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Quantum computation requires high-fidelity single-qubit and two-qubit gates on a scalable plat-
form. Silicon spin qubits are a promising platform toward realization of this goal. In this paper we
show how to perform single-qubit and controlled-Z (CZ) gates in a linear chain of three spin qubits
with always-on exchange coupling, which is relevant for certain dot- and donor-based silicon devices.
We also show how to make the CZ gate robust against both charge noise and pulse length error
using a two-tone pulse shaping method. The robust pulse maintains a fidelity of 99.99% at 3.5%
fluctuations in exchange or pulse amplitude, which is an improvement over the uncorrected pulses
where this fidelity can only be maintained for fluctuations in exchange up to 2% or up to 0.2% in
amplitude.

I. INTRODUCTION

Computational devices with quantum bits as their
basis are predicted to have a wide range of ap-
plications such as breaking the widely deployed
RivestâĂŞShamirâĂŞAdleman (RSA) encryption scheme
[1, 2], molecular modeling [3–5], finance [6–8], etc., al-
though the practical extent of the desired quantum ad-
vantage remains to be seen. The main current challenge
to exploring applications lies in making a quantum de-
vice which does not decohere before the desired compu-
tation is finished. Some current quantum devices contain
sufficient number of qubits for specialized computations
at the limits of what is presently achievable with classi-
cal computing [9], but not enough to make use of fault-
tolerant error correcting codes, and they are too noisy to
go beyond very shallow circuit depths without error cor-
rection. One possibility to enable greater circuit depths
is to use dynamically corrected gates [10–13], i.e., control
schemes designed such that the effects of coherent errors
destructively interfere at the end of the evolution.

One promising candidate system for these quantum de-
vices is spin qubits in silicon. Average fidelities for one-
qubit gates in silicon have exceeded 99.9% in Si/SiO2

[14] and Si/SiGe [15] quantum dot devices with isotopi-
cally purified Si. However, more than one-qubit gates
are required for computation; a universal set of quan-
tum gates is necessary, which can be obtained by adding
an entangling two-qubit gate to the set of one-qubit ro-
tations. Furthermore, in order to compose multi-qubit
unitaries from this universal set, one must know how to
do these one- and two-qubit gates without disturbing the
other qubits. This is not a trivial task when the interac-
tion between qubits cannot easily be turned off, as is the
case for silicon spin qubits in some dot [16–19] and donor
[20, 21] systems.
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In this paper we show how to perform a universal gate
set in a three-qubit system in silicon with always-on ex-
change coupling.

Piecewise constant pulses have been implemented in
two-qubit device experiments to perform entangling gates
[16–18, 22, 23]. The reported two-qubit gate fidelities
were between 78% and 98%, where many of the lower
fidelities are limited mainly by charge noise. Theoret-
ical high-fidelity two-qubit pulses have previously been
proposed for an isolated pair of qubits [24, 25], and it
has also been shown how to dynamically correct against
charge noise [26]. Uncorrected pulses have also been con-
sidered for a linear chain of three spin qubits [19, 27, 28].
In this paper, we show how quasistatic charge noise can
be corrected in a three-qubit system using a pulse shap-
ing method from Refs. [26, 29].

II. MODEL

In this paper, we consider a three-qubit system com-
prising three quantum dots occupied by three electrons
as shown in Fig. 1, though our results also apply to
exchange-coupled donor-based qubits. The occupation
energies of each dot, εi, differ due to the different applied
voltages, Vi, on the corresponding top gates. There is
a time-dependent magnetic control field, Bx(t), in the
x-direction and a constant magnetic field, Bz, in the z-
direction. The tunneling energy tj between quantum dots
j and j+1 is tunable over a wide range via a barrier gate
voltage in some setups [22, 30–33] but not in others [16–
18].

The low energy states of the system have one electron
in each dot (in either the up or down spin state), and
those states are coupled via virtual tunneling transitions.
This means that, to second order in the tunneling, the
effective Hamiltonian contains only coupling processes in-
volving nearest neighbors of opposite spin virtually com-
bining into either of the neighboring dots to form a singlet
state. Higher order processes are negligible because the
tunneling rate is typically small compared to the on-site
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FIG. 1. Illustration of a triple quantum dot within the two di-
mensional electron gas at the interface of Si/SiO2 with metal
gates on top. The gate voltages are tunable such that each
dot is populated by one electron, and in some devices they can
also be used to tune the effective g-factor of the electrons and
the strength of the exchange couplings. The constant mag-
netic field in the z-direction, Bz, and the tunable magnetic
field in the x-direction, Bx(t), are shown as well.

