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Identifying the microscopic mechanism for superconductivity in magic-angle twisted bilayer
graphene (MATBG) is an outstanding open problem. While MATBG exhibits a rich phase-diagram,
driven partly by the strong interactions relative to the electronic bandwidth, its single-particle prop-
erties are unique and likely play an important role in some of the phenomenological complexity. Some
of the salient features include an electronic bandwidth smaller than the characteristic phonon band-
width and a non-trivial structure of the underlying Bloch wavefunctions. We perform a theoretical
study of the cooperative effects due to phonons and plasmons on pairing in order to disentangle the
distinct role played by these modes on superconductivity. We consider a variant of MATBG with an
enlarged number of fermion flavors, N � 1, where the study of pairing instabilities reduces to the
conventional (weak-coupling) Eliashberg framework. In particular, we show that certain umklapp
processes involving mini-optical phonon modes, which arise physically as a result of the folding of the
original acoustic branch of graphene due to the moiré superlattice structure, contribute significantly
towards enhancing pairing. We also investigate the role played by the dynamics of the screened
Coulomb interaction on pairing, which leads to an enhancement in a narrow window of fillings, and
study the effect of external screening due to a metallic gate on superconductivity. At strong coupling
the dynamical pairing interaction leaves a spectral mark in the single particle tunneling density of
states. We thus predict such features will appear at specific frequencies of the umklapp phonons
corresponding to the sound velocity of graphene times an integer multiple of the Brillouin zone size.

I. Introduction

Since the discovery of superconductivity (SC) [1]
near an interaction-induced insulator [2] in magic-angle
twisted bilayer graphene (MATBG), the field has evolved
dramatically [3–5]. One of the defining characteristic fea-
tures of MATBG is the emergence of isolated, (nearly)
flat bands separated by a large energy gap to higher dis-
persive bands [6–8]. A variety of symmetry broken states
and phase transitions have been observed experimen-
tally [4, 9–14] as a function of electron filling (ν ∈ [−4, 4])
measured in units of electrons per moiré unit cell [15]. In
spite of some similarities between the phenomenology in
MATBG and copper-oxide based materials [16], MATBG
bears its own set of unique properties, which likely play
a central role in the underlying microscopic origins of su-
perconductivity and other experimentally observed fea-
tures. For example, MATBG has spatially extended
Wannier wavefunctions [17], a non-trivial band topol-
ogy [18–21], a complex phonon band structure [22, 23]
that may extend beyond the electronic bandwidth, and
plasmons that decouple from the particle-hole continuum
associated with the narrow bands [24].

These unique features call for a detailed analysis of
their influence on the low-energy electronic properties
in MATBG. For example, while the enhancement of
Coulomb interactions relative to the narrow bandwidth

undoubtedly plays an important role in stabilizing the
insulators at various commensurate fillings [2–4], the ex-
tent to which they are crucial for superconductivity re-
mains unclear. A number of recent experiments have
attempted to study the role of Coulomb interactions, ei-
ther by varying the distance between the MATBG layer
and a nearby metallic screening gate across different de-
vices [25, 26] 1, by independently varying the density
of carriers in a layer of Bernal-stacked bilayer graphene
[28], situated a fixed distance away from MATBG in the
same device, or by stabilizing superconductivity at angles
far away from the magic angle where electronic correla-
tions are suppressed[29]. Not surprisingly, the enhanced
screening suppresses the various insulating phases, that
develop originally at a sequence of commensurate fill-
ings. On the other hand, SC is affected only weakly,
if at all, by the gate. A number of recent theoretical
studies of superconductivity in MATBG have relied on a
variety of BCS mean-field and other weak-coupling based
approaches [30–38], whilst other works extend the treat-
ment to an Eliashberg framework [39–41]. In particu-
lar, Ref.[41] applied Eliashberg theory to study pairing
mediated by a single Einstein Einstein phonon, where

1 The devices are nominally at different twist angles and have vary-
ing levels of disorder; see [27] for a further discussion.
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the electron-phonon coupling strength was chosen phe-
nomenologically. Ref.[40] considered plasmon-mediated
pairing in a hexagonal lattice model for MATBG. See
also two recent studies [42, 43] focusing on the interplay
of insulating and superconducting states, where the un-
derlying band topology plays a crucial role.

Inspired by the growing number of such interesting
experiments, we focus on a possible microscopic mech-
anism for the superconducting instabilities in MATBG
due to an interplay of attraction generated by phonons
and purely electronic collective modes, such as plas-
mons. Importantly, we take into account the retarded
interaction mediated by the acoustic phonons and incor-
porate the dynamics of the screened Coulomb interac-
tion within Eliashberg theory [44]. In the experimen-
tal regime of interest, MATBG is likely defined by an
“intermediate-coupling” problem with no natural small
parameter. In order to make theoretical progress, we in-
troduce a large−N expansion, such that our results cor-
respond to the weak-coupling limit (obtained by taking
N � 1). We argue that in spite of this approximation,
the results shed light on the interplay of different sources
of attraction on SC in MATBG. Our theoretical approach
is not suited to discuss the insulating states observed in
MATBG at the integer fillings [4, 12, 13]. However, it
is entirely possible that the interactions responsible for
SC are distinct from those responsible for the insulating
phases [45]. This work addresses only the possible role
played by the interplay of phonons and screened Coulomb
interactions on SC in MATBG in a systematic fashion.
It is entirely conceivable that the strong-interaction in-
duced insulating states, that develop at commensurate
fillings, simply punctuate the SC phase-diagram that we
discuss and present in this study.

One of the unique features of MATBG is the large
size of the unit-cell, compared to the inter atomic dis-
tance. Consequently, higher order umklapp processes in-
volve momenta which are still small compared to the
original Brillouin zone (BZ) and thus, play an important
role in phonon-mediated SC 2 Below, we show that the
SC transition temperature, Tc, due to acoustic phonons
of graphene is enhanced significantly upon including the
effects of these umklapp processes for a wide range of
dopings. On the other hand, pairing due to plasmons is
dominant only in a narrow range of fillings ν ≈ 2 − 3
and is much less sensitive to the inclusion of umklapp
processes.

To verify our predictions, we propose a tunneling ex-
periment. As is well known when the coupling is strong
enough “dip-hump” features in the tunneling spectra ap-
pear at energies that can be associated with the frequency
of the bosonic modes that contribute most to pairing [47].
In the present case the umklapp phonons have a very dis-

2 A detailed study of these umklapp processes and on their role
in superconductivity has not been clarified in earlier studies [32,
36, 46] - we relate to these works when discussing our results.
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FIG. 1. (a) A small twist-angle between two graphene lay-
ers leads to formation of mini-Brillouin zones located in the
vicinity of the K and K′ points. We focus on intervalley
(ξ 6= ξ′) pairing (dashed line) to form Cooper pairs at zero
center of mass momentum. (b) The moiré interlayer cou-
pling gives rise to formation of two (spin degenerate) nearly-
flat bands for each valley ξ. K̄, Γ̄, M̄ , K̄′ correspond to high
symmetry points of the MBZ. Positive (ν > 0) and negative
(ν < 0) fillings correspond to the electron and hole band, re-
spectively. (c) The energy landscape of an electron band for
ξ = 1. The red arrows depict the umklapp processes (0G,
1G, 2G) between states originating from different MBZs (one
shown as white hexagon) in the extended zone scheme. Here
K = |K̄ − Γ̄|.

tinct frequency scale associated with the speed of sound
in graphene and an integer multiple of the MBZ size.
Thus, this allows us to make a rather sharp prediction
for the energy at which such features will appear. Note
that this prediction does not depend on the model for
the electronic band structure.

Finally, we also study the effect of a screening layer,
coupled to MATBG by Coulomb interactions, on the den-
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sity dependence of Tc. The distinct effect of screening on
the plasmonic modes in graphene is discussed and pro-
posed as a method to distinguish their contribution to
pairing.

The remainder of this paper is organized as follows: in
Sec. II, we review the continuum model for MATBG and
introduce the Coulomb and electron-phonon interactions,
projected to the nearly flat bands. We also highlight
some of the technical aspects associated with umklapp
scattering and the large−N formulation in this section.
In Sec. III, we focus on setting up the (linearized) Eliash-
berg equations for an inter-valley, spin-singlet s−wave
pairing gap and highlight some salient features associated
with the pairing kernel. Sec. IV is devoted to our results,
which includes a comprehensive study of the filling de-
pendence of Tc due to the different sources of attraction,
the role of external screening and a discussion of our pro-
posed experimental setup for investigating the fingerprint
of umklapp phonon processes. Sec. V concludes with a
discussion and future outlook for interesting directions.
We describe some of the technical aspects of our work in
appendices A - D.

II. Model

The non-interacting part of our model, H0, leads to
the action,

S0 =

N∑
i=1

∑
k,ω,{γ}

(
−iω + Ek{γ}

)
c†ωk{γ};icωk{γ};i, (1)

where cωk{γ};i is the electron annihilation operator in
the eight-dimensional space of {γ} ≡ {ξ, σ, n}, with ξ
being the valley index of the original graphene layers, σ
labeling the electron spin and n tracking the electronic
band index of MATBG. We have introduced a fictitious
index i = 1, .., N which labels N identical copies of the
non-interacting MATBG Hamiltonian, with an eye for
carrying out a 1/N expansion 3. We denote k as the
crystal momentum in the original graphene layer, such
that the two mini-Brillouin zones (MBZ) are located near
K and K′ points of the original graphene layers, and
the k summation ranges over the MBZ, see schematic in
Fig.1a.

