spectral function in all of
its regimes, with point-wise mean absolute errors down to 0.003 in normalized units. We find that
the trained NN models outperform models based on KRR and enjoy a speedup on the order of 105

over traditional AIM solvers. The required size of the training set of our model can be significantly
reduced using furthest point sampling in the AIM parameter space, which is important for general-
izing our method to more complicated multi-channel impurity problems of relevance to predicting
the properties of real materials.

I. INTRODUCTION

Describing the physics of strongly correlated quan-
tum many-body systems in real material systems is a
signature challenge. In weakly correlated systems like
simple metals, semiconductors, and band insulators, the
physics is single-particle in nature and tools like Landau-
Fermi liquid theory work well. However in materials
where correlations are not weak, the single-particle pic-
ture is typically insufficient to describe the physics at
low energy scales where emergent, completely novel phe-
nomena can arise. Such physics is of greatest interest
because they gift correlated materials with exceptional
properties ranging over high temperature superconduc-
tivity [1, 2], colossal magnetoresistance [3], heavy fermion
behavior [4], immense thermopower [5, 6], and huge vol-
ume collapses [7] to name but a few.

Measuring the response functions of applied weak ex-
ternal stimuli represents a key means to probe the proper-
ties of a strongly correlated material. However, of all the
properties of a strongly correlated system, the response
functions are the most difficult to ascertain theoretically.
The response functions require not only knowledge of the
ground state properties of a correlated material, but de-
tailed knowledge of its excited state structure together
with matrix elements of the observables of interest (for
example, electric and heat currents). Many different the-
oretical approaches exist for resolving this difficult prob-
lem. Here, our motivational focus is one technique that
has shown great promise for being able to categorically
describe wide classes of correlated materials: dynamical
mean field theory (DMFT) [8, 9].
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FIG. 1: Cartoon of a typical Anderson impurity model
with a set of physical input parameters (left). The

physical properties are fed as training data into a neural
network (center), which then learns to predict the

spectral function (right).

DMFT is a Green’s function method [10] that sums
over an infinite set of Feynman diagrams consistent with
the self-energy of the single-particle Green’s function be-
ing local. In practice, performing this infinite summation
amounts to solving a self-consistent quantum impurity
problem. Besides lying at the heart of DMFT, quantum
impurity problems are interesting many-body systems in
and of themselves. They also describe magnetic impuri-
ties in metallic systems [11, 12], engineered quantum dots
in bosonic or fermionic environments [13–15], and bound-
ary edge modes in topologically non-trivial systems [16].
They also generically experience low-energy dynamically
generated phenomena that are beyond perturbation the-
ory such as the Kondo effect [17, 18] and the attendant
Abrikosov-Suhl resonance that appears at low tempera-
tures and frequencies in the quantum impurity’s spectral
response function.

Different techniques are available to find the spec-
tral function of a quantum impurity problem. Included
among those that are numerically exact are continuous-
time quantum Monte Carlo simulations [19, 20], the nu-
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merical renormalization group (NRG) [21], and the den-
sity matrix renormalization group [22]. The number of
channels in the impurity problem determines the com-
plexity of computing the spectral function (in the con-
text of DMFT, the number of channels in the effective
impurity model matches the number of bands involved in
the underlying material). Single channel impurity models
are relatively cheap to solve numerically while multiple
channel impurity problems are exponentially more chal-
lenging. For example, five band f-electron materials have
associated impurity models requiring petascale compu-
tational resources to accurately solve [23]. Furthermore,
DMFT embeds quantum impurity model solutions in a
self-consistent loop, requiring multiple solutions for final
convergence.

In this light, we ask if machine learning (ML) ap-
proaches offer an alternative to expensive many-body
simulations of impurity response functions. This question
was first posed in Ref. 24, where kernel ridge regression
(KRR) models were trained on a small database of about
5000 spectral functions computed at imaginary frequen-
cies. A focus of this study was to understand the opti-
mal parameterization of the spectral function for training
purposes, finding that a representation in terms of Legen-
dre polynomials worked best. More recently Ref. 25 used
a set of neural networks to train a spectral solver for a
quantum impurity connected to a bath of six sites, and
each network was trained to predict the spectral function
at a single frequency.

In the work presented herein, we investigate whether
an individual model, whether it be KRR or a neural
network, can predict the impurity response function in
regimes where the relevant energy scales are separated
by orders of magnitude and where temperature and mag-
netic field are also parameters. To this end, we have
constructed large (∼ 105) databases of high fidelity spec-
tral functions in the thermodynamic limit using NRG.
While large, our trial set size is commensurate with
datasets used for other quantum physical/chemical appli-
cations [26–28]. We examine the dependence of these re-
sults on the training set size, as generating large training
sets for the multi-channel impurity problems, the prob-
lem of ultimate interest, is much more computationally
intensive. We use NRG to create our databases as it
is an approach that (i) can reliably reach arbitrary, ex-
ponentially small dynamically generated energy scales;
(ii) computes spectral properties directly on the real fre-
quency axis, and (iii) can work with arbitrary tempera-
tures in an efficient, systematic manner [29–33]. To the
best of our knowledge, such high quality NRG databases
do not exist for the AIM model.

II. QUANTUM IMPURITY MODEL

In this work we consider the most elementary of
quantum impurity models, the single impurity Anderson
model (SIAM) [34] with a fixed hybridization function.

While we aspire to use ML algorithms [35, 36] to study
multi-channel impurity problems, we begin here with the
simpler SIAM test environment. The SIAM Hamiltonian
is given by:

Ĥ = Ĥimp +
∑
σ

∫
dε

√
Γ(ε)
π (d̂†σ ĉεσ + H.c.)