Coulomb energy. The Hamiltonian can then be expressed
in a Hubbard-style model as [34]

H =

3∑
i=1

(
E

(i)
z

2
σ

(i)
Z +

E
(i)
⊥
2
σ

(i)
X

)

+

2∑
i=1

∑
s=↑,↓

ti

(
c†i,sci+1,s + c†i+1,sci,s

)

+

3∑
i=1

∑
s=↑,↓

εini,s +

3∑
i=1

Uini,↑ni,↓, (1)

where E(i)
z,⊥ = µbgiB

(i)
z,⊥ is the Zeeman energy of the elec-

tron in the ith quantum dot due to the magnetic field
in the z(x)-direction, ti is the tunneling energies to be-
tween opposite spin states of electrons in the ith and
(i + 1)th quantum dot, εi is the on-site single electron
occupancy energy of the ith quantum dot, Ui is the on-
site Coulomb energy associated with double occupation
of the ith quantum dot, σ(i)

j is Pauli operator σj on the
electron in the ith dot, ci,s is the fermionic annihila-
tion operator of an electron on the ith dot with spin s,
and ni,s = c†i,sci,s is the corresponding number operator.
When using one electron spin resonance (ESR) driving
field to drive all qubits, the ratios between the various
E

(i)
⊥ are fixed, depending only on the g-factor differences

and perhaps any difference in distances from each dot to
the common ESR line, and the various E(i)

z need to dif-
fer from each other for single-qubit addressability. This
is experimentally achievable by either having a magnetic
field gradient or by manipulating the effective g factors
of the electrons [35]. Alternatively, in the case of elec-
tric dipole spin resonance (EDSR) driving, the various
E

(i)
⊥ can be completely independent, naturally allowing

single-qubit addressability. In the remainder of this work
we will focus on the more restrictive ESR case, although

our results are certainly applicable to the EDSR case as
well.

In the experimentally relevant regime of ti, |E(i)
z −

E
(i+1)
z | � U ± (εi − εi+1) for i = 1, 2, we can apply

a Schrieffer-Wolff transformation to obtain the following
effective spin Hamiltonian corresponding to low lying en-
ergy states

H =

3∑
i=1

E
(i)
z

2
σ

(i)
Z +

E
(i)
⊥
2
σ

(i)
X +

∑
i=1,2

Ji~σ
(i) · ~σ(i+1), (2)

up to O(t2/U2), where Ji =
2t2i

Ui+εi+1−εi +
2t2i

Ui+1+εi+1−εi is
the exchange coupling term between the ith and (i+1)th
qubit. The exchange coupling can be controlled either
via the detuning terms ε or, in devices equipped with a
suitable barrier gate, via the tunneling rate. To reduce
sensitivity to charge noise, it is preferable to operate at
the symmetric operating point εi = 0 [30], but then one
is left with a fixed, always-on residual exchange ∼ t2/U
in the absence of tunnel barrier control. (In fact, even
when barrier control is possible and tunneling can be
turned off completely, the magnetic dipole-dipole cou-
pling should not be forgotten [36] and provides a lower
bound on J of order 10 kHz for 30 nm qubit spacing.
While small compared to MHz exchange coupling, this
is not negligible when attempting to reach fidelities of
99.99% and above.) Our focus below is on the case of
always-on exchange coupling.

We also note that, although for specificity our focus
is on the case of dot-based systems, the same situation
is quite relevant for weakly exchange-coupled electronic
donor spins. In that case, one once again one has lo-
cal ESR driving, single-qubit addressability through dif-
ferent Zeeman energies (either from initializing different
nuclear spin states of the donors [20] or through electri-
cally adjusting the g-factors [37, 38]), and an exchange
coupling that is advantageous to leave fixed [20, 21].

To further simplify Eq. (2) we move to the rotating
frame that eliminates the E(i)

z terms, which are typically
several orders of magnitude larger than the other terms
[18]. In order to allow more than one qubit to be reso-
nantly driven at the same time, we assume the possibil-
ity of using a two-tone driving field. The rotating frame
Hamiltonian, HR = RHR† + i~(∂tR)R†, with two-tone
driving can be written in terms of Pauli matrices as ignor-
ing the identity terms which contribute an unimportant
global phase

HR =
J1

4
σ

(1)
Z σ

(2)
Z +

J2

4
σ

(2)
Z σ

(3)
Z

+

2∑
j=1

3∑
i=1

Ω
(i)
j

2

(
cos ((E(i)

z − ωj)t+ φj)σ
(i)
X

+ sin ((E(i)
z − ωj)t+ φj)σ

(i)
Y

)
(3)

where E(i)
⊥ has been replaced with

∑2
j=1 Ω

(i)
j ei(ωjt+φj)

as they are effectively equivalent using the rotating wave
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approximation, with Ω
(i)
j being the real time-dependent

envelope of the jth tone of the oscillating driving field at
the location of the ith qubit and φj the (generally, time-
dependent) phase. In the experimental settings we are
considering, E(i)

z ∼ 10GHz and |E(i)
z − E(i+1)

z | ∼ 10MHz
[18], much larger than any other energy scale in the
Hamiltonian. So, we use the rotating wave approxima-
tion and ignore any Ω

(i)
j term for which the frequency ωj

of the driving tone is not resonant with the corresponding
2E

(i)
z . The phase φj of the driving field is also accurately

controllable experimentally, so one can control the two
single-qubit axes in Eq. (3) independently.

There are also sources of noise in the Hamiltonian, and
in general the largest source is charge noise, which causes
stochastic shifts to the electrostatic triple-well potential
of Fig. 1. The main effect of charge noise is on the cou-
pling term, Ji −→ Ji + δJi. Charge noise can also cause
fluctuations in the g-factor leading to Zeeman noise, how-
ever these fluctuations are on the order 10−9 so they
will be neglected [39–42]. Noise in the control electron-
ics can also result in driving amplitude noise such that
Ω

(i)
j −→ Ω

(i)
j (1 + δαi) [43].