The energy bands, Ek{γ}, are computed from the ef-
fective continuum Hamiltonian introduced in Ref. [48]
for MATBG at a twist angle θ = 1.05◦ 4. The band
structure of the two narrow bands, which are relevant
for superconductivity are shown in Fig.1b. In the anal-
ysis that follows, we introduce a chemical potential (µ)

3 N = 1 corresponds to the physical limit of MATBG.
4 We note that the eigenstates and eigenvalues of the two valleys
ξ = ± are time-reversed partners and accompanied by a simul-
taneous complex conjugation and k→ −k transformation.

in the usual way by shifting the single-particle energies,
Ek{γ} → Ek{γ}−µ, and control the electron filling. Addi-
tional details associated with the bandstructure appears
in Appendix A.

Let us now turn our attention to the interaction terms
in our model. As a result of the large momentum separa-
tion between K and K′ in the original BZ (see Fig.1a),
the states near ξ = ± valleys in the two MBZs are effec-
tively decoupled. The interaction is then given by,

Sint =
1

2

∑
q,ω
ξ,ξ′,i

V int
ξ,ξ′(q, iω)ρξ;i(q, iω) ρξ′;i(−q,−iω),

ρξ;i(q, iω) =
∑
k,ν

Λγγ′(k + q,k) c†ν+ωk+q{γ};icνk{γ′};i ,

(2)

where the density operators, ρξ;i(q, iω), include the form-

factors, Λγγ′(p,k) = δξξ′δσσ′
〈
p, {γ}

∣∣ei(p−k)·r
∣∣k, {γ′}〉,

which necessarily involve states located near the same
valley ξ as the Hamiltonian is block-diagonal in the val-
ley space. Here |k, {γ′}〉 denotes a Bloch wavefunction
of the non-interacting Hamiltonian (see Appendix A).
Note that we have assumed explicitly that the interac-
tion term is diagonal in the fictitious i = 1, . . . , N index.
The interaction vertex above is a sum of two contribu-
tions — the dynamically screened Coulomb interaction

(VC
ξ,ξ′) and the phonon mediated interaction (Vph

ξ,ξ′):

V int
ξ,ξ′(q, iω) = VC

ξ,ξ′(q, iω) + Vph
ξ,ξ′(q, iω) . (3)

To stress the intervalley nature of the pairing in what
follows, we make the labels ξ and ξ′ explicit in both
the Coulomb and phonon interactions as well as make
the Coulomb and phonon interaction manifestly inter-
valley only through the δξ,−ξ′ (see below). The micro-
scopic form of the interaction however is the same for
both inter-/intravalley interactions with the dependence
on valley indices ξ, ξ′ contained only in the density oper-
ators ρξ(q, iω) introduced in Eq. (2).

The first term in Eq. (3) is the dynamically screened
Coulomb interaction, which is given by

VC
ξ,ξ′(q, iω) =

1

N

2πe2

εRPA(q, iω)q
δξ,−ξ′ , (4)

where the RPA dielectric function is given by
εRPA(q, iω) = κ − 2πe2Πee(q, iω)/q. Here Πee(q, iω) is
the electronic polarization of MATBG [24] and κ is the
background dielectric constant, which can in principle be
frequency and momentum dependent as well.

The second term, the phonon-mediated interaction,
arises from the electron-phonon coupling Hamiltonian,

Hel-ph = −i
√
gcs
2N

∑
ξ,q

√
q ρξ;i(q)(aq + a†−q), (5)
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where aq, a
†
q represent the phonon annihilation and cre-

ation operators, respectively5. The phonon coupling con-
stant, g = D2/ρmc

2
s, is related to the deformation po-

tential, which we set as D (= 25 eV), and we also use
cs (= 12000 m/s) for the speed of sound in graphene and
ρm (= 7.6 × 10−8 g/cm2) for the atomic mass density
[49, 50]. After integrating out the phonons, we obtain
the density-density interaction term of the form Eq. (2)
where,

Vph
ξ,ξ′(q, iω) = − g

N

ω2
ph(q)

ω2 + ω2
ph(q)

δξ,−ξ′ , (6)

and ωph(q) = csq is the acoustic phonon dispersion
for graphene. Note that we have chosen the individual
N−dependent normalizations such that both Vc

ξ,ξ′ and

Vph
ξ,ξ′ have the same 1/N prefactor and can therefore, be

compared in a meaningful fashion in the large−N limit.
Let us now clarify an important aspect of the under-

lying scattering processes, that play a crucial role in our
subsequent analysis. The summation over the crystal
momenta, k, in Eq. (2) is limited to the first MBZ. How-
ever, the momentum transfer, q ≡ G + q̃, can scatter
to Bloch states belonging to different MBZs, where q̃
is now restricted to lie in the first MBZ. The lattice
vector, G = m1G

M
1 + m2G

M
2 (m1,m2 ∈ Z), accounts

for scattering by the multiplicity of reciprocal moiré lat-
tice vectors, GM

1 , GM
2 . In order to evaluate the impor-

tance of the umklapp processes described above, from
now on we restrict our analysis to the mth MBZ, such
that m1,m2 ∈ [−m,m]. We refer to such an analysis as
including mG processes, see Fig.1c. Varying m allows us
to assess the relative importance of the successive umk-
lapp processes. As we shall highlight later on, while in-
cluding a few umklapp processes beyond the simplest 0G
process leads to qualitatively new features, there is also
rapid convergence with increasing m, such that we do not
need to include processes with arbitrarily large values of
m.

It is worth noting that these umklapp processes can
be equivalently viewed as processes where mini-optical
phonons are exchanged. These optical-like modes are
a natural consequence of folding of the original acous-
tic phonon branch of graphene due to the moiré poten-
tial [22], and have no relation to the optical phonons of
the original (decoupled) graphene layers. In what fol-
lows we will also relate our findings to previous works
that focused on pairing mechanisms mediated by optical
phonons[32, 34, 36, 41, 46] irrespective of their micro-
scopic origins or frequency, i.e. whether they are mini-
optical phonons arising from folding of the acoustic dis-
persion, actual optical phonons of graphene or just phe-
nomenological Einstein modes. We also clarify that the

5 Here we use the notation that ρξ;i(q) ≡ ρξ;i(q, iω = 0) as per
the definition in Eq. (2)

phonons we consider correspond to symmetric motion of
atoms in both graphene layers, but as Ref. [22] points
out, there are also in-plane phonon modes which we ig-
nore in our study corresponding to asymmetric motion
of atoms in both layers that can develop small “gaps” as
a result of the moiré potential.

III. Eliashberg Equations

We are interested in the linearized gap equation in
the pairing channel, ignoring the self-energy corrections
to the electron dispersion and quasiparticle weight (for
details on how to include them we refer the reader to
Ref. [51]). The gap function in the spin-singlet, s-wave
pairing channel with zero center of mass momentum is
defined as,

∆(iω, k) ≡ 〈εσσ′cω,k{γ}c−ω,−k{γ′}〉, (7)

where εαβ is the fully antisymmetric tensor in the indices
α, β and we have further assumed that the gap function
has no explicit dependence on the angle of k. The latter
assumption is consistent with our assumption of interval-
ley Cooper pairing from valleys that are time-reversed
partners, as explained before. Note that the above re-
quires an intervalley scattering, Fig.1a, which imposes
the condition ξ 6= ξ′ in the interaction Eq. (2). The gap
equation thereby reduces to an eigenvalue problem

∆(iω, k) = −T
∑
ν

∑
p

K(iω, k; iν, p)∆(iν, p), (8)

where the kernel K(...) is given by

K(iω,k; iν, p) ≡ (9)

1

(2π)2

∫
dΩpV int

−ξ,ξ(k − p, iω − iν)
Λ(p,k)Λ(−p,k)

ν2 + E2
ξ,p

and where
∫
dΩp denotes integration over the angle be-

tween vector k and p for a fixed direction of k. 6 In the
above expression, as we are focusing on an intervalley
pairing, we have suppressed the indices γ, γ′ on each of
the two form-factors for clarity, but the two Λ(...) terms
carry opposite time-reversed labels. Accordingly the val-
ley indices are omitted henceforth.