+

∫
dε ε ĉ†εσ ĉεσ. (1)

Here, Ĥimp = εdσn̂dσ +Un̂d↑n̂d↓, where d̂†σ creates a par-
ticle with spin σ = ±1 at the impurity d-level at energy
εdσ = εd − σ

2B with B an external magnetic field rep-
resenting the Zeeman splitting. Double occupation of
the impurity levels pays a Coulombic energy penalty, U,
as measured by Un̂d↑n̂d↓. The coupling of the bath of

electrons, ĉ
(†)
εσ , to the impurity is described by the hy-

bridization function, Γ(ε) = πρεV
2
ε , with ρε the density

of states, and Vε the corresponding hopping matrix ele-
ment at ε. For simplicity in this work we use a featureless
hybridization function, Γ(ε) = ϑ(D−|ε|) Γ, with constant
strength Γ = 1 for |ε| < D and zero elsewhere (we take
all energies in units of the half-bandwidth D = 1, unless
specified otherwise, as well as ~ = kB = 1).

III. DATABASE CONSTRUCTION

Inspired by earlier work [24], we started with impurity
parameters, U, Γ, and εd, which we expanded to include
external parameters B and temperature T . For a sin-
gle data point, these inputs will henceforth be written
as the ordered set xp ≡ (U,Γ, εd, B, T )p . We randomly
select values for the parameters within predefined phys-
ically motivated domains. xp is mapped onto the scaled
target yp(ω) ≡ πΓpAp(ω) ∈ [0, 1], where A(ω) is the
corresponding spectral function which we compute via
the NRG. Two disjoint sets were generated: the “Ander-
son” (DA) and “Kondo” (DK) sets of sizes |DA| ≈ 600k
and |DK| ≈ 410k. Both sets produce related physics and
span similar regions of the 5D input hyperspace (see
Fig. 2). As the ML results are similar, we present the
Anderson Set results unless otherwise specified. Details
on the input parameter generation including histograms
and results on the Kondo Set can be found in the Ap-
pendices [37].

In practice, spectra were examined between ω = ±0.8
to circumvent band edge artifacts, and within that win-
dow the spectra are sampled on a refined mixed linear-
logarithmic frequency grid ωi for i = 1, . . . ,M with
M = 333. Finally, all regions of the input hyper-
space were sufficiently represented according to the tri-
als’ smallest physical energy (SPE) scale, defined as
E0 ≡ max(T, TK, |B|), where TK is the Kondo temper-
ature [37].

Each dataset contains data points (xp, yp), and is parti-
tioned into disjoint training (RΩ), cross-validation (VΩ),
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FIG. 2: Principal component analysis performed on the
Kondo (top) and Anderson (bottom) spectral datasets.

In each of the four columns the same PCA data are
colored in terms of different parameters, left to right:

temperature, Kondo temperature, magnetic field
strength, and E0.

and testing (T Ω) sets, with Ω ∈ {A,K} for the Anderson
and Kondo datasets, respectively. We use approximately
2% of the data for cross-validation, another 2% for test-
ing, and the rest for training [38]. In an effort to evaluate
how the data selection method of the minimal training
sets affects the results, we also define two subsets of R,
both of size 50k. The first is a randomly down-sampled
subset Rr ⊂ R. The second is a furthest-points down-
sampled (FPS) subset Rf ⊂ R constructed by first se-
lecting a random point, and then iteratively sampling
the next furthest point in the remainder of the scaled,
5D parameter-space. Models are hyper parameter-tuned
using the validation set, and all results presented in this
work correspond to the testing sets, both of which are
consistent regardless of the model or training set.

In order to visually evaluate the integrity of the gener-
ated datasets, we performed a principal component anal-
ysis (PCA) in the spectral space, reducing the dimension
of each spectrum from M to 2. The results are plotted
in Fig. 2, and color-coded with respect to parameters of
the SIAM that are most directly relevant for the physical
low-energy regime, T , TK, |B|, and the derived E0. Over-
all, the smooth color gradients observed in the PCA plots
suggest that the physically-relevant input parameters can
be mapped continuously to prominent spectral features.
Additionally, one can identify interesting trends within
the physical parameter regimes. In the plots involving
E0, the lowest values cluster at the top and towards
the left, while the largest E0 scales concentrate at the
bottom towards the right/left for the Kondo/Anderson
dataset. This suggests that the dynamically generated
Kondo peak at low energies and the higher energy side
peaks correspond to different spectral features, as already
understood from domain knowledge. Despite the overall
similarity between the Kondo and Anderson PCA plots,
there are subtle differences. For example, in the Kondo
set, the input parameters were generated on a grid [37]
leading to streaks in the PCA plots while such streaks are

absent in the uniformly sampled Anderson set. These
PCA plots qualitatively confirm the physical intuition
that a well-defined mapping exists between the input pa-
rameters, which determine the physics of the system, and
the spectral functions. This suggests that machine learn-
ing algorithms are well suited to modeling the feature-
target mapping.