III. PIECEWISE CONSTANT PULSE
SEQUENCES

In this section we will show how to straightforwardly
perform exact one- and two-qubit gates in the three-qubit
system in the absence of noise. We also outline how this
idea can be extended to noise-suppressing composite se-
quences as well.

An arbitrary local rotation can be Euler decomposed
as

R = e−i
α
2 σZe−i

β
2 σXe−i

γ
2 σZ , (4)

or in terms of only z rotations and a ±π/2 rotation about
x,

R = e−i
α
2 σZe−i

π
4 σXe−i

β
2 σZe−i

−π
4 σXe−i

γ
2 σZ . (5)

In fact, one only needs either a +π/2 or a −π/2 x rota-
tion, since

R = e−i
α
2 σZe−i

π
4 σXe−i

β+π
2 σZe−i

π
4 σXe−i

γ+π
2 σZ (6)

= e−i
α+π

2 σZe−i
−π
4 σXe−i

β+π
2 σZe−i

−π
4 σXe−i

γ
2 σZ . (7)

Thus, the ability to do a ±π/2 x rotation along with
virtual z rotations [44] (which are instantaneous and er-
ror free) suffices to generate an arbitrary single-qubit ro-
tation. Adding a CZ gate between nearest neighbors
completes a universal gate set.

The main idea below is to decompose the Hamiltonian
(3), which lies in su(8), into su(2) and u(1) subalgebras
and then use Euler angle decomposition within each su(2)
such that the overall effect is to perform a desired opera-
tion on the intended qubit while returning the idle qubits

to their original state despite an always-on interaction.
In Sec. IVB we will use a similar su(2) approach to ac-
complish the same goal while also dynamically correcting
errors by substituting pulse shaping theory for Euler an-
gle decomposition.

A. −π
2
x Rotation on an Outer Qubit

Suppose we wish to rotate qubit 1. With single-tone
driving at the resonant frequency of qubit 1, i.e., ω1 =

E
(1)
z and Ω

(i)
2 = 0, and taking Ω

(1)
1 = Ω for simplicity of

notation, the Hamiltonian (3) simplifies to one that lives
in an su (2)⊕ u (1) subalgebra,

H =
J1

4
σ

(1)
Z σ

(2)
Z +

Ω

2
σ

(1)
X +

J2

4
σ

(2)
Z σ

(3)
Z (8)

= Hu(1) +Hsu(2) (9)

where

Hu(1) =
J2

4
σ

(2)
Z σ

(3)
Z , (10)

Hsu(2) =
J1

4
σ

(1)
Z σ

(2)
Z +

Ω

2
σ

(1)
X . (11)

The two generators inHsu(2) have the same commutation
properties as two Pauli operators while the Hu(1) term
commutes with both. So regardless of the driving, the

evolution always contains a factor of e
(
−i J2t

4 σ
(2)
Z σ

(3)
Z

)
and

to avoid unwanted entanglement of qubits 2 and 3 during
the rotation of qubit 1 the total pulse time must be an
integer multiple of 2π/J2.

Consider first the evolution due to Hsu(2). Note that
the choices Ω = ±J1/2 result in rotations about orthog-
onal axes, σ(1)

Z σ
(2)
Z ± σ

(1)
X . Thus we can generate any

rotation within the SU(2) subgroup by a piecewise con-
stant pulse of three segments, again making use of Euler
decomposition. In particular, to produce a ±π2 rotation
of qubit 1 about x, we simply need to find the ti such
that

e
−i J1t1

4

(
σ

(1)
Z σ

(2)
Z +σ

(1)
X

)
e
−i J1t2

4

(
σ

(1)
Z σ

(2)
Z −σ

(1)
X

)

× e−i
J1t3

4

(
σ

(1)
Z σ

(2)
Z +σ

(1)
X

)
= e−i

±π
4 σ

(1)
X (12)

There are multiple solutions, but the one with the min-
imum total elapsed time corresponds to a π/2 rotation,
with time steps

t1 = t3 =

√
2 arccot

√
2

J1
; t2 =

5
√

2π

3J1
. (13)

Unless one of the Ji is somewhat tunable, the total
elapsed time, t1 + t2 + t3, will generally not be an integer
multiple of 2π/J2. Because of this we must add a fourth
segment to the evolution to avoid entangling qubits 2 and
3, but the effect of the fourth stage must be an identity
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in the SU(2) subgroup so as not to ruin the π/2 rota-
tion. This can be accomplished by setting the driving
amplitude to

Ω = 2

√(
mπ

t4

)2

−
(
J1

4

)2

(14)

for a time

t4 =
2nπ

J2
− t1 − t2 − t3 (15)

where m and n are integers to be chosen so that t4 is as
small as possible while still being positive (and also re-
specting any bounds on the maximum amplitude of Ω).
Combining the four evolution segments above produces
a π/2 rotation about X on qubit 1 and an nπ rotation
about Z on qubits 2 and 3. For odd n, those extra z
rotations on qubits 2 and 3 can be instantaneously com-
pensated by virtual z rotations.