The Eliashberg equation for the pairing gap in Eq. (8)
ignores a number of possibly important contributions.
We ignore an interaction induced momentum-dependent
(“Hartree”) renormalization of the MATBG dispersion,
which has been argued to lead to qualitative changes in
the bandstructure [52, 53]. We have (artificially) in-
troduced a control parameter that selects a subset of
the relevant processes and weakens the strength of the

6 Note that here we have neglected the extended s-wave of the D3

symmetry group.
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FIG. 2. Solution to the gap-equation in Eq. (8) due to (a)
phonon and (b) plasmon for ν ≈ 1. In both cases we consider
only 0G processes giving TC = 0.0118 meV and TC = 0.0072
meV respectively. The phonon-induced solution is always
positive, indicative of a purely attractive pairing, whilst the
plasmon-induced solution has a sign-change associated with
the gap — a characteristic behavior for an overall repulsive in-
teraction (see main text). The solutions are normalized such
that max{∆(iπT, k)} = 1. We intentionally show two dif-
ferent matsubara grids: linearly spaced in (a), and, variably
spaced (exact matsubara at low frequencies and then approx-
imate) in (b); see Appendix C. A wide range of matsubara
frequencies is required to capture the plasmonic-gorge (black
arrow) in (b). Note that momenta, k, are measured with
respect to the center of the MBZ, see Fig. 1b.

pairing mechanism. This places our analysis in the
weak-coupling regime allowing us to focus on solving
one equation only for the superconducting order param-
eter. Namely, we have neglected the mass and dispersion
renormalizations, Z and χ (as these are subleading in
1/N). For more details on their inclusion we refer the
readers to Ref. [51]. We also note that the mass renor-
malization Z tends to reduce Tc by a factor [54], while
the χ becomes most important when Tc is of the order of
the Fermi energy εF [54, 55] (i.e. at strong coupling).

With the possible qualitative changes in mind, in the
analysis that follows we clearly identify and distinguish
the features that follow from generic properties associ-
ated with moiré narrow-band systems and the ones that
are tied to the specific aspects of the model and approx-
imations used. This allows us to shed interesting light
on the importance of different interactions on the origin
of pairing and various qualitative aspects thereof in the
limit where the Eliashberg framework is applicable. On
the other hand, it is important to recall that the large-N
model we consider here is somewhat different from the
experimental situation. Therefore, the actual value of Tc
takes meaning only by comparison and not by its abso-
lute value.

To solve for Tc we seek the temperature, at which the
kernel has an eigenvector with corresponding eigenvalue
−1/Tc. To perform the analysis numerically we must first

perform the angular average Eq. (9). We then need to
perform two additional approximations: The first is to in-
troduce frequency and momentum cutoffs and choose an
appropriate mesh discretization. Furthermore, we select
only a subset of momentum and frequency points under
the sum. For more details on the numerical procedure
we refer the reader to Appendix C.

Before proceeding with our analysis of the results, let
us pause to discuss some of the properties of the eigenvec-
tor in Eq. (8). The optimal solution has a large negative
weight where the interaction is most repulsive. There-
fore, the optimal solution for a phonon vs. plasmon
mechanism is qualitatively different; see Fig. 2a,b for the
solutions to Eq. (8) due to a phonon and plasmon solu-
tion, respectively. While the phonon solution is almost
featureless at frequencies below the characteristic pair-
ing energy (see later), it has a suppression of the solu-
tion at small k. As discussed later, this is connected to a
suppression of the superconducting dome at large values
of the filling. On the other hand, the plasmon solution
presents a sharp resonance-like feature at a characteristic
pairing momentum (denoted the plasmon gorge) [56] as
well as an eigenstate solution that changes sign — a nec-
essary requirement to satisfy the gap equation (8) when
the Coulomb interaction is repulsive at all frequencies.
The observed frequency dependencies, of the phonon so-
lution in particular, leaves behind a resonant feature in
the real-time Green’s function of single-fermion excita-
tions, which can be detected in the single particle density
of states.

IV. Results

Let us now present our results for the superconducting
transition temperature, obtained by solving the eigen-
value problem in Eq. (8) numerically. In order to disen-
tangle the effects of a purely phonon mediated attraction,
including the effects of umklapp scattering (highlighted
above), vs. the combination of phonon and plasmon me-
diated superconductivity, we study their effects individ-
ually in the next two sections. We also investigate vari-
ous spectral features associated with the electron-phonon
coupling and the effect of a metallic screening gate in
subsequent sections. In the following analysis, we set the
parameter N = 20 to ensure that we are firmly in the
weak-coupling regime 7.

7 We stress that if the resulting TC for a given filling becomes of
order of the chemical potential, µ, then it is necessary to deter-
mine the chemical potential self-consistently [54]. In our results,
however, this limit is never reached, but the theory at very low
fillings |ν| . 0.2 for higher-order (m ≥ 2) umklapp processes
starts to approach, TC ≈ 0.5µ.



6

A. Phonon mediated superconductivity

We start our discussion by focusing exclusively on
the effects of the phonon mediated interaction, Eq. (6).
In order to investigate the importance of phonons in a
controlled fashion, we first set the Coulomb interaction
(VC
ξ,ξ′) in Eq. (4) to zero and compute Tc due to the

phonon mediated interaction (Vph
ξ,ξ′) in Eq. (5). More-

over, we include a sequence of umklapp processes, mG,
with m = 0, 1, 2 and 3; the results for the transition tem-
perature (Tc) as a function of ν are shown in Fig. 3a.

As is evident from our results, umklapp scattering pro-
cesses up to m = 2 have a dramatic effect on Tc, which
saturates for m ≥ 3. These umklapp phonons are essen-
tially the lowest optical modes resulting from the folding
of the original acoustic phonon branch into the MBZ.
Thus, we find that the interaction with these lowest op-
tical modes are crucial for understanding the electronic
properties of MATBG. In order to clearly demonstrate
the effect of umklapp processes on the pairing interac-
tion, it is useful to study the phonon spectral function as
a function of energy, defined as

α2F (ω) =
N0(0)g

2N
× (10)〈∑

q

ωph(q)|Λ(k + q,k)|2 δ(ω − ωph(q))

〉
FS

,

where q = q̃ + G, as defined previously (see paragraph
following Eq. (6)). In the above, N0(0) is the density
of states at the Fermi surface (FS) and 〈. . . 〉FS denotes
averaging k over the FS. We stress the presence of the
form-factors, Λ(p,k), which encode the unusual depen-
dence of the superconducting kernel on the large mo-
mentum umklapp processes. As can be seen in Fig. 3b,
the inclusion of umklapp processes have a clear effect on
the spectral function, most prominent of which include a
significant enhancement in the electron-phonon coupling
strength, combined with a drastic rearrangement of the
spectral weight to higher energies. These same umklapp
processes are responsible for increasing Tc.

The enhancement of TC with umklapp processes can be
anticipated by looking at the form of Eq. (6). 8 The effec-
tive electron-electron interaction at the lowest frequency,
ω = 0, is a constant independent of q. Momentum de-
pendence enters in Eq.(6) only for finite frequency. For
the first such frequency (n = 1, ω = 2πT ), the inter-
action has a reversed lorentzian shape in q-space where
it is zero for q → 0 and saturates to the (ω = 0) value
as momentum becomes large. With the above observa-
tions, one can predict that as q increases, the coupling
strength and therefore the pairing tendency will be en-
hanced until some value where the effect of taking higher

8 We thank an anonymous referee for sharing this interesting ob-
servation.

(b) (c)

(a)

FIG. 3. (a) Superconducting dome due to a phonon-only
mechanism (N = 20). Colored lines correspond to a different
number of umklapp processes (mG with m = 0, 1, 2, 3) in-
volved in the pairing interaction. The TC values for ν > 0 are
higher than those for ν < 0 as the conduction band, Fig. 1b,
of the model in Ref. [48] is flatter than the valence band. The
0G dome peaks near the van-Hove singularities of the bands.
Saturation of the TC increase with 3G umklapp processes can
be traced back to the nature of the Bloch wavefunctions (see
main text and details of the bandstructure discussed in Ap-
pendix A). (b) Electron-phonon spectral function for ν ≈ 1
showing the importance of umklapp processes. (c) A plot of
TC obtained from a BCS-type formula, Eq. (12), with param-
eters obtained from the MATBG spectral function, Eq. (11).
As expected, the BCS dome peaks in the vicinity of the van-
Hove singularity, which by virtue of the specific details of the
model in Ref. [48], occurs at ν ≈ 0.63. Note the similar trend
of TC enhancement between panels (a) and (c) with umklapp
processes.

umklapp contributions into account will lead to a satu-
ration. We highlight, however, that this behavior alone
is not behind the sharp saturation seen in Fig.3a, but
rather occurs in combination with the presence of form-
factors that rapidly vanish past some critical mG (here
3G).

The characteristic energy scale associated with the
peak of the above spectral function, provided that the
form-factors do not lead to a suppression, is set by the
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graphene sound velocity (cs) and the length-scales stem-
ming from the moiré period. Using the magnitude of the
moiré reciprocal vector G = 4π/(

√
3LM ) as the charac-

teristic size of the MBZ (LM = a
2 sin( θ2 )), we find the

typical frequencies as

1

2
cs(m+ 1)G = cs(m+ 1)

2π√
3LM

≈ 2.1 , 4.3 , 6.4 meV

(11)
for the first three mG umklapp processes: 0G, 1G, 2G.
These estimates are in reasonably good agreement with
the location of the peaks in Fig. 3b. In MATBG, as
mentioned in the introduction, the precise values of these
characteristic frequency scales can be affected by the de-
tails of the phonon dispersion (including, for example, the
presence of a gap [22, 23]). It is worthwhile to comment
that similar multi-peak features in el-ph spectral func-
tions were seen also in previous ab-initio calculations[34],
however the precise connection to umklapp processes was
not emphasized.