IV. MODEL RESULTS & DISCUSSION

We use the mean absolute error (MAE) to characterize
model performance. The MAE between a ground truth
NRG spectrum yp(ω) and ML-predicted ŷp(ω) is defined
as an average over the testing set,

δyp =
1

M

M∑
i=1

|yp(ωi)− ŷp(ωi)|, δy =
1

|T |
∑
yp∈T

δyp, (2)

as displayed in Table I.
We introduce a measure of the spectral data vari-

ation, referred to as the baseline error, as the MAE
of the test set against its average spectrum, y(ω) ≡

FIG. 3: Representative ground truth (black) and
MLP-predicted (red) spectral functions from the testing

set, T A, from the model trained on RA. Data
correspond to the best example of each of the five

pentiles of the data top to bottom, respectively. The
system parameters xp ≡ (U,Γ, εd, B, T )p are specified

within each panel. As the algorithms have no notion of
the ω-grid on which the spectra are defined, we present

the “ML-grid” (left) which represents the spectral
functions, yp = πΓpAp, on a uniformly-spaced grid

(emphasizing how the algorithms “see” the targets).
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TABLE I: Summary of average and standard deviations of mean absolute error [cf. Eq. (2)] of all trained models as
computed on test sets, T Ω. The training sets used are shown in parenthesis, e.g., MLP(Rf) indicates the MLP
trained on the down-sampled 50k trial Rf sets but still evaluated on the appropriate T . All KRR(Rr) training

attempts yielded poor predictions with r2 < 0. DC-KRR(RF) trained on the full training set R but in
sequentially-sampled subsets ordered by the FPS algorithm as explained in Eq. (3).

Ω Baseline MLP(R) MLP(Rr) MLP(Rf) KRR(Rr) KRR(Rf) DC-KRR(RF)

A 0.126± 0.054 0.003± 0.003 0.091± 0.070 0.014± 0.013 0.084± 0.068 0.021± 0.023 0.017± 0.026

K 0.234± 0.076 0.003± 0.002 0.152± 0.141 0.010± 0.009 0.152± 0.145 0.019± 0.021 0.035± 0.033

1
|T |
∑
yp∈T yp(ω). In a dataset with a high degree of

variance, such as RA or RK, we expect the baseline
error to be quite large; our goal is to train a machine
learning model to learn the mapping between the input
and output effectively, and thus significantly outperform
this baseline. We begin our investigation with a multi-
layer perceptron (MLP), a deep learning model capable of
capturing highly non-linear relations in high-dimensional
data. We observe a superb performance from the MLP
trained on R, where the results outperform the base-
line by factors of roughly 40 and 80 on the Anderson
(δy = 0.003) and Kondo (δy = 0.003) testing sets, re-
spectively.

From each pentile of the Anderson test set, the best
representative examples of the model predictions are pre-
sented in Fig. 3. We first note that all important spectral
features are well-reproduced in these examples including
the peak heights, widths, and locations of the sharp cen-
tral peak and the broader side peaks. As expected, mod-
els trained using all of R present the best results. How-
ever, models trained using the FPS subset, Rf , which
only constitutes about 10% of each of the full training
sets, also perform surprisingly well, indicating that even
a moderately sized training set can result in accurate pre-
dictions, if the sampling of the input-parameter space is
well-spanned. This is critically important for more com-
plex physical problems where generating training data
becomes much more expensive. By comparison, models
trained on a randomly sampled subset, Rr, of the same
size performs roughly an order of magnitude worse than
Rf , and even barely outperforms the baseline.

We also examine analytical results from the KRR
model [39, 40]. However, this method scales cubically
with training set size |Rx| with x ∈ {r, f}, as it requires a
full matrix inversion, making it intractable to use the full
R at once. We mitigate this problem in two ways: using
down-sampled training sets of Rr or Rf , and a divide-
and-conquer KRR (DC-KRR) algorithm [40, 41]. Details
regarding KRR and DC-KRR algorithms and hyperpa-
rameters can be found in [37]. Models trained using Rf

perform an order of magnitude better, and have higher
coefficients of determination (r2) than the Rr counter-
parts, in agreement with our earlier findings for the MLP.

The final KRR models trained on Rf are superior to
the baseline error by factors of roughly 6 and 10 for the

Anderson and Kondo sets, respectively. Interestingly,
both the MLP and KRR models trained with the down-
sampled Rr achieved nearly identical results, and both
are essentially indistinguishable from the baselines, indi-
cating there is insufficient information contained in the
randomly-downsampled training sets to train successful
models.

In contrast, DC-KRR uses the full data set by parti-
tioning R into S consecutive (ordered), disjoint subsets

R(s)
f , such that

RF =
(
R(1)

f ,R(2)
f , ...,R(S)

f

)
, |R(s)

f | ≈ 50k, (3)

where the union
⋃
sR

(s)
f is equivalent to the full training

set R with respect to the earlier analysis, and it holds

that Rf ≡ R(1)
f . We then train an independent KRR

model for each R(s)
f and average the resulting learned

parameters. Because the KRR models performed poorly
withRr we only present the DC-KRR whose subsets were
indexed according to the FPS algorithm in Table I. Here,
both models exceed the baseline average by a factor of
roughly 7. Despite training on the full data set, the DC-
KRR performs comparably to the KRR(Rf) model.

V. CONCLUSION

In summary we have shown that ML algorithms can
predict state-of-the-art Anderson impurity model spec-
tra to overall quantitative accuracy at a speedup of 105

over NRG. We have found that the use of furthest points
sampling can significantly reduce the required amount
of training data to achieve satisfactory accuracy. While
KRR and DC-KRR are effective for small datasets or
large datasets properly divided into chunks of small
datasets, our results imply that deep learning algorithms
trained on sufficient amount of data are superior for pre-
dicting both the single and many-body features of a
SIAM spectral function. Future work will expand the
physical model to include additional impurity parame-
ters, most importantly a structured hybridization func-
tion and more channels, and thus examine the viability of
a ML algorithm in the context of a DMFT self-consistent
loop.
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Appendix A: Dataset construction

We use the Numerical Renormalization Group (NRG,
[21, 29]) to compute the impurity spectral functions.
The NRG obtains the spectral data directly on the real-
frequency axis for arbitrary temperatures where we use
the fdm-NRG approach [31]. We use a typical discretiza-
tion parameter of Λ = 2, with the discrete data subse-
quently smoothened using standard log-Gaussian broad-
ening schemes. We also compute the local self-energy
Σimp(ω) to improve spectral resolution of the NRG data
[42].