The total gate time is thus 2mπ/J2 and the largest
driving amplitude used is

Ωmax = max

J1

2
, 2

√√√√√ n2π2(
2mπ
J2
− η

J1

)2 −
(
J1

4

)2

, (16)

where η = 2
√

2 arccot
√

2 + 5
√

2π/3 ≈ 9.14. In the re-
alistic case where the gate time is constrained by the
available ESR power rather than the exchange coupling
and J1 ≈ J2 ≈ J , if one maximizes the speed by fixing
the exchange to be J = 2Ωmax, the shortest gate that re-
spects the ESR constraint is obtained with m = 3, n = 1,
yielding total gate time 3π/Ωmax. However, in the next
subsection, in order to efficiently rotate the middle qubit,
we will assume that Ω can be as large as J , so to keep a
fixed value of exchange for all rotation types it is better
to choose J = Ωmax, in which case the total gate time
doubles to 6π/Ωmax.

A rotation about σ(3)
X can obviously be produced by

driving resonantly with qubit 3 following the same pro-
cedure as above.

B. π
2
x Rotation of Center Qubit

It is also possible to do a local rotation of qubit 2
by single-tone driving at its resonant frequency, ω1 =

E
(2)
z , such that Ω

(2)
1 = Ω and Ω

(i)
2 = 0. Here we rewrite

the Hamiltonian as a sum of four mutually commuting
terms, each belonging to a separate su(2) subalgebra as
previously noted [27],

H = H++ +H+− +H−+ +H−− (17)

where

H++ =
J1 + J2

8
Z++ +

Ω

4
X++ (18)

H+− =
J1 − J2

8
Z+− −

Ω

4
X+− (19)

H−+ =
−J1 + J2

8
Z−+ −

Ω

4
X−+ (20)

H−− = −J1 + J2

8
Z−− +

Ω

4
X−− (21)

and

Zs1s2 =
1

2

(
σ

(1)
Z + s1I

)
σ

(2)
Z

(
σ

(3)
Z + s2I

)
(22)

Xs1s2 =
1

2

(
σ

(1)
Z + s1I

)
σ

(2)
X

(
σ

(3)
Z + s2I

)
, (23)

where si ∈ {+,−}. The Overhauser fields for the first
and third qubits can be written in terms of the u(1)

generators Qs1s2 = 1
2

(
σ

(1)
Z + s1I

)
I
(
σ

(3)
Z + s2I

)
, which

commute with H and thus cannot be corrected. For sim-
plicity, we consider the case where the couplings are es-
sentially equal, J1 = J2 = J . This may occur naturally
under precise fabrication, but small deviations can also
be tuned to zero by a small adjustment of the detuning
or barrier voltages. The +− and −+ subalgebras then
reduce to u(1)s and the evolution in them is easily ac-
counted for.

The σ(2)
X generator in terms of the above generators is

σ
(2)
X =

1

2
(X++ −X+− −X−+ +X−−) , (24)

so the total desired evolution can be decomposed as

e−i
π
4 σ

(2)
X = e−i

π
8X++e−i(−

π
8 )X+−e−i(−

π
8 )X−+e−i

π
8X−− .

(25)
We begin by finding a pulse sequence that creates the
desired π/4 X++ rotation, toggling Ω between ±J and
using the same type of Euler decomposition as in the
previous subsection,

e−i
Jt1
4 (Z+++X++)e−i

Jt2
4 (Z++−X++)

e−i
Jt3
4 (Z+++X++) = e−i

π
8X++ . (26)

The solution with the minimum elapsed time is

t1 = t3 =

√
2 arctan (1− 1/

√
2)

J
, (27)

t2 =
2
√

2(π − arctan

√
7−4
√

2
17 )

J
(28)

Of course, this pulse sequence also produces a evolution
in each of the other three subspaces at the same time.
Fortunately, the evolution in the −− subspace produced
is also the desired π/4 rotation due to the similarity of
the Hamiltonians in the −− and ++ subalgebras. The
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accompanying evolution in the +− and −+ subspaces
though is not generally equivalent to a −π/4 rotation.
So, as in the previous subsection, we add one final step
to the sequence such that the pulse area under Ω (t) for
the entire sequence is π

4 . Of course, this final step must
also produce an identity in the ++ and −− subspaces, so
as not to ruin the π/4 rotations already produced there.
These two conditions can be written as

J

4
(t1 − t2 + t3) +

Ω

4
t4 =

π

8
(29)

t4

√(
J

4

)2

+

(
Ω

4

)2

= π. (30)

The solution then for the length and drive amplitude
of the final time step is

Ω =
J(π − 2Jτ)√

(9π − 2Jτ) (7π + 2Jτ)
≈ 0.998J (31)

t4 =

√
(9π − 2Jτ) (7π + 2Jτ)

2J
≈ 8.896/J (32)

where τ = t1 − t2 + t3. Combining these four segments
produces a π/2 rotation about σ(2)

X in a total time of
about 18/J .