The microscopic mechanism responsible for the signif-
icant contribution of umklapp processes to the spectral
function, which leads to the enhancement of supercon-
ducting TC , is intimately tied to the origins of the flat
moiré bands. To obtain the electronic dispersion, Ek,
of carriers in these narrow-bands (see Fig. 1b) due to
the slowly varying moiré interlayer potential, it is not
sufficient to consider only plane wave Bloch states with
crystal momentum k, but also those of nearby states that
are coupled by multiple of the moiré reciprocal vectors,
G (see Appendix A). As a result, the spectral weight
of the resulting Bloch wavefunction is extended across
several plane wave states. This results in a slowly van-
ishing Bloch wavefunction overlap, on the scale of the
moiré reciprocal momentum scale G, that enters into
the form-factors, Λγγ′(p,k). We stress that this prop-
erty of narrow-band wavefunctions is independent of the
finer details of the bandstructure and is intimately tied
to many of the unusual properties of MATBG (e.g. it
is partly responsible for the extended Wannier functions
[48, 57]).

Let us now briefly comment on the overall similar-
ity of the dome shape to that of other phonon-pairing
based approaches. This is best seen by a comparison
with, for example Ref. [41], where an Eliashberg treat-
ment together with a pairing mechanism relying on an
optical-like phonon is considered. This similarity simply
stems from the fact that in a phonon-only mechanism
that produces an attractive interaction over all frequency
range, the overall shape of the dome is largely dictated
by the electron bandstructure rather than the details of
the pairing. As such, any analysis based on a bandstruc-
ture model, either tight-binding/continuum/ab-initio in
nature, will produce similar-looking domes if the under-
lying bandstructures are qualitatively similar.

Let us now place the essence of the phonon umklapp-
driven enhancement of the critical temperature, TC in
the context of BCS theory. We note upfront, however,
that although it captures some of the trends seen in Fig.

4a, it is by no means a replacement for the full Eliashberg
approach (see later). Within standard BCS theory with
a coupling constant, g, the expected transition tempera-
ture is given by [58],

TC ≈ 1.14〈ω〉 e−1/λ̃ (12)

where 〈ω〉 corresponds to a pairing energy range (usually

the Debye frequency) and λ̃ = gN0(0). We can now
use the spectral function defined in Eq. 11 to recast the
effective coupling constant as [59]

λ̃ = 2

∫
dω

α2F (ω)

ω
, (13)

and similarly denote the characteristic pairing frequency
〈ω〉 in terms of the moment of the same distribution as

〈ω〉 =
2

λ̃

∫
dω α2F (ω) . (14)

For the MATBG phonon spectral function plotted in
Fig. 3b, corresponding to an electron filling near ν ≈
1, we list each of the two parameters, λ̃ and 〈ω〉, in
the legend for all of the umklapp processes (mG, with
m = 0 − 3). A simple application of the BCS formula
in Eq. (12) in terms of the two filling dependent param-

eters, λ̃ and 〈ω〉, captures many of the interesting trends
that we saw previously, as shown in Fig. 3c, including
the relevance of umklapp processes. The simple BCS
formula, parametrized by λ̃ = gN0(0), predicts the TC
dome to peak at the location of the van Hove singularity.
To a large extent, this is also reproduced in the domes
of Fig.3a; we note, however, that the peak of the dome
shifts towards higher fillings upon including successive
umklapp processes. 9

The simple BCS formula, where the characteristic pair-
ing energy is naively given by 〈ω〉, was used here only for
a rough estimate and comparison with the results of the
Eliashberg theory. It should be mentioned that in this
case, where 〈ω〉 & εF , the frequency cutoff is sometimes
substituted by εF [60–62]. However, given that this sub-
stitution is also non-rigorous [54], we do not perform it
here.

Finally, we note that the umklapp-driven enhancement
of phonon-mediated superconductivity is not model spe-
cific and is a generic property of any moiré narrow-band
system with a Bloch wavefunction overlap that is vanish-
ing slowly, on a moiré momentum scale, as a function of
the momentum exchange, q. In Sec. IV D, we shall return
to a discussion of the electron-phonon spectral function
and consider the experimental fingerprints of these modes
in the tunneling density of states.

9 The exact location of the van-Hove singularity at ν ≈ 0.63 is
a consequence of the underlying details of the bandstructure in
Ref. [48].
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(a) 0G (b) 1G

(c) 2G

FIG. 4. Comparison of phonon and plasmon mediated pair-
ing mechanisms as a function of an increasing number of
umklapp processes. (a) 0G (no umklapp), (b) 1G and (c)
2G. Blue curves correspond to a phonon only mechanism
(Sec. IV A), red curves correspond to a plasmon only mech-
anism (Sec. IV B), and, yellow curves include effects of both
phonon and plasmon on pairing (see Sec. IV B). The phonon-
driven attraction is strongly enhanced with the inclusion of
umklapp scatterings; the plasmon mechanism is largely insen-
sitive to umklapp. We choose N = 20.

B. Plasmon mediated superconductivity

We are now in a position to include the effects of
Coulomb interactions on pairing. To that end, we begin
by evaluating the dielectric function εRPA(iω, q) numer-
ically [24] (see also Appendix B) and reinstating VC

ξ,ξ′ to

the pairing kernel in Eq. (9).

Let us begin by studying the problem in the absence of

the phonon mediated interaction, i.e. set Vph
ξ,ξ′ = 0, and

include only the effects of the Coulomb interaction. In
this case, the origin of pairing lies in the frequency depen-
dence of the dielectric function close to the plasma reso-
nance [56, 63]. Moreover, just as in the case of phonons,
we include a sequence of mG umklapp processes for the
plasmons (we choose N = 20). The result for Tc, due
purely to the plasmonic mechanism, is shown in red in

Fig. 4(a)-(c) as a function of filling. This analysis leads
us to conclude that (i) the plasmonic mechanism of pair-
ing leads to an enhancement of Tc for a narrow range of
fillings near ν ≈ 2−3, and, (ii) successive m > 0 umklapp
processes have no appreciable effect on Tc.

We now explain the microscopic origin for both of these
observations. In contrast to a purely attractive phonon-
mediated interaction, the dynamically screened Coulomb
interaction is always repulsive. However, as argued in
Sec. III, the frequency dependent dynamically screened
interaction becomes weak enough at certain momenta,
such that the sign-changing gap function can minimize
the overall effect of repulsive Coulomb interaction [64],
giving rise to an effective attractive part.

In order to understand the structure of the frequency-
momentum regions where the screened interaction be-
comes weak, it is helpful to plot VC

ξ,ξ′(q, iω) in Eq. (4),

as shown in Fig. 5a at a fixed filling (ν ≈ 1). The be-
havior differs from the one in a conventional 2D Fermi
gas [65]. Most crucially, in the latter, given the form of
the polarization function, one would expect the interac-
tion to be most repulsive as q → 0 and then weaken with
increasing q. On the other hand, in MATBG, there is
a local minimum of the interaction at a finite momen-
tum q. We can understand this behavior by focusing on
the limit of ω → 0, as discussed in Ref. [66, 67]. At
the magic angle and at low fillings ν ≈ 0, the static po-
larization function behaves as Πee(q, ω → 0) ∝ q/vF .
This form is reminiscent of the polarization function in a
Dirac-like system [68, 69]. At momenta smaller than the
moiré reciprocal momentum (G), vF corresponds to the
renormalized MATBG Fermi-velocity near ν ≈ 0 with
vF ∼ 104 m/s. The polarization function is dominated
by the inter flat-band transitions. On the other hand,
at momenta comparable to and larger than the moiré
scale (and at a similar filling), vF ∼ 106 m/s, the bare
graphene velocity. The polarization function is now dom-
inated by the inter-band transitions between the flat and
dispersive bands as the effect of the moiré interlayer po-
tential becomes less relevant. As a result, the plasmons
in MATBG [24] have interesting properties. As long as
plasmons rise above the particle-hole continuum, its dis-
persion is controlled by the energy scale associated with
inter-band transitions between flat-bands, and between
the flat and the dispersive bands. As such, it therefore
becomes weakly sensitive to the filling value.

The aforementioned local minimum of the pairing in-
teraction occurs at momenta smaller that the moiré re-
ciprocal lattice scale, G. At momenta larger than G, the
interaction in Eq. (4) reduces to the simple unscreened
form, 2πe2/q, suppressing any dynamical contribution to
the superconducting gap. As a result, any contribution
due to higher umklapp processes involving plasmons does
not enhance TC drastically; see Fig. 4a-b. In fact even at
large enough momenta, on the scale of 2G, as the form-
factors are still non-vanishing it can suppress it slightly;
see Fig. 4c.

While the specific form of the screened interaction,
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FIG. 5. (a) Plot of − log
[
N0(0)VC

ξ,ξ′(q, iω)
]

for ν ≈ 1. Note
that a local minimum (black arrow) of the interaction occurs
at a finite momentum (see discussion in the main text). (b)
Fermi-surface averaged dependence of form-factors, Eq. (16),
with the same vertical axis as in panel (a). Note how small
momentum (q < K) processes dominate over the large mo-
mentum terms (q > K). Near a filling, ν ≈ 2.45, the form-
factors are slightly larger for a wider range of momenta than
at lower fillings. This behavior lies behind the narrow plasmon
peak of the TC dome, Fig. 4, which is exponentially sensitive
to the coupling strength, c.f. Eq. (12). (c) Plasmon-mediated
SC under different approximation schemes. For the plasmon-
pole approximations (iii,iv) we use ωpl ≈ 6 meV. There is
hardly any difference between (i) and the original result. (d)
Superconducting temperature in the plasmon pole approxi-
mation as a function of plasma frequency ωpl. Pairing occurs
from frequencies close to ωpl, and leads to an increase in TC
as ωpl approaches the chemical potential.