Each NRG trial takes a set of randomly sampled sys-
tem parameters xp ≡ (U,Γ, εd, B, T )p, and generates a

spectral function πΓA(ω). Here the factor of πΓ main-
tains normalization, such that, e.g., πΓA(0) ≤ 1 can be
interpreted as transmission probability in transport mea-
surements. [12, 43, 44] The hybridization strength Γ is
derived from the hybridization function chosen to be fea-
tureless, i.e. Γ(ω) = Γϑ(D − |ω|), [21, 29] where the
half-bandwidth D := 1 sets the unit of energy through-
out, unless specified otherwise.

Due to the artificial sharp cutoff at the band edge
caused by our choice of constant hybridization strength,
we only consider the energy window ω = [−0.8, 0.8]D to
avoid artefacts at the band edge. We do not examine
regions, and hence also ignore spectral weight beyond
the band edge. Within the specified window, we coarse-
grain the essentially continuous NRG data to the same
fixed frequency grid to be used in the machine learn-
ing (ML) algorithms. This grid is chosen such that it
is linearly spaced for larger frequencies (67 points for
ω ∈ [0.1, 0.8]), and logarithmically spaced for smaller fre-
quencies (99 points for ω ∈ [10−5, 10−1]). The same grid
is mirrored for negative frequencies. With the addition
of a single point at ω = 0 to bridge the logarithmic grid
from positive to negative we have our final 333 coarse-
grain frequency points. The grid ωi is the same for every
trial, which thus maps the five physical parameters to the

normalized spectral function,

xp 7→ yp,i ≡ πΓpAp(ωi). (A1)

The five physical parameters xp are referred to as the
input features, and the 333 yp values as the output targets
in our ML algorithms.

The smallest non-zero ω value in our logarithmic fre-
quency grid is 10−5, which is well above the NRG’s min-
imum set at ∼ 10−6 as determined by our Wilson chain
length of L = 50 and discretization parameter Λ = 2.
Therefore, to ensure that features are captured within
our frequency grid for ML, any NRG trials with small-
est physical energy (SPE) E0scales smaller than 10−4 are
removed. The SPE scale of each trial is defined by:

E0 = max (|B|, T, TK) , (A2)

with the Kondo temperature TK determined according
to Haldane’s formula [45],

TK = min
(
0.575,

√
UΓ
2

)
exp
(πεd(εd+U)

2UΓ

)
. (A3)

By definition of being the smallest physical energy scale,
all physical features in the spectral data are at least as
broad as the SPE. For example, low-energy Kondo fea-
tures (described by TK which is defined at B = T = 0)
are physically smeared out at the energy scale of |B| or
T if these are larger than TK .

1. Physical Parameter Selection

The five physical parameters for the single impurity
Anderson model (SIAM) in this work are collected as an
ordered set xp ≡ (U,Γ, εd, B, T )p. Inspired by the ear-

lier work of Arsenault et. al. [24], we began with all
five parameters sampled on pre-selected grids (referred
to as ‘on-grid data’ below). This initial set contained
just over 1.45 million trials (see blue bars in Fig. 4).
However, we eventually found it favorable to supplement
these with 329k additional trials with random parameter
values from preset ranges (‘off-grid’) provided that their
E0values fell within the targeted range of [10−4, 10−1]
(see green bars in Fig. 4). Ultimately we removed any
trials where the E0did not fall in the desired energy range
(see right panel in Fig. 4).

We then enforced the additional requirement on the
hybridization strength Γ,

Γ > min
( |B|

5 , U40

)
(A4)

in order to avoid extremely narrow features in the spec-
tral data comparable to or below the frequency grid spac-
ing chosen for ML. From a physical perspective, this
would correspond to an essentially decoupled and hence
trivial impurity. Finally, a randomly selected subset of
trials that satisfied the above requirements were selected
for a data set of ∼ 411k trials. We refer to this dataset
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FIG. 4: SPE histograms for the Kondo data set. The original on-grid data (blue) of 1.45 million trials was
supplemented by an additional 329k off-grid trials (green) to ensure a more even E0distribution on a log-scale (left
panel). Trials with SPE values outside our range of interest E0 ∈ [10−4, 10−1] were discarded, which gave rise to a

final SPE distribution (right panel). Bin widths are the same in both panels.

as the “Kondo Set” because many parameter sets have
large Coulomb energies U comparable to or larger than
the half bandwidth (i.e. U & 1). The SPE distribu-
tion for the Kondo set is presented in Fig. 5, while the
parameter value distribution is shown in black in Fig. 8.