C. cz Gate on Nearest Neighbors

Performing a cz gate on neighboring qubits, e.g.,
qubits 2 and 3, is considerably simpler, only requiring
resonant single-tone driving of qubit 1, ω1 = E

(1)
z , such

that Ω
(1)
1 = Ω and Ω

(i)
2 = 0. Then the Hamiltonian is the

same as Eq. (8)-(11). The terms in the su(2) part can
be chosen so as to produce an identity operation while
the u(1) part produces the desired entanglement. To be
specific,

e
−i

(
J1
4 σ

(1)
Z σ

(2)
Z +

J2
4 σ

(2)
Z σ

(3)
Z + Ω

2 σ
(1)
X

)
t

= e−i(2m+1)π4 σ
(2)
Z σ

(3)
Z

(33)
when

t =
(2m+ 1)π

J2
(34)

and

Ω = 2

√(
nJ2

2m+ 1

)2

−
(
J1

4

)2

(35)

for integer m and n. Note that for J1 ≈ J2, the ESR
strength required can be kept less than J/2 by choosing
m = 1, n = 1.

D. Composite pulses for dynamical correction

We briefly remark that the above are all uncorrected
sequences that accomplish gates by taking advantage of

time evolution in commuting subspaces without worrying
about noise effects. If we include some error in exchange,
J → J + δJ , this will clearly produce some error in the
previous results. This error can be corrected for, to some
arbitrary order in δJ , with the direct application of sup-
code pulse sequences [45–48] by individually replacing
each piece of our pulse sequence with a corresponding
corrected supcode pulse. While straightforward, that
would produce inefficiently long sequences, as supcode
is designed to do more than is actually necessary in this
case, correcting for errors on both the coupling and the
driving field simultaneously. Besides that, instead of cor-
recting each piece of our Euler decompositions separately,
we should instead correct the entire rotation with a single
optimal application of supcode. In a future investiga-
tion, we will explore the degree to which the protocol can
be optimized for this particular case, resulting in more
efficient correction. However, for the particular case of a
cz gate we explicitly show below how pulse shaping can
be used to perform dynamical error correction by using
the SU(2) dynamics generated by Eq. (11) rather than
the simpler U(1) dynamics generated by Eq. (10) that we
used above.

IV. PULSE SHAPING FOR ERROR
CORRECTION

In this section we will describe the procedure for cre-
ating a cz gate that is robust against errors using two-
tone driving. Both exchange noise, δJ , and multiplica-
tive pulse amplitude error, δΩ(t) = Ω(t)δα, can be cor-
rected via a formalism introduced by Barnes et al. [29].
We briefly summarize the relevant results for complete-
ness below, following the presentation of Ref. [26], before
moving to the specific application of a cz in a three-qubit
system.

A. Background

The formalism of Ref. [29] applies to any su(2) Hamil-
tonian with a constant term on one generator and a con-
trollable term on another, including a noisy analog of
Eq. (11) with multiplicative driving amplitude noise and
exchange noise,

H =
Ω(t)

2
[1 + δα]σX +

J + δJ

4
σZ . (36)

The time dependence of the system is then re-
parameterized in terms of a new variable χ which is re-
lated to time via

J

4
t = ~

∫ χf

0

dχ
√

1 + (Φ′(χ) sin(2χ))2 (37)

Here Φ(χ) is a function which is free to choose within
some constraints which follow from Ref. [29]. Choos-
ing Φ(χ) determines the Hamiltonian and therefore the
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evolution operator U . One constraint on Φ(χ) is that
Φ(0) = Φ′(0) = 0, which ensures that U is an identity for
zero elapsed time. The pulse shape Ω(t) can be recovered
from the chosen function Φ(χ) in terms of Ω(t) = Ω̃ (χ(t))
using Eq. (37) and

Ω̃(χ) = −J
2

sin(2χ)

× Φ′′(χ) + 4Φ′(χ) cot(2χ) + 2(Φ′(χ))3 sin(4χ)

2(1 + (Φ′(χ) sin(2χ))2)3/2
(38)

The conditions for canceling the exchange noise, δJ , to
first order are

sin(4χf ) + 8e−2iΦ(χf)

∫ χf

0

dχ sin2(2χ)e2iΦ(χ) = 0∫ χf

0

dχ sin2(2χ)Φ′(χ) = 0

(39)

and the conditions for canceling the driving noise, δα, to
first order are∫ χf

0

dχ sin(2χ)Ω̃(χ)e2iΦ(χ)
√

1 + (Φ′(χ) sin(2χ))2 = 0∫ χf

0

dχ cos(2χ)Ω̃(χ)
√

1 + (Φ′(χ) sin(2χ))2 = 0.