Fig. 5a, affects the shape of the plasmon-induced super-
conducting dome, it is useful to disentangle it from the
role played by other elements that appear in the pairing
kernel, Eq.(9): the form-factors Λγγ′(...) and the energy
denominator, 1/(ν2 + E2

ξ,p). To that end, we focus on
the 0G processes and selectively modify the different el-
ements that enter into the kernel, Eq. (9). In particular,
we consider the following modifications: (i) we compute
the dielectric function at one specific filling, ν, and use it
for all fillings (thereby ignoring the ν−dependence of the

dielectric function), (ii) we ignore the momentum depen-
dence of the form-factors and replace them with unity, ex-
cept for restricting the interaction to intervalley pairing,
(iii) we use the “plasmon-pole” approximation instead of
using the full RPA dielectric function, and, (iv) we in-
voke the same approximation as in (iii) above, but make
the substitution for the form-factors as in (ii). A figure
demonstrating all of these cases is shown in Fig. 5c. No-
tably, the results under the approximation in (i) above do
not affect the results at all (not shown), thereby indicat-
ing that the density dependence of the dielectric function
does not play a significant role.

Let us begin with a discussion of points (iii) and (iv)
above, that rely on the plasmon-pole approximation. As
described previously, the Coulomb interaction is always
repulsive; the dynamical screening can, however, lead to
a possible superconducting solution that overcomes the
effect of the repulsion. To investigate this matter fur-
ther, we explore here an idealized limit — the so-called
“plasmon-pole” approximation— where the Coulomb in-
teraction in Eq. (4) is replaced by

VC
ξ,ξ′(q, iω) ≈ 1

N

2πe2

κq

(
1−

ω2
pl

ω2
pl + ω2

)
δξ,−ξ′ . (15)

Here, ωpl is the plasmon frequency. We note that the
“plasmon-pole” approximation is strictly valid only in
the ω � vF q limit, which will be of interest to us below.
For ω � vF q, the interaction can be approximated by its
purely repulsive and static Thomas-Fermi screened form.
For a wide range of momenta, the plasmons of interest
to us originate primarily from inter-band transitions be-
tween the nearly-flat and dispersive bands. As argued
above, the resulting plasma frequency is independent of
the filling and is instead set by the bandwidth, W , of the
nearly-flat band and the gap, ∆band, between flat and dis-
persive bands as ωpl ≈

√
W∆band (see Ref. [24] and App.

B for details). We therefore choose a constant ωpl in our
calculation. As is evident from Fig. 5b, the plasmon-pole
result exceeds the RPA result. With increasing filling,
TC rises almost linearly as the Fermi energy approaches
the plasma frequency, thereby enhancing the effect of the
plasmon in driving pairing. However, for ν & 3, TC starts
to drop rapidly — a behavior we attribute to the bands
being more dispersive at these fillings, c.f. Fig. 1b.

We can verify our understanding of the interplay of
these two results by varying ωpl as an external phe-
nomenological parameter, as done in Fig. 5c. We notice
immediately that the closer ωpl is to the relevant chem-
ical potential, the higher is the TC . This is however not
sufficient at large fillings, ν > 3. We note that the sharp
fall-off at ν > 3 is a property of the continuum model
used. This fact is precisely the reason for the form of the
gap solutions obtained in Fig. 2, where for k . 0.25K the
solution due to phonons vanishes (Fig. 2a), while it is pos-
itive in Fig. 2b, implying an overall repulsive contribution
to the plasmon-induced gap equation. This analysis also
suggests an interesting possible route towards enhancing
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TC due to plasmons. If ωpl can be brought closer to the
chemical potential, whilst maintaining the same strength
of Coulomb interactions in a system, then it is possible
to raise TC .

We conclude the analysis of the plasmon-pole approxi-
mation and its effect on pairing by pointing out that sup-
pressing the momentum dependence of the form-factors
leads to an enhancement of TC ; see curves labeled (ii)
and (iv) in Fig. 5a. This can be understood by realiz-
ing that the Bloch wavefunction overlap depends on the
underlying “fidget-spinner” structure of the energy con-
tours, c.f. Fig.1c, which can suppress certain scattering
processes and thereby lower TC .

The plasmon-pole approximation captures most of the
features we obtain within the full Eliashberg calculation
(Fig. 4). However, it does not immediately lead to a sim-
ple explanation for the sharp peak associated with the
(plasmon-)dome near ν ≈ 2 − 3. It is natural to ask if
this feature arises solely due to a change in the dielectric
function as a function of ν. To explore this possibility,
we compute TC by fixing the dielectric function corre-
sponding to ν ≈ 2.45 (associated with the peak of the
plasmon-dome in Fig. 4a) and not varying it as a func-
tion of ν; this corresponds to the approximation denoted
as (i) above. We find that the overall shape of the result-
ing dome is completely identical to the full computation
(result not shown). As explained previously, this behav-
ior stems from the dielectric function of MATBG being
dominated by inter-band transitions, which are largely
insensitive to the filling.

Taking all of these observations into account, the peak
of the dome at a filling of ν ≈ 2 − 3 comes from an in-
terplay of the form-factors along with the dielectric func-
tion. This conclusion stems from the analysis leading to
Fig. 5b, which demonstrates that the plasmon-pole ap-
proximation, even with the appropriate form-factors, can
not reproduce the sharp peak at ν ≈ 2− 3.

To assess this further, we now focus on the q depen-
dence of the form-factors. To that end we plot in Fig. 5d,
the following quantity

F (q, µ) =

∫
MBZ

d2k

∫
dθk′ k′|Λ(k′,k)|2δ(Eξ,k)δ(Eξ,k′) ,

(16)
where q = |k − k′| and δ(Eξ,k), δ(Eξ,k′) constrain the
two states to lie on the Fermi-surface (within mesh reso-
lution); θk′ denotes angle of k′. The decrease in F (q, µ)
with q reflects the density dependence of the orbital hy-
bridization of the Bloch wave-functions in the relevant
bands. For comparison, F (q, µ) would be momentum in-
dependent and equal to unity, when there is no orbital
hybridization (i.e. when the band and orbital basis are
identical). In contrast, it is known to diminish rapidly
with the momentum exchange, q, in a Dirac system [70].
Therefore, F (q, µ) extends to higher momentum close to
ν ≈ 2− 3, where orbital hybridization is minimized, tak-
ing a maximum at ν ≈ 2.45. In turn, this maximizes
the product with the screened interaction from, Fig.5a,
leading to a higher TC . Acoording to our analysis the

strong non-monotonic dependence of TC on filling, when
resulting from a plasmon mechanism, is a consequence
of the form factors. This should be compared with the
earlier work relying on a plasmon mechanism [40], where
these form-factors are not included.

Finally, we analyze the cooperative effect of both
phonons and plasmons on pairing; the resulting TC vs. ν
is shown for the combined (as well as individual) effect
of phonons and plasmons in Figs. 4(a)-(c). As before,
we include the effects of mG umklapp processes with
m = 0 − 2, which has a strong effect on the phonon-
mediated contribution but barely affects the plasmonic
mechanism. We find that with the inclusion of up to 2G
processes, the umklapp-driven phonon-mediated mecha-
nism clearly dominates over the plasmon mechanism. 10

However, both mechanisms work in a cooperative fashion
to give rise to pairing.

C. Role of external screening

Our analysis thus far has shed light on the distinct
features associated with a purely electronic vs. a purely
phonon-based mechanism, as well as their combined ef-
fect, on the emergence of SC in MATBG. In light of the
recent experiments [25, 26, 28] that have studied the role
of an external screening layer on the filling dependence
of Tc, let us explore the effect of similar screening within
our setup.

We begin by studying the effects of a metallic gate,
coupled to MATBG via Coulomb interactions, on pair-
ing. The only role played by the gate is in a further
renormalization of the Coulomb interaction, Eq. (4), via
the dielectric constant, εRPA. In the limit where the den-
sity of states associated with the metallic gate is higher
than that of the screened substrate, the effect of the gate
can be incorporated by modifying the bare Coulomb in-
teraction as:

2πe2

q
→ 2πe2

q

(
1− e−2qd

)
, (17)

where d is the distance between MATBG and the
gate. As a result, the dynamically screened interaction
(Eq. (4)) now changes to

VC
ξ,ξ′(q, iω) =

1

N

2πe2

εRPA(q, iω)q

(
1− e−2qd

)
δξ,−ξ′ , (18)

εRPA(q, iω) = κ− 2πe2

q
Πee(q, iω)

(
1− e−2qd

)
.

The presence of the metallic gate results in an overall
suppression of the Coulomb interaction, that scales ex-
ponentially with d. Thus, processes involving q . 1/2d
are not responsible for mediating SC.