In contrast, the “Anderson Set” was designed with
an even SPE distribution in mind, while also keeping
U < 0.5 right from the start as shown in black in the left-
most panels of Fig. 7. To be specific, the parameters for
this data set were sampled in the following manner: (i)
randomly choose an SPE value with a flat distribution on
the log-scale in the range E0 ∈ [10−4, 10−1] (ii) randomly
select which of the three parameters |B|, T , or TK takes
that E0value, then (iii) ensure that the other two pa-
rameters are smaller than E0, using the range [0, E0/10].
Both positive and negative values for B are computed in
all cases. With TK fixed, (iv) the remaining values for
U , εd, and Γ are sampled based on Eq. (A3). Specifically,
the values for Γ and U are assigned at random on a lin-
ear scale below bandwidth, while still ensuring Eq. (A4).
This fixes the prefactor in Eq. (A3). By taking the log-
arithm, we then solve for εd. If no valid solutions exist
for εd given the choices in U and Γ, we go back and re-
peat step (iv). With this basic algorithm we generated
a total of about 600k trials with the desired flat SPE
distribution as demonstrated in Fig. 6. The parameter
distribution for the Anderson Set is shown in black in
Fig. 7.

2. Split selection

The full datasets for the Anderson and Kondo datasets
are labeled DΩ with Ω ∈ {A,K}. Each contain about

500k of data points (xp, yp) that are split into disjoint
training (RΩ), validation (VΩ), and testing (T Ω) sets.
Since the Anderson and Kondo sets themselves are dis-
joint and also mostly dealt with on an equal footing, we
generally suppress the subscript Ω for readability unless
stated otherwise. The two pairs of validation and testing
sets are fixed for the entirety of this work. The splits
were generated as follows:

1. The testing set, T Ω, contains roughly 2% of the to-
tal data and is selected by randomly down-sampling
DΩ. It is evaluated at the end of the pipeline, and
represents the most unbiased representation of the
model performance. All results are evaluated on
the testing set, unless explicitly stated otherwise.

2. The validation set, VΩ, also contains roughly 2%
of the total data, and is also selected by randomly
down-sampling DΩ. It is used only to tune model
hyperparameters.

3. The full training set, R (with Ω indexing sup-
pressed), contains 96% of the total data and is used
to train the model. The different versions of the
training set are explained below.

• The randomly sampled training set Rr con-
tains 50k data points. It is selected by ran-
domly down-sampling R.
• The furthest points-sampled (FPS) training

set Rf contains 50k data points. It is selected
via the algorithm presented in Section A1.4.

• For divide-and-conquer DC-KRR only, we
generate a collection of ordered disjoint sub-

sets RF ≡
(
R(1)

f ,R(2)
f , . . . ,R(S)

f

)
, where the
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FIG. 5: SPE histogram of 411,267 data point Kondo set on linear and log-scale (left and right panel respectively),
with approximately equal distribution across trials at lower energies only where E0is dominated by |B|, T , or TK .

Regularly spaced spikes in right panel are due to the on-grid portion of the Kondo set.

FIG. 6: SPE histogram of 599,578 data point Anderson set on linear and log-scale (left and right panel respectively),
with approximately equal distribution across trials where E0is dominated by |B|, T , or TK .

set itself R =
⋃S
s=1R

(s)
f (i.e., the unordered

union of the subsets are equivalent to the
full training set). The sequence is ordered

in the sense that the R(s)
f are generated con-

secutively using the algorithm presented in
Section A1.4. As an example, the sampling

of R(s)
f excludes samples already included in

{R(1)
f , . . . ,R(s−1)

f }, and the first point in R(s)
f

is furthest-sampled from the last point in

R(s−1)
f . Note also that R(1)

f = Rf .

3. Preprocessing input features (symlog scaling)

Anderson and Kondo-type models frequently ex-
hibit dynamically generated, exponentially small energy
scales. Hence the parameters that enter the SPE in
Eq. A2, namely TK, B, and T , were sampled on a loga-
rithmic scale that stretches over several orders of magni-
tude. Therefore, prior to model training, one is naturally
led to also apply a (symmetric) logarithmic (“symlog”)
rescaling to the input features xp. Feature scaling was
necessary for the MLP and the analytical methods when
RR was used, as described elsewhere in this document.

Given that the value for TK itself is not a bare Hamilto-
nian parameter, we apply the following logarithmic scal-
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ing to Γ, B, and T :

Γ→ log10 Γ

B → symlog10(B) ≡ sgn(B) log10 |B| (A5)

T → log10 T ,

where U and εd are left on the linear scale. Here Γ, T > 0
are always chosen non-zero, yet possibly exponentially
small. Also, we always have |B| < 1, and in the case that
B = 0, the trial’s B value is reset to an order of magni-
tude smaller than the smallest non-negative B value in
the set.

After performing the scaling step in Eq. A6, the mean
(µ) and standard deviation (σ) are computed for each

of the 5 components x
(i)
p ∈ xp in the current training

set. Then we use x
(i)
p →

x(i)
p −µ

(i)

σ(i) for every trial from the
training, validation, and testing sets.

4. Furthest points sampling algorithm

Here we employ a relatively simple algorithm for sam-
pling data points in an arbitrary dimensional space. Note
that sampling is performed on scaled features as to treat
their notion of distance on equal footing. The algorithm
is defined below:

1. Select a random point xp ∈ R (here, xp represents
the 5-dimensional input parameter vector, i.e., the
feature space). It is labeled the current point, and
added as first point to the set of sampled points
RF.

2. Find the point that is furthest away from the cur-
rent point that has not yet been selected, and add
it to the set of sampled points. We define distance
by || · ||Ld

with d = 2.

3. Repeat step 2 until the desired size of RF is
reached.

5. Parameter Distributions

In this section we present the input feature distribu-
tions. In Fig. 7 we show the full Anderson set with its
two down-sampled subsets which were plotted with a de-
gree of translucency to exhibit the concentration of the
down-sampled trials. One can immediately observe that
the furthest point sampled data is more diffuse whereas
the random points tend to concentrate in several regions
in each distribution. In Fig. 8 we present the same data
for the full Kondo set. Here, we can clearly see the stria-
tions due to the ‘on-grid’ trials as opposed to the clusters
of “off-grid” trials explained in Section A1.