(40)

The second condition in Eq. (39) and Eq. (40) can be
satisfied by simply choosing an odd function for Φ(χ),
which implies Ω(−t) = −Ω(t), and extending the pulse
duration to be from −tf to tf . In this case the evolution
from −tf to tf becomes

U(tf ;−tf ) = e−i
θ
2 (cos(φ)σZ+sin(φ)σY ), (41)

where

φ = sgn(Φ′(χf )) arcsec

(√
1 + (Φ′(χf ) sin(2χf ))2

)
(42)

θ = 4χf . (43)

Following Ref. [26], in this paper we will choose the
ansatz

Φ(χ) = a1χ
2+sgn(χ)

[
a2χ

3 +

8∑
n=1

bn sin

(
nπχ

χf

)]
. (44)

This ansatz automatically satisfies the initial condition
Φ(0) = Φ′(0) = 0. To ensure that Ω(t) vanishes at t = 0
and t = ±tf , a1 and a2 must be

a1 =
tanφ

2 sin(2χf )
(1 + χf cot(2χf )(1 + sec2 φ)) (45)

a2 = − tanφ

3χ2
f sin(2χf )

(1 + 2χf cot(2χf )(1 + sec2 φ))

(46)

except for the case θ = 2nπ, i.e., χf = nπ/2, where
n ∈ Z, which requires a1 = a2 = 0 for any φ. The
robustness conditions Eq. (39)-(40) are then satisfied by
optimizing the free parameters, bn, in Eq. (44).

B. Corrected cz Gate on Nearest Neighbors

Although the formalism summarized above could di-
rectly be used to correct noise within the su(2) part of
the Hamiltonian (11), there is also the u(1) part (10) in
which no dynamical correction of the exchange noise δJ2

is possible. Thus, to create a truly robust cz gate requires
two-tone driving such that both of the outer qubits are
addressed such that ω1 = E

(1)
z , Ω

(1)
1 = Ω1, ω2 = E

(3)
z ,

and Ω
(3)
2 = Ω2. The Hamiltonian then contains two com-

muting su (2) parts, H = H1
su(2) +H2

su(2), where

H1
su(2) =

J1 + δJ1

4
σ

(1)
Z σ

(2)
Z +

Ω1

2
(1 + δα1)σ

(1)
X (47)

H2
su(2) =

J2 + δJ2

4
σ

(2)
Z σ

(3)
Z +

Ω2

2
(1 + δα2)σ

(3)
X . (48)

Then the formalism described in Sec. IVA must be ad-
justed to ensure that the two copies of SU(2) are simul-
taneously corrected with the same pulse time, 2tf .

The final evolution in both SU(2)s is like that given
in Eq. (41). To create a cz gate between the first and
second qubit the angles for H1

su(2) are required to be

θ1 = (k1 + 1/2)π, φ1 = 0, (49)

while the angles for H2
su(2) are required to be

θ2 = k2π, φ2 = 0, (50)

where ki is any positive integer. The angle φ2 = 0 is
chosen in this case since, by Eq. (41), if k2 is even, φ2 is
arbitrary, and if k2 is odd then φ2 = 0 corresponds to an
extra local ei

π
2 σ

(2)
Z σ

(3)
Z = σ

(2)
Z σ

(3)
Z rotation which can be

compensated with virtual z rotations. Finally, note that
one could similarly target x rotations on the outer qubits
within this formalism, but not rotations of the middle
qubit. For that reason, we restrict our attention to the
cz gate in this work, and leave generic robust local gates
as a topic for future investigation.

Dynamical correction of all error terms in Eqs. (47)
and (48) means that pulse shapes for Ω1(t) and Ω2(t)
must both satisfy (or at least nearly satisfy) the condi-
tions in Eqs. (39) and (40). The optimizations of the
two sets of free parameters, {b(1)

n , b
(2)
n }, must respect the

constraint that the pulses need to be of the same time
length. Equation (37) determines the time length, which
depends on the optimized pulse shape as well as J1 and
J2. So to be able to match length we must know the
ratio of J1 and J2. For the results we present we have as-
sumed J1/J2 ≈ 1, though this value is not necessary, and
by construction our results will be robust against slight
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FIG. 2. Pulse shapes Ω(t)/J versus time in units of h/J .
Top: Amplitude of tone resonant with qubit 1, resulting in
a π/4 rotation around σ(1)

Z σ
(2)
Z . Bottom: Amplitude of tone

resonant with qubit 3, which results in an identity in the
σ
(2)
Z σ

(3)
Z + σ

(3)
X SU(2).

variations in the ratio. Also note that since the pulse
times are parameterized in units of 1/Ji in Eq. (37), a
slight difference in the pulse lengths of Ω1 and Ω2 acts
in the same way as δJi, and the pulse is again robust by
construction to such perturbations, so the pulse lengths
do not need to be exactly the same, only close.

The optimized coefficients for this pulse are

b(1) ≈ {1.3,−0.71,−0.6,−0.18,−0.13,−0.07,−0.06, 0.03}
(51)

b(2) ≈ {3.0,−0.26, 0.6, 0.34,−0.07,−0.13,−0.02,−0.07}
(52)

where b(1) are the coefficients for Ω1(t) and b(2) for are
the coefficients for Ω2(t). These coefficients were found
by using the randomly-seeded non-linear gradient-free
global optimizer ISRES from the NLopt package in Julia.
We enforced constraints Ωi/Ji < 1 and 2tfJi < 15. Man-
ually adjusting these constraints as optimization hyper-
parameters, we have found that these constraints pro-
duce the fastest pulses in the case where the pulse length
is limited by the physically attainable ESR strength. For

instance, if one doubles the maximum allowed value of
Ωi/Ji to 2, one can find a solution with somewhat smaller
values of 2tfJi, but if one cannot increase Ωi beyond its
prior value, that doubling of the ratio must come from
by halving Ji, resulting in a net increase of the pulse
time 2tf . Conversely, reducing the maximum value of
the Ωi/Ji allows larger Ji but requires much larger val-
ues of 2tfJi. We have empirically determined that the
numerical choices in the constraints above give roughly
optimal results.