10 The bare coupling constants for the Coulomb and electron-
phonon interactions are chosen to be close to the experimentally
reported values relevant for MATBG; we choose N = 20.
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(a) (b)

(c)
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FIG. 6. (a) Effect of screening by a metallic gate for four
different values of d (nm) on TC with the inclusion of 2G
umklapp processes (N = 20). Due to the cooperative inter-
play of phonons and plasmons (see main text) we find that
the gate suppresses TC for a range of fillings. (b) Effect of
screening for few fillings over a wide range of gate distance.
The dashed-dotted lines correspond to a purely phonon-driven
mechanism, while the dashed lines include the cooperative ef-
fects due to both plasmons and phonons (see also Fig. 4c).
Note the non-monotonic dependence of TC on d as well as
the wide range of d values over which TC varies; see discus-
sion in the main text for implications on plasmon-mediated
pairing. (c) Normalized differential conductance from Eq.(19)
computed at T = TC/10 for each curve for phonon-mediated
superconductivity. All umklapp processes result in conven-
tional BCS gap behavior and exhibit resonances correspond-
ing to relevant mG umklapp processes (indicated with ar-

rows), c.f. Fig.3b. This modulation of G̃(ω − µ) allows to
reconstruct the form of the superconducting pairing. Dashed
line indicates the electronic bandwidth, which by virtue of the
model, gives rise to a signal due to 2G, 3G phonons inside the
gap between the flat and non-flat band, respectively (shaded
area). As a result of mesh induced broadening, N0(ω−µ) has

a small finite value, and so does G̃, inside the gap region.

In Fig. 6a, we plot TC as a function of filling (ν > 0)
for a few different values of d (with the 2G umklapp pro-
cesses included). As discussed previously in the context
of Fig. 4, the dynamically screened Coulomb interaction

assists the phonon-driven mechanism in a cooperative
fashion, especially for momenta smaller than the char-
acteristic scale of the MBZ (see Fig. 5a). A screening of
the form in Eq. (17) is expected to result in a strong sup-
pression of TC for a wide range of fillings, but especially
so in the range of fillings where the plasmon contributes
the most to pairing. This behavior is indeed observed in
Fig. 6a, where the gate leads to a suppression of super-
conductivity over the entire range of fillings, with perhaps
a slightly more pronounced effect near fillings ν ≈ 2− 3.

In addition to the direct experimental relevance [25, 26]
for understanding the effect of screening from a metallic
gate on the strength of Coulomb interaction in Eq.(17),
the above setup also helps elucidate the length-scales that
participate in plasmon mediated pairing. Specifically, a
metallic gate located a distance d away suppresses the in-
teraction over length-scales of O(2d). Depending on how
this length-scale compares with the other characteristic
length-scales in the problem, which include e.g. the scale
associated with twist-angle inhomogenities etc., will de-
termine whether electron-electron interactions contribute
towards pairing. This requires a careful analysis of the
necessary length-scales associated with the plasmons that
are required for plasmon-mediated pairing to be observ-
able experimentally.

To address the question raised above, we study the
effect of varying d over many orders of magnitude in
Fig. 6b. For d → ∞ (i.e. significantly larger than any
other relevant length-scale in the problem), we expect
to reproduce the previously obtained values for TC in
Fig. 4c for both the phonon and plasmon mediated in-
teraction. On the other hand as d → 0, we expect the
contribution due to the plasmon to be suppressed sig-
nificantly, such that TC will almost entirely be deter-
mined by only the phonon-mediated interaction. We ob-
serve that while low-momentum processes corresponding
to distances 2d ≈ 200 nm ≈ 14.5LM are necessary for
the plasmons to maximally assist in pairing, the plas-
mon substantially assists the phonon-driven mechanism
already at lengthscales starting 2d ≈ 50 nm ≈ 3.5LM .

Interestingly, we also observe that TC depends non-
monotonically on the gate-distance, d, as shown in
Fig. 6c. As noted above, bringing the screening layer
closer to MATBG starting from a very large separation,
leads to a drop in the value of TC as a result of the
suppression of plasmon-induced pairing. However, once
d ≈ 10 nm, the value for TC starts to drop beyond what
is expected even from a purely phonon-mediated mecha-
nism (i.e. d → 0), eventually reaching a minimum value
at d ≈ 1 nm. The additional reduction of TC arises
as a result of the metallic gate suppressing the attrac-
tive contribution to the pairing coming from momenta
q � K ∼ G/2, c.f. Fig.5, leaving only the purely repul-
sive part. The minimum value for TC is attained approx-
imately at the same value of d at all fillings; this can be
understood from the filling independence of the dielectric
function for MATBG, which is dominated by the inter-
band transitions (see Sec. IV B). Beyond this value of d,
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decreasing it further leads to an increase in TC , in agree-
ment with the expectations in a purely phonon-mediated
attraction [59].

As mentioned in the introduction, experimental setups
that include a gate to control the strength of the Coulomb
repulsion have already been realized in several groups.
Namely, Refs. [25, 26, 28] find that the gate tends to
suppress the correlated state significantly, while super-
conductivity remains largely unaffected. As such these
results are broadly consistent with our conclusions re-
garding superconductivity within our model. In these
experiments, and in fact in majority of MATBG exper-
iments to date, the gate (or, the screening substrate) is
closer to MATBG than 30 nm and thus our model would
predict superconductivity to be primarily phonon-driven.
As such therefore if the thickness of the substrate is in-
creased, our analysis predicts an increase in critical tem-
perature if plasmons participate strongly in mediating
the pairing. We note however that the precise onset of
the non-monotonic gate dependence seen in Fig. 6b is de-
pendent on the finer details of the screening mechanism.
For example, the extent to which the density of states
for the metallic gate compares with that of MATBG, or,
whether further modifications to the RPA dielectric func-
tion (such as local field effects) can become pronounced
for q greater than moiré momentum lengthscale can af-
fect these details. Finally, we also note that this filling
independent onset of the non-monotonic mechanism is
indicative of a geometric scale dictating properties of a
dielectric function — this corresponds to the interband
transitions that are set by the flat-band bandwidth, W .
To that end, if flat-bands were to become broader, e.g.
due to the presence of Hartree corrections, we would then
expect a dependence on filling to appear.

D. Spectroscopic signature of umklapp phonons

Let us finally discuss an experimental fingerprint asso-
ciated with the phonon umklapp processes and their role
in pairing. In Sec. IV A, we have demonstrated how the
scattering of umklapp phonons contributes significantly
to pairing. Consequently, we anticipate these modes to
appear as resonant features in the single-particle density
of states at the energies where the spectral weight of the
phonons is pronounced [71] (see Fig. 3b). Consider the
normalized differential conductance, defined as

G̃(ω − µ) =
NSC(ω − µ)

N0(ω − µ)
, (19)

where NSC(ω − µ) is the density of states in the super-
conducting state and N0(ω−µ) is the corresponding den-
sity of states in the normal state; the result is shown in
Fig. 6c. To obtain the superconducting density of states,
we extended the gap equation, Eq. (8), to its complete
non-linear form. This allows us to calculate not only
the critical temperature TC , but also the actual super-
conducting gap. For more details on the specific com-

putational aspects associated with solving the non-linear
gap equation as well as the details of the analytic con-
tinuation to real frequencies necessary for calculation of
the spectral function, see Appendices C and D. For all
mG processes, we see a well-defined s-wave supercon-
ducting behavior with the usual coherence-peak at the
onset of the pairing gap; the higher the TC , the larger is
the gap and hence the onset of the peak. Therefore, we
observe the coherence peak shifting in agreement with
umklapp processes enhancing the TC . Away from the
peak, G̃(ω − µ) exhibits the classic square root singu-
larity until it reaches the 0G and 1G phonon-resonance
features (indicated with the first two, left-most arrows).
We discuss now the final signature seen in the differential
conductance.

We observe sharp “dip-hump” resonance-like features
at frequencies of the order of 5 meV, which corresponds
precisely to the energy where the density of states de-
duced from α2F (ω) for the 2G and 3G umklapp phonon
processes is the largest, as seen earlier in Fig. 3b.
These features are spectral fingerprints of the phonon
modes [71–74], which are most visible for modes that
are strongly coupled. Therefore, our conclusion that the
exchange of umklapp phonons is the strongest contribu-
tor to pairing in MATBG leads to the experimental pre-
diction of such ”dip-hump” features at these specific fre-
quencies. This frequency of the ”dip-hump” features does
not rely on the specific choice of electronic band struc-
ture model, as it is only related to the sound velocity
in graphene and the MBZ size. However, the visibility of
the features depends strongly on the electronic density of
states background, which is here much enhanced due to
the band gap. We caution however that similar-looking
resonances, refereed in the literature as replica bands, can
also be present in the spectroscopic signal and bear little
relation to superconductivity — for a detailed analysis
we refer to Refs. [75, 76].