Appendix B: Machine learning models

In this section, we provide a brief overview of some
machine learning theory, along with details of the specific
model architectures and hyperparameters chosen in this
work. For a detailed overview of practical machine learn-
ing technique in the domains of physics and chemistry,
we refer the interested reader to the overview by Wang et
al. [46] and for details on feed-forward neural networks,
to the overview by Cheng and Titterington [47]. For de-
tails regarding the analytical models, see texts by Mohri
et al. [48] and Hastie et al. [49]. For the particular appli-
cations of these methods explored in this work, we refer
our readers to Zhang et al. [40] and You et al. [41].

1. Neural networks

In this work we use a fully-connected feed-forward neu-
ral network known as a multi-layer perceptron (MLP) as
the sole deep learning model. An MLP consists of se-
quential layers of nodes, where each node takes as input
the output from all previous layers, and outputs a single
value, known as an activation. The activations of the
lth layer are computed by the general matrix equation
al = f(W lal−1), where al is the vector of activations
from the lth layer. W l is the lth weight matrix mapping
the output from the (l−1)th layer to the input of the lth
layer. The function f is called the activation function.
It applies a differentiable, element-wise non-linearity to
the output, allowing the weights to learn highly-nonlinear
representations of the input, parameterized by the neu-
ral network weights. These weights are learned during
training, in which a numerical optimization procedure
tries to find the minimum distance between ground truth
training data points and the predictions. The specific
model hyperparameters, or non-learned parameters of
the model, are discussed in Section A2.2.

2. Neural network training

Here we present the training protocols we used to train
and hyperparameter-tune the neural networks used in
this work. We find the optimal set of hyperparameters by
using a combination of grid search and hand-tuning. The
best model is determined by training models with differ-
ent hyperparameter combinations on the same training
set, evaluating on the validation set V, and selecting the
model with the lowest MAE.[50] That model, finally, is
evaluated on the testing set T which yields the presented
data, unless indicated otherwise.

3. Common neural network training parameters

All models share the following hyperparameters:
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FIG. 7: The input feature distribution for the full Anderson set is presented in black. Elements from the
down-sampled subsets of the furthest point and random point algorithms each representing approximately 10% of
the full set are superimposed in color at 10% opacity to exhibit trial density. The top row shows the furthest point

distribution in green while the bottom row shows the random points in red. See Sections A1.3 and A1.4 for
additional information regarding the symmetric logarithm (symlog10) procedure and furthest-point sampling

algorithm respectively.

FIG. 8: The input feature distribution for the full Kondo set (black). The down-sampled subsets each representing
about 10% of the full data set are superimposed in color at 10% opacity to demonstrate density. The top row shows

the furthest point algorithm’s subset in green, while the bottom row has the random point subset in red. See
Sections A1.3 and A1.4 for additional information regarding the symmetric logarithm (symlog10) procedure and

furthest-point sampling algorithm respectively. The horizontal line at symlog10(B) = −8 in the right-most panels is
caused by setting our B ≡ 0→ 10−8 as explained in Section A1.3.
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• || · ||L1
loss, the mean absolute error (MAE).

• Adam optimizer [51] with a starting learning rate
of 10−3.

• ReLU activation function.

• A scheduler which decreases the learning rate when
the validation loss plateaus. This scheduler has a
patience of 10 epochs, decrease factor of 0.5, and
minimum learning rate of 10−7.

• Training batch size of 16 384 (214).

• For simplicity, we constrain all hidden layers to be
of the same size.

• Total of 5000 epochs.

4. Best neural network hyperparameters

As evaluated on V, we present the best hyperparame-
ter combinations in Table II. Note that hyperparameter
tuning is a highly non-convex problem, and it is possible
that better combinations exist.

5. Kernel ridge regression

Regression methods are trained to find the line of best
fit. However, not all problems lend themselves well to a
linear-fit decision boundary. In those cases it may be eas-
ier to compute the parameters’ higher dimensional dual
space by way of a kernel where a linear fit may now be
possible [48]. This approach is known as kernel ridge
regression (KRR) [39, 41].

For a given trial (xp, yp) of N total trials, the generic
form of a KRR minimization algorithm reads:

min
α

1

N

(
N∑
p=1

(yp − fp)2
+ λ‖f‖2H

)
(B1a)

fp =

N∑
p′=1

αp′k (xp′ , xp) (B1b)

where the first term in Eq. B1a is the usual linear re-
gression mean squared error (MSE) cost function be-
tween the model’s kernel-based prediction fp and ground
truth value yp [40]. While several kernels exist, in this
work we exclusively use the Laplacian kernel [53] given
by Kpp′ ≡ k(xp, xp′) = exp

(
− 1
σ‖xp − xp′‖1

)
with input

feature vectors xp and xp′ (5-dimensional in this work).
The exponential argument is the L1 norm (Manhattan
Distance) divided by the kernel radius σ > 0 which de-
termines how similar xp is to xp′ . The target vectors yp
are of size M = 333 in the present case.