For Ω2 no solutions were found for values of k2 < 12
when requiring the integrals in Eqs. (39) and (40) to
sum to less than 10−3 after about 80 million iterations
of the optimization algorithm. Since the pulse length
generally scales with ki in Eqs. (49)-(50), we chose the
smallest values for which a good solution could be found,
k1 = k2 = 12. The times of these two pulse shapes are
not exactly equal, but the difference is small; they would
match exactly for J1 = 1.01J2, and the error introduced
by the mismatch is negligible. The corresponding pulse
shapes are shown in Fig. 2. Note that it requires ESR
amplitudes as large as the exchange, so if we limit the
exchange to J = h × 2MHz so that we do not require
more than h× 2MHz on either ESR tone, the total pulse
time is about 7µs. This isabout 28 times longer than the
uncorrected pulse time of h/(2J) = 0.25µs, and so one
may worry about the prolonged interaction with the en-
vironment.However, with observed T1 decoherence times
in silicon spin qubits of, e.g., 3s [49], relaxation is not
a limiting factor and the corrected pulse is expected to
offer orders of magnitude reduction in infidelity. We can
show this rigorously by doing a master equation analysis
which describes the dynamics of the density matrix ρ as

dρ

dt
= −i [H, ρ] +

3∑
j

1

T1
D[Lj ]ρ (53)

where Lj is the lowering operator for the j-th qubit andD
is the damping superoperatorD[A]ρ = 2AρA†− 1

2A
†Aρ−

1
2ρA

†A. The average fidelity can then be calculated using
the method from Ref. [50]. Doing this analysis shows that
the corrected pulse maintains a 10−4 average infidelity for
T1 as low as 500ms, well below experimentally achievable
T1 times.

The decoherence from T2 processes is harder to capture
since the noise is non-Markovian and the master equation
approach cannot be used. Therefore the filter function of
the pulse, F(ω) as defined in Ref. [51], was calculated
and plotted in Fig. 3 in order to take into account the
typical 1/f power spectral density (PSD) of charge noise.
The average infidelity over noise realizations, Fav, was
calculated by integrating the filter function multiplied by
a noise PSD of A2

0/ω with an infrared frequency cutoff,
ωir,

Fav ≈ 1− 1

2π

∫ ∞
ωir

A2
0

ω

F(ω)

ω2
dω (54)

The strength of the noise PSD, A0, was determined
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Corrected pulse

Uncorrected pulse

10-4 0.001 0.010 0.100 1 10 100

0.001

0.100

10

1000

ω[J]

F
[ω

]

ω
2

FIG. 3. Filter function of the corrected pulse and uncorrected
pulse vs the frequency ω in units of J .

by using its relation to the Carr-Purcell-Meiboom-Gill
(CPMG) decoherence time, 0.85(A0)2

2πn ≈ 1
(TCPMG

2 )2 where
n is the number of π-pulses used to measure TCPMG

2 [52].
The resulting infidelity is 5×10−4 choosing A0 such that
TCPMG

2 = 28ms for a CPMG series of 500 π-pulses as
measured in Ref. [40] and an infrared frequency cutoff
of 10−5Hz corresponding to daily calibration. (As quan-
tum devices get larger and more complicated, calibra-
tions become more time-consuming and less likely to be
done frequently.) This is an improvement over an uncor-
rected pulse which has an infidelity of 1.2× 10−3 for this
T2 and infrared cutoff. Thus, despite the much longer
duration of the corrected pulse, it is still worth doing.
Furthermore, the performance of the corrected pulse is
also significantly better than the estimate above if the
noise is more heavily weighted at low frequencies than
1/f , as observed, e.g., in Ref. [53], or if the calibration is
imperfect, effectively resulting in additional quasi-static
noise.

We have also plotted infidelity vs a quasi-static noise
strength in Fig. 4. The infidelity plotted in Fig. 4 is
defined as 1− |Tr(UU

†
t )|

Tr(UtU
†
t )

where U is the actual noisy gate
and Ut is the desired target gate. The infidelity depends
on the values of δJ1, δJ2, δα1, and δα2, but we have
simplified the display by plotting for δJ1 = δJ2 = δJ
and δα1 = δα2 = δα. It is clear that this error-corrected
pulse performs better than the uncorrected cz pulse from
Sec. III C where m = 0 and n = 1 is chosen in Eq. 35 and
J1 = J2 = h×2MHz. Increasing the Ji in the uncorrected
pulse does not significantly change the infidelity as long
as Ω is still limited to h× 4MHz for single-tone driving.