V. Discussion and Outlook

In this work, we have focused on the pairing insta-
bilities in MATBG within the framework of Eliashberg
approximation. We have focused on two sources of in-
teraction, mediated by acoustic phonons of the original
graphene layers, and the dynamically screened Coulomb
repulsion, respectively. Interestingly, we find that both
sources contribute to pairing in a cooperative fashion
with a relatively similar strength, Fig. 4. However, the
screened Coulomb repulsion plays a role in a narrow
range of density, while the phonons contribute to pair-
ing over a wide range of fillings that nearly extends over
the entire narrow band. One of the key findings of our
work is the prominent role played by the umklapp pro-
cesses in the phonon mediated interaction in enhancing
the transition temperature, Tc. Umklapp processes that
scatter states up to the third MBZ (“mG” with m = 3)
have a marked effect on the enhancement of Tc and even-
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tually saturate for any higher order processes (m > 3),
c.f. Fig.3a. On the other hand, the dynamics associ-
ated with the screened Coulomb repulsion, while being
relatively insensitive to the umklapp processes, plays a
cooperative role in pairing for a wide range of fillings
(i.e. by aiding the phonon-mediated mechanism), but
in particular in the vicinity of ν ≈ ±2 − 3. As a result,
the superconducting TC exhibits a non-monotonic depen-
dence as a function of the distance to a nearby metallic
(screening) gate. The last observation is dependent on
both the properties of the screening material and the ex-
tent to which long-wavelength plasmons can participate
in SC pairing.

It is natural to ask if there are sharp experimental sig-
natures associated with any of the scattering processes
considered above in MATBG. We have demonstrated
that the electron-phonon interaction leaves behind an im-
print in a spectroscopic tunneling experiment. As was
predicted by Ref. [47] processes where phonons are emit-
ted in the tunneling process lead to these fingerprints,
which thus appear at a frequency ∆(0) +ω0, where ω0 is
the frequency of the bosonic mode contributing to pair-
ing. Thus, specifically for the umklapp phonon processes
(which correspond to optical-like modes arising from a
folding of the original acoustic branch in the MBZ), the
resonant features are present at frequencies that are in-
dependent of the details associated with the electronic
band structure. The “dip-hump” features in the tunnel-
ing density of states are most visible when they appear
inside the bandgap between the nearly flat and dispersive
electronic bands associated with MATBG.

Whenever possible, we have explicitly pointed out the
universal, model-independent aspects of our predictions,
in contrast to the features that rely on the non-universal
aspects of the model. We stress that the importance of
phonon-umklapp processes in enhancing the pairing tem-
perature is a model-independent feature. It relies solely
on the geometric properties of the MBZ as well as on the
presence of a slowly varying moiré interlayer potential
that gives rise to slowly vanishing form-factors (Bloch
wavefunction overlaps). As such, we therefore expect to
see features in the differential conductance at the phonon
resonance frequencies, which may or may not lie inside
the bandgap — the latter property being model specific.
Likewise, for the plasmon-mediated mechanism for super-
conductivity, we can identify various universal features.
Firstly, plasmons that originate from the flat bands nec-
essary have a characteristic frequency that is of scale sim-
ilar to the flat-band bandwidth (or, chemical potential).
Therefore, the dynamical Coulomb screening is bound to
play an important role in describing superconductivity,
i.e. the effect of Coulomb interaction cannot be simply
reduced to a static repulsion. Secondly, as a result of
the microscopic origin of the behavior of the polarization
function (i.e. interband transitions between flat-bands
at small momenta and between flat/dispersive bands at
large momenta), it is evident that the plasmon-mediated
mechanism is weakly affected by umklapp processes. The

extent to which the plasmon dome however exhibits a
narrow peak at high fillings ν ≈ 2 − 3 is dependent on
the extent to which the continuum model [48] accurately
captures behavior of the form-factors in MATBG.

There are a number of interesting directions that re-
main to be explored, based on the formalism developed
here. A natural extension would be to include the filling-
dependent bandstructure renormalization arising from
the interaction itself [52, 53] and then study the pairing
instabilities as a result of the same interactions. While
we have considered the effects of a single acoustic phonon
mode on pairing in this study, MATBG hosts multiple in-
plane as well as out-of-plane phonon modes [22, 23]; some
of these modes also develop small gaps as a result of fold-
ing due to the moiré potential. Studying the combined
effects of these modes in the presence of umklapp scat-
tering on pairing and on the resonant tunneling spectra
is clearly an interesting problem.

Recent theoretical works have indicated the possibil-
ity of low-energy goldstone modes associated with spon-
taneously broken continuous symmetries near some of
the correlated insulating phases at commensurate fillings
[17, 42, 77]. It would be interesting to explore and clar-
ify to what extent the umklapp processes considered in
this work in the context of phonons are also important
for these goldstone modes of electronic origin in general
— the recent analysis in Ref. [77] includes some such
(“2G”) processes for one specific example. It would also
be interesting to study the effect of screening gates on
the associated phenomenology. With regard to the rele-
vance of the umklapp processes considered here on other
aspects of the phenomenology, it is likely that they also
play an important role in electrical charge transport. To
what extent these might be relevant for some of the re-
cent unconventional results reported in Refs. [78, 79] is
an interesting open question.

Another interesting question concerns the unavoidable
role of disorder, on the superconducting phenomenology
in MATBG [80–82]. Disorder can significantly affect the
ability of the flat band to screen the Coulomb interac-
tion, which will modify the dynamics of the Coulomb
interaction and the results we have obtained here. Dis-
order in MATBG comes in many avatars and includes
long-ranged impurities which are poorly screened at low
energy, as well as various forms of correlated disorder and
perhaps, the most dominant source being the unconven-
tional “twist-angle” disorder [80, 81].

Within our weak-coupling approach, we have focused
on s-wave superconductivity with a uniform phase over
the entire Fermi surface. While disorder might prompt
such a state, recent experiments suggest that the super-
conducting state near ν = −2 breaks the rotational sym-
metry [14]. This implies that there is a strong indication
that the SC order parameter is not purely s-wave and,
moreover, belongs to a multi-component representation.
Thus, it is important to understand under what condi-
tions such a state is preferred and whether the mixture
of Coulomb repulsion and umklapp phonons may favor
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such a state. Nonetheless, it should also be mentioned
that the same umklapp enhancement mechanism for pair-
ing considered here can also play a role in unconventional
pairing states and we only considered the effect of these
sources of attraction on the s-wave channel for simplicity.

We end by noting that in two spatial dimensions,
the true SC transition is described by the Berezinskii-
Kosterlitz-Thouless (BKT) transition, with Tc = πD−s /2,
where D−s is the superfluid stiffness at T → T−c . In this
paper, we identify Tc with the scale associated with the
formation of Cooper pairs, instead of the phase-ordering
scale, which serves as an upper bound on the transition
temperature. The geometric properties associated with
the non-exponentially localizable Wannier functions for

nearly flat bands [83–87] leads to an additional contri-
bution to Ds. We leave a detailed study of such effects
within our present framework for future work.
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A. Continuum model

In this appendix, we provide additional details of the bandstructure model used in the calculations presented in the
main text. We use the continuum model introduced in Ref.[48] and restated here for completeness. The Hamiltonian
for a valley ξ = −1, 1 and spin σ =↓, ↑= −1, 1 takes the form

H(ξ,σ) =

(
H1 U†

U H2

)
(A1)

in the basis of (A1, B1, A2, B2) sites of the original two layers (l = 1, 2). The matrices Hl correspond to the intralayer
Hamiltonian of the layer l and are explicitly given as

H1 = −~v
a

(
0 e−iξθ/2k−a+ 4π

3

eiξθ/2k+a+ 4π
3 0

)
, H2 = −~v

a

(
0 eiξθ/2k−a+ 4π

3

e−iξθ/2k+a+ 4π
3 0

)
(A2)

where k± = ξkx ± iky and kx,ky are crystal lattice momenta measured with respect to the original Γ points of the
graphene layers. The 4π/3 terms in the matrix are remnants of the low-energy expansion of the graphene monolayer
Hamiltonians around the K and K ′ points of the original layers. The MBZ of MATBG is defined as in the inset of
Fig.1a with the two reciprocal lattice vectors being

GM
1 = − 2π√

3LM

(
1√
3

)
, GM

2 =
4π√
3LM

(
1
0

)
. (A3)

Here, we use the moiré real space lattice constant, LM = a/2 sin(θ/2), and θ = 1.05◦. The matrix, U , is the effective
moiré interlayer coupling given by:

U =

(
u u′

u′ u

)
+

(
u u′ν−ξ

u′νξ u

)
eiξG

M
1 ·r+ +

(
u u′νξ

u′ν−ξ u

)
eiξ(G

M
1 +GM

2 )·r ,

where ν = ei2π/3. We take the energy scale as ~v/a = 2.1354 eV and the lattice constant a = 0.246 nm. The interlayer
coupling terms u and u′ are taken as u = 0.0797 eV and u′ = 0.0975 eV. For a detailed analysis of the origins of the
Hamiltonian and discussion of the significance and numerical value of the coefficients, we refer the reader to Ref. [48]
and references therein. In practice, the integers m1 and m2 in total cover at most only around ∼ 60 combinations,
which stems from using the cutoff procedure explained in Ref. [48]. We stress that no qualitative change to the
bandstructure would be observed if the cutoff were to be increased. This is because majority of the spectral weight
is in fact present only in the m1,m2 ∈ [−3, 3] range covering 49 possible combinations - that fact lies also behind
the saturation of the phonon TC domes with the inclusion of 3G umklapp processes, Fig. 3a. The bandstructure for
the two flat bands for valley ξ = 1 is shown in Fig.1b. We refer to the bands Fig. 1b as the flat bands each with a
bandwidth W ≈ 4 meV. Accordingly, all other bands are called non-flat bands and are separated from the flat-bands
by a bandgap, ∆band ≈ 12 meV.
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FIG. 7. (a-e) Logarithm of electron loss function log[Im [−1/εRPA(q, ω)]] for a range of fillings. Blue regions correspond to the
particle-hole continuum, whilst the bright yellow region is the plasmon mode.