The second term in Eq. (B1a) is the regularization term
which helps prevent over-fitting. It includes two factors:

the strength λ ≥ 0, and the Hilbert space norm ‖f‖H
defined as ‖f‖H := 〈f, f〉1/2H . [40] Both the kernel radius
σ and regularization strength λ are tunable hyperparam-
eters. Table III shows the selected hand-tuned hyperpa-
rameters. In this work we find that scaling the data by a
symmetric logarithm procedure for B, T , and Γ only im-
proved the analytical algorithm results when the model is
fit to Rr. Hence, no such scaling is applied when training
with Rf . Throughout, we apply the standard normaliza-
tion of the data, such that mean and standard deviations
of all training data are 0 and 1, respectively [cf. Section
A1.3].

Solving Eq. (B1) for the weight matrix α requires an
expensive inversion of the kernel matrix, k(xp, xp′) which
scales as O(N3) in time and O(N2) in memory for N
data points (xp, yp). This expense can be mitigated in
several ways, including the divide-and-conquer approach,
detailed below. In this work all KRR trials were modelled
on 50k training trials (see Section A3).

The r2 score (R-squared) value determines the quality
of a trained regression model. A perfect model would
achieve r2 = 1, so the closer a model is to 1, the better
the fit. A score of r2 = 0 indicates that a constant model
predicts the same result regardless of input. A negative
score indicates that the model is arbitrarily worse than
a constant representing the mean value. In this work we
found that it was possible to generate acceptable models
for the furthest-point sampled training data Rf , but the
models fit with random point sampled Rr training set
were so poor that they had negative r2 values. Therefore,
if training set size is a limiting factor for a brute-force
affordable KRR model (here inverting a full matrix of
dimension 50k), then one must chose the training set with
great care.

6. Divide-and-conquer kernel ridge regression

Divide-and-conquer kernel ridge regression (DC-KRR)
is one of several approaches one may take to mitigate the
poor scaling of a traditional KRR algorithm explained
above [40]. In DC-KRR the total number N ≈ 500k of
training trials is subdivided into S ∼ 10 subsets with an
equal number n ≈ 50k training trials in each (with minor
variations for the Kondo as compared to the Anderson
set). Then, a separate KRR model is fitted for each,
and the trained weights (α in Eq. (B1)) are saved. After
training, a prediction may be acquired by computing (for
each subset) the product of the weights and the kernel of
the queried value and subset’s training trials. The final
results are averaged for the final prediction as shown in
Eq. B2.

Given input parameters xP corresponding to ground
truth target yP , one may obtain a DC-KRR prediction
ŷP via:

ŷP =
1

S

S∑
s=1

ker(Rsf , xP )αs (B2)
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TABLE II: The best hyperparameters for the neural networks for Anderson (upper rows) and Kondo (lower rows)
as found by a combination of hand tuning and grid search. Training and validation losses are displayed in Fig. 10a

and Fig. 11a for the Anderson and Kondo sets respectively. Testing set error distributions are shown in Fig. 10b and
Fig. 11b for the Anderson and Kondo sets respectively. In the rightmost column (Examples), we provide the figure
number where randomly drawn samples from each of the respective testing sets may be viewed. Both NRG ground

truth (black) and predicted (red) spectra are displayed. Summaries of where the example results are shown are
given in Tables IV and V.

Training set hidden layer size Number of hidden layers Dropout [52] Examples

RA 256 8 0 12a
RA

r 256 4 0.05 12b
RA

f 256 8 0 12c

RK 256 8 0 13a
RK

r 256 4 0.05 13b
RK

f 256 8 0 13c

where αs is a matrix of the learned algorithm weights de-
scribed in Eqn. B1 and ker(Rsf , xP ) indicates the kernel
between all xp ∈ Rsf and the queried xP input. DC-KRR
has hyperparameters λ and σ which function in the same
manner as described in Section 2.5 and we use the Lapla-
cian kernel here as well. Final hyperparameter values are
given in Table III, which are applied universally for all
subsets. Fig. 9 shows the individual r2 values for each
subset in the DC-KRR algorithm, whereas the final av-
eraged r2 value is reported in Table III.

This approach reduces the cost of training with all data
points in R and making the approach easily paralleliz-
able. However, the overall scaling has not changed in
this implementation; DC-KRR simply permits the use
of the full training set. Additionally, it should be noted
that the composition of the individual subsets matters.
As DC-KRR works by training a multitude of standard
KRR models, the same pitfalls that can negatively af-
fect a single KRR model can also detract from the indi-
vidual DC-KRR subset models which are then averaged,
thus potentially compounding the error. In this work we
chose to apply the furthest- point ordering on the training
data prior to splitting R set into equal sized subsets as
the KRR trials performed better with this pre-processing
step.

7. Best KRR and DC-KRR hyperparameters

In Fig. 9 we present the r2 values for each subset s
for the validation V and testing T sets in DC-KRR. In
all cases there is excellent agreement between a given
subset’s r2 score for the validation and test sets. By the
very construction of the underlying FPS, the last group
(s = S) collects the rest of the data set, hence is no longer
strictly FPS. This introduces a certain bias towards late
patches, as seen in Fig. 9. The values for the Anderson
set are tightly distributed. In contrast, the Kondo sets
exhibit significant deterioration towards the last subsets
s = 7 and 8, negatively impacting the overall average.
Despite this deterioration, however, the final r2 values

FIG. 9: DC-KRR r2 values for each subset within the
Anderson (squares) and Kondo (circles) RF sets. Closed

markers indicate the validation r2 scores, and open
markers indicate that of the test sets. Final DC-KRR

values are the averages across all relevant subsets.

remain quite high for both datasets, indicating reliable
models.