We also looked at alternative optimization objectives.
For instance, one can correct the cz gate against only
exchange coupling noise, enforcing only Eq. (39). This
yields similar performance for exchange coupling noise
however becomes highly sensitive to amplitude error.
But, if the amplitude error is negligible, correcting only
exchange noise requires less bandwidth and a slightly
shorter pulse length of ≈ 6µs. Another approach for

Fully corrected

Only δJ corrected

One subspace corrected

Uncorrected

0.001 0.005 0.010 0.050 0.100

10-6

10-4

0.01

1

error δJ/J

In
fid
el
ity

Fully corrected

Only δJ corrected

One subspace corrected

Uncorrected

0.001 0.005 0.010 0.050 0.100

10-6

10-4

0.01

1

error δα

In
fid
el
ity

FIG. 4. Infidelity of the error corrected cz and the uncor-
rected cz vs quasi-static exchange noise δJ (top) and driving
noise δα (bottom).

correcting just exchange noise is to note that the evolu-
tion produced by H2

su(2) is supposed to be an identity. A

simple pulse of strength Ω2 = 2
√

( 2πk
T/h )2 − J2

2/16 for any
time T and k ∈ Z results in an uncorrected identity with
an infidelity that scales as c2δJ2

2 compared to ∼ δJ4
2 of a

robust shaped pulse, but with the very small coefficient
c2 =

J2
2T

4

2048h4k2π2 . Taking J2 = h× 2MHz and T = 6.1µs,
k = 2 is the maximum value for which the ESR strength
Ω remains below h× 2MHz, and leads to c2 being about
1/100 of the value one would get in the absence of driving
letting (J2 + δJ2)/4 σ

(1)
Z σ

(2)
Z evolve on its own.

This means that one may be able to get away with
not doing any correction in that subspace, shaping only
the H1

su(2) pulse without worrying about making pulse
lengths match. This has the benefit of allowing for
slightly shorter pulse lengths since searching for matching
pulse length results in longer pulses. As shown in Fig. 4,
this approach works fairly well against exchange noise,
though there is substantial performance degradation if
amplitude error is appreciable.

A direct comparison of our corrected pulse to methods
other than that of Sec. III C is not possible simply be-
cause of the lack of other robust cz methods for always-on
exchange in a silicon three-qubit system. Furthermore, it
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is not known what the fundamental speed limit is in this
case or how close we are to it given the control constraints
and the robustness requirement. Quantum speed limits
are usually considered for nonrobust gates, though some
recent work has also found the minimum times for robust
gates in a certain single-qubit scenario [54], in which case
the minimal time was about twice as long as the corre-
sponding nonrobust rotation. It is not unreasonable that
our pulse is longer than the nonrobust one by a factor of
28 considering the complexity of the three-qubit control
landscape and the more complicated form of errors that
are being corrected, but we certainly do not rule out the
possibility of a faster solution.

However, for the sake of context, note that an uncor-
rected three-qubit i-Toffoli gate has been considered in
such a system [27] with a gate time of about 2h/J , i.e.,
roughly 7 times faster than our corrected three-qubit cz
pulse, but even in the absence of noise it is already an ap-
proximation (albeit quite a good approximation, with an
average error of either 0.6% or 0.03%, depending on the
specific parameters) and it is not robust to amplitude or
exchange noise/miscalibrations. Alternatively, compar-
ing to a robust cz-gate in a two-qubit system from the
same method we have generalized here [26], the pulse
length in the two-qubit case is only slightly less at 13h/J ,
and the infidelity scales the same vs quasi-static error as
our three-qubit pulse but is better by a constant factor
of about two. This is because two independent exchange
errors, δJi, and amplitude errors δαi have to be corrected
at once in our three-qubit pulse while only one of each
error exist for the two-qubit pulse. Another robust cnot
gate in an exchange-coupled two-qubit system is the sup-
code implementation for amplitude error and exchange
error [46] which achieves an improvement of infidelity of
more than two orders of magnitude over an uncorrected
gate, similar to the present improvements in Fig. 4. How-
ever the cnot gate in that method was much longer, tak-

ing about 300 times longer than the uncorrected gate, so
our current method is much more efficient. Experimen-
tally, robust pulses for a single qubit device using grape
have been implemented and achieved infidelities as low as
4×10−4[14] with a pulse time of 8µs compared to an un-
corrected 2µs square pulse. In comparison, our pulse in-
curs a higher time cost relative to the uncorrected pulse,
but performs a much more complicated gate compared
to the single-qubit case. Also note that our pulse time
estimate of 7µs with current ESR strengths is not experi-
mentally forbidding, and is comparable to the pulse times
already used with the more limited ESR Rabi frequency
available in the device of Ref. [14].

V. SUMMARY & CONCLUSIONS

We have shown how to perform a full set of local gates
and cz gates in a linear array of three spin qubits with
always-on exchange coupling. The cz gate was dynami-
cally corrected using shaped two-tone ESR. In principle
all local gates can also be corrected via existing supcode
pulse sequences, though that approach may be unwieldy
in practice without further optimization. Single-qubit
pulse shaping is expected to exhibit improvement similar
to that of the cz gate presented above, although the more
complicated requirements of correcting 4 different copies
of SU(2) simultaneously when local rotations of the mid-
dle qubit are needed poses a formidable challenge that
will be a topic for future investigation.
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