B. Dielectric function of TBG

In this appendix we detail the procedure used to obtain the dielectric function ε(q, iω). We also discuss key
properties of the dynamical dielectric function and its connection to plasmon properties in TBG.

To find the dielectric function, we start from its conventional definition as explained in the main text:

εRPA(q, ω) = κ− 2πe2Πee(q, ω)/q (B1)

and approximate the polarization function within the random phase approximation[88]:

Πee(q, ω) =
∑

k,γ,γ′

(fγ,k+q − fγ′,k)Λγγ′(k + q,k)

Ek+q{γ} − Ek{γ′} − ω − i0
, (B2)

where
∑

k denotes integration over the Brillouin zone and the composite indices γ, γ′ run over electron bands,
valley and spins. Here fγ,k is the Fermi-Dirac distribution for a state with energy Ek{γ}, and Λγγ′(p,k) =

δξξ′δσσ′
〈
p, {γ}

∣∣ei(p−k)·r
∣∣k, {γ′}〉 describes the overlap between the Bloch eigenstates as introduced in the main

text.

A plot of a dielectric function for few fillings is shown in Fig.7. As in Ref.[24] we find a plasmon mode that pierces
through the p-h continuum and rises above it. At low momenta, q � kF (here kF is Fermi momentum), plasmon
disperses as ωpl(q) ∝

√
q as expected of a 2D plasmon. At large momenta comparable to a moiré reciprocal lattice

vector, q ≈ G/2, as mentioned in the text and explained in Ref.[24], dispersion of the plasmon is set by the bandwidth
W of the nearly-flat band, and the gap ∆band between flat and dispersive bands as ωpl ≈

√
W∆band.

To compute the dielectric function εRPA(q, iω) we calculate first corresponding dielectric function at real-frequencies
and then employ Kramers-Kronig relations. This approach yields precisely the same dielectric function as that of
Eq.(B2) upon replacement ω + i0 → iω. We resorted to using this procedure as in a typical pairing calculation
εRPA(q, iω) has to be evaluated multiple times for different Matsubara frequencies. Given that evaluation of the
dielectric function is the most demanding step of the TC calculation this approach proved to be most efficient as it
involved computing dielectric function once for a given filling.

C. Numerical solution of the (non-)linear gap equations

Here we detail the procedure used to solve the linearized gap equation introduced in the main text. In the second
half of this section we extend this calculation to the full non-linear gap problem, which is then employed in the process
of analytic continuation, necessary for computation of the tunneling density of states.
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As explained in the main text, the linearized gap equation is posed as an eigenvalue problem, Eq. (8):

∆(iω, k) = −T
∑
ν

∑
p

K(iω, k; iν, p)∆(iν, p), (C1)

where the kernel K(...) is given by

K(iω, k; iν, p) ≡ 1

(2π)2

∫
dΩpV int

−ξ,ξ(k − p, iω − iν)
Λ(p,k)Λ(−p,k)

ν2 + E2
ξ,p

(C2)

and where
∫
dΩp denotes integration over the angle between vectors k and p for a fixed direction of k. To proceed

with the analysis, we first make a simplifying assumption that the superconducting order parameter is a function of
Matsubara frequency, iω, and magnitude of the momentum, k, but not on the angle, respectively. This allows us to
solve the resulting integral equation on a two-dimensional grid of k× ω points. With this assumption, the eigenvalue
problem simplifies then to

∆(iω, k) = −T
∑
ν

∑
k

K(iω, k; iν, p)∆(iν, p) (C3)

with the momentum direction-averaged kernel, described in detail below, is given by

K(iω, k; iν, p) ≡ 1

(2π)2

∫
dΩpV int

−ξ,ξ(|k − p|, iω − iν)
Λ(p,k)Λ(−p,k)

ν2 + E2
ξ,p

(C4)

In the above kernel we have made the assumption that the interaction V int(...) has no explicit dependence on the
angle associated with the momentum, and only depends on its magnitude. This simplification allows us to compute
the dynamical dielectric function along just one momentum direction and then estimate it along the other directions
by simply comparing magnitudes of |k − p|.

We start the calculation by pre-computing a 2D MBZ mesh of points, with their associated Bloch wavefunctions
and energies. In the calculations we use a mesh of ∼ 8000 MBZ points. To carry out an angle-average of the kernel
from Eq. (C4), we first fix a particular direction of vector k (upon verifying that the conclusions are not dependent
on the specific direction) and then identify all p points that are of magnitude p (within a resolution admitted by the
mesh). We then estimate the angular average Eq. (C4) by averaging over these p points — in practice, ∼ 50 − 100
points are used for each pair of k and p momentum values.

To determine the critical temperature, we seek the temperature T for which Eq. (C3) has an eigenvalue of unity.
In practice, we carry out a bisection method search for a T giving an eigenvalue within ±0.001 of the unity. In the
calculations we use a linearly spaced grid of 30 k points ranging from the center of the MBZ Γ̄ to the K̄ point. For the
Matsubara grid we employed both an exact Matsubara frequency summation as well as an approximate scheme, upon
verifying that the approximate Matsubara grid agrees (in determining the value of the critical temperature) with the
exact summation to 3 significant figures. The approximate Matsubara grid was chosen to consist of 10 first Matsubara
frequencies followed by 20 linearly spaced frequencies starting from the 11th Matsubara frequency to the UV cutoff.
Several UV cutoffs were tested: multiples of plasma frequency, multiples of the Debye frequency, or, multiples of the
system bandwidth. All cutoffs were found consistent with each other provided that the UV cutoff exceeds, roughly,
30 meV for the bandstructure used.

To determine a self-consistent gap, we extend the calculation by modifying the kernel in the integral equation Eq.
(C3) as

K(iω, k; iν, p)→ KSC(iω, k; iν, p) ≡ 1

(2π)2

∫
dΩpV int

−ξ,ξ(|k − p|, iω − iν)
Λ(p,k)Λ(−p,k)

ν2 + E2
ξ,p + ∆2(iν,p)

(C5)

where ∆(iν,p) is now the self-consistent gap. Starting with the eigenvector of the linearized gap equation as an input,
we then self-consistently solve the gap equation. For temperatures, T � TC , as used in Fig. 6c, the gap converges
within 10− 20 iterations to below 0.1% total relative error (difference between successive self-consistent steps). The
resulting gap function follows the BCS result; see Fig.8(a). We note that in the above procedure for obtaining the self-
consistent gap we neglect other Eliashberg equations, specifically the interaction correction to quasiparticle weight, Z.
This procedure is justified in the large-N limit as explained in the main text as these corrections would be subleading
in N .
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(a) (b)

FIG. 8. (a) Superconducting gap as a function of temperature obtained from the self-consistent calculation. Plotted quantity
(blue) corresponds to an average of the superconducting gap ∆(iν,p) over the Fermi surface. Orange line corresponds to the
BCS interpolating solution (accurate withing few percent). (b) Analytically continued superconducting gap ∆(ω) as a function
of real frequency obtained from the self-consistent calculation. As in (a) the gap was averaged over the Fermi surface. In (a),(b)
we consider phonon mediated superconducting with only 0G processes at a characteristic filling of ν = 1. Note how Im[∆(ω)]
is zero until gap opens, followed by a peak at the characteristic frequency for 0G processes, as expected from Fig. 3b.

D. Analytic continuation and single particle density of states

To determine the tunneling density of states it is necessary to obtain the self-consistent gap as a function of real
frequency [72, 89]. To avoid this complex procedure, few schemes of carrying out an analytic continuation from the
Matsubara frequency to real frequencies have been introduced in literature with the two most common relying on
either Padé approximants [90, 91], or, an iterative solution to the Eliashberg equations [92]. Due to the ease of
its implementation we employ a Padé approximation scheme, in particular, the approach detailed in Ref. [93]. We
stress however that the qualitative features, the “dip-humps”, of Fig.6c will remain unaffected as they stem from the
additional peaks of the el-ph spectral function.

As an input, we start with the self-consistent gap obtained following the procedure detailed in the previous section.
This gap is then approximated with the help of Padé approximant and analytically continued to real frequencies. An
example of real frequency dependence of a gap is shown in Fig. 8(b). This self-consistent gap defined at real-frequencies
is then used to compute the spectral function [64],

A{γ}(ω,k) = − 1

π
Im

[
(ω + i0) + Ek,{γ}

(ω + i0)2 − E2
k,{γ} −∆2(ω)

]
, (D1)

and the tunneling density of states NSC(ω − µ),

NSC(ω − µ) =
∑
{γ}

∫
MBZ

d2k A{γ}(ω,k), (D2)

shown in Fig. 6c.
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