Appendix C: Results

In this section, we present figures demonstrating vari-
ous representations of each model’s performance. These
figures are connected to the different models in Table IV
for the Anderson results, and Table V for the Kondo
results. For clarity, we highlight the differences be-
tween each dataset; note that all results that follow were
hyperparameter-tuned on the same V and all results that
follow in this section correspond to the testing set (T ) re-
sults as evaluated on the best model, which is determined
by the MAE on V.
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TABLE III: The hand-tuned hyperparameters σ and λ [cf. Eqs. (B1)], together with the r2 scores of the validation
(V) and testing sets (T ) used in this work for kernel ridge regression (KRR) and divide-and-conquer KRR

(DC-KRR). While several values were examined for each of these hyperparameters for each set of training data, only
the final choices are presented. We also differentiate furthest-point sampled Rf from random point sampled Rr

training data. For the training of the DC-KRR models, the full training set R was used, yet partitioned into S
disjoint subsets {Rsf} as described in Eqn. 3 in the main text. Values for the DC-KRR r2 entries are the result of

averaging the r2 values from the subsets shown in Fig. 9. In the rightmost column (Examples), we provide the figure
number where randomly drawn samples from each of the respective testing sets may be viewed. Both NRG ground

truth (black) and predicted (red) spectra are displayed. Summaries of where the example results are shown are
given in Tables IV and V. Only the best models have associated result examples in Appendix A3. Figs. 14a and 14b

demonstrate regression approach error distributions for the Anderson and Kondo sets respectively.

Anderson Kondo
KRR Scaling σ λ r2

V r2
T MAE(T ) Examples σ λ r2

V r2
T MAE(T ) Examples

Rr None 100 0 -0.267 -0.255 0.102± 0.096 N/A 100 0 -0.192 -0.204 0.182± 0.187 N/A
Rr Symlog 6.6̄ 0.1 0.277 0.282 0.085± 0.068 15a 10 0 0.179 0.188 0.152± 0.145 16a
Rf None 1 0.01 0.929 0.932 0.021± 0.023 15b 1 0.01 0.979 0.979 0.019± 0.021 16b
Rf Symlog 1 0 0.909 0.915 0.024± 0.026 N/A 1 0.01 0.972 0.972 0.023± 0.024 N/A

DC-KRR
RF None 1 0 0.950 0.950 0.0175± 0.026 15c 1 0 0.902 0.899 0.035± 0.033 16c

• The full training set refers to training on all avail-
able training data, R.

• The FPS training set refers to training on only the

50k furthest-points sampled data, Rf = R(1)
f .

• The dataset Rr refers to training on only the 50k
randomly down-sampled data,

For all datasets, we present the following results:

• Random 25: a randomly-selected 25 samples plot-
ted on the ML grid.

• Training info: loss and learning rate plots when
applicable.

• Distribution: error distributions.
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TABLE IV: A quick-reference for the Anderson results presented in this section. The table entries are figure labels.
See text for description for the three rows.

MLP(R) MLP(Rr) MLP(Rf) KRR(Rr) KRR(Rf) DC-KRR(RF)
Training info 10a 10a 10a − − −
Distribution 10b 10b 10b 14a 14a 14a
Random 25 12a 12b 12c 15a 15b 15c

TABLE V: A quick-reference for the Kondo results presented in this section. The table entries are figure labels. See
text for description for the three rows.

MLP(R) MLP(Rr) MLP(Rf) KRR(Rr) KRR(Rf) DC-KRR(RF)
Training info 11a 11a 11a − − −
Distribution 11b 11b 11b 14b 14b 14b
Random 25 13a 13b 13c 16a 16b 16c

(a) (b)

FIG. 10: (a) MLP training and validation losses and learning rates plotted as a function of epochs for the Anderson
set. (b) Histogram for MLP errors as measured by the average MAE values, δy. Black represents the errors when

trained with the full set RA; red represents the errors when trained with the furthest point sampled subset RA
f ; blue

represents the errrors when trained with the random-sampled subset RA
r .

(a) (b)

FIG. 11: (a) MLP training and validation losses and learning rates plotted as a function of epochs for the Kondo
set. (b) Histogram for MLP errors as measured by the average MAE values, δy. Black represents the errors when

trained on the full Kondo set RK; red represents the errors with the model trained with the furthest-point sampled
subset RK

f ; blue represents the model errors when trained with the random-sampled subset RK
r .
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(a) RA (b) RA
r (c) RA

f

FIG. 12: Random samples from the Anderson testing set from the MLP models trained on different training sets:
(a) the full Anderson set; (b) the randomized subset; (c) the furthest-point sampling subset.

(a) RK (b) RK
r (c) RK

f

FIG. 13: Random samples from the Kondo testing set from the MLP models trained on different training sets: (a)
the full Kondo set; (b) the randomized subset; (c) the furthest-point sampling subset.

(a) Anderson (b) Kondo

FIG. 14: (a) Anderson and (b) Kondo testing set histograms for the the KRR models trained with the random Rr

and furthest-point ordered Rf down-sampled subsets in red and blue respectively. The DC-KRR model trained with
the chunked furthest-point ordered set RF is shown in black.
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(a) RA
r (b) RA

f (c) RA
F

FIG. 15: Random samples from the Anderson testing set from the KRR models for (a) the random subset Rr, (b)
the furthest point subset Rf , and (c) the DC-KRR model with all trials ordered according to the furthest point

algorithm RF.

(a) RK
r (b) RK

f (c) RK
F

FIG. 16: Random samples from the Kondo testing set from the KRR models for (a) the random subset Rr, (b) the
furthest point subset Rf , and (c) the DC-KRR model with all trials ordered according to the furthest point

algorithm RF.
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