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 10 

Periodic stacking of topologically trivial and non-trivial layers with opposite symmetry of the valence 11 

and conduction bands induces topological interface states that, in the strong coupling limit, hybridize 12 

both across the topological and normal insulator layers. Using band structure engineering, such 13 

superlattices can be effectively realized using the IV-VI lead tin chalcogenides. This leads to emergent 14 

minibands with a tunable topology as demonstrated both by theory and experiments. The topological 15 

minibands are proven by magneto-optical spectroscopy, revealing Landau level transitions both at the 16 

center and edges of the artificial superlattice mini Brillouin zone. Their topological character is 17 

identified by the topological phase transitions within the minibands observed as a function of 18 

temperature. The critical temperature of this transition as well as the miniband gap and miniband 19 

width can be precisely controlled by the layer thicknesses and compositions. This witnesses the 20 

generation of a new fully tunable quasi-3D topological state that provides a template for realization of 21 

magnetic Weyl semimetals and other strongly interacting topological phases. 22 

 23 

I. INTRODUCTION 24 

Heterostructures of quantum materials lead to new emergent states of matter beyond what is possible 25 

in their bulk form [1–6]. In the case of topological insulators (TIs), theoretical calculations have shown 26 

that Dirac, Weyl and nodal line fermions can be artificially created by periodically stacking a TI and a 27 

normal insulator (NI) on top of each other [3,7,8]. These superlattices (SL) have been theoretically 28 

proposed as novel templates for realization of magnetic Weyl semimetals [3], Weyl superconductors [9], 29 

the quantum anomalous Hall phase [8,10–13], flat band superconductivity [5] and strongly interacting 30 

topological phases [14]. Experimental realization of TI/NI superlattice structures, however, has posed a 31 

formidable challenge. This is mainly due to the limitations in material combinations that are 32 

topologically different but well compatible in terms of crystal structures and heteroepitaxial 33 

growth [15,16]. As a result, up to now most of the novel phases have been only theoretically predicted, 34 

and only recently first experiments have started to explore these effects [17–23]. 35 

Here we show that the IV-VI lead tin chalcogenides (Pb,Sn)(Se,Te) topological crystalline insulators 36 

(TCIs) [24–26] provide an excellent platform for the realization of artificial TI/NI superlattice structures. 37 

This is because their topology [27–30], anisotropy [31,32], band alignment [33,34] and crystal 38 
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symmetry [35–38] can be controlled on demand by composition, temperature, strain, and/or 39 

ferroelectric phase transitions. As a result, band structure engineering of heterostructures can be easily 40 

achieved, as has been demonstrated for mid-infrared device applications [39]. In the (Pb,Sn)(Se,Te) TCIs, 41 

the non-trivial band topology arises from the band inversion between the 𝐿6
+ and 𝐿6

− bands appearing at 42 

sufficiently high Sn contents. This leads to the formation of Dirac cone topological surface, respectively,  43 

interface states (TIS) that are protected by crystal symmetries [24,25] rather than by time reversal 44 

symmetry as in conventional topological insulators [40]. In ultra-thin films and quantum wells, the 45 

interface states at the upper and lower film boundaries hybridize, which leads to a gapping of the Dirac 46 

cone [27,41,42] as experimentally demonstrated in our previous work [19]. 47 

Here, we study TCI/NI superlattice structures with ultra-thin barriers where the topological interface 48 

states are not only coupled across the TI quantum wells but also across the normal insulator barrier 49 

layers. Using magneto-optical Landau level spectroscopy and envelope function calculations, we 50 

demonstrate that due to this coupling, extended topological minibands emerge that can be precisely 51 

controlled by growth, temperature, layer thicknesses and compositions. The minibands are directly 52 

evidenced by observation of two sets of magnetooptical transitions occurring at the center and edge of 53 

the mini Brillouin zone (BZ) imposed by the artificial periodicity of the SL structure. In this way, we reveal 54 

that their dispersion, gap size and miniband width can be perfectly controlled by tuning of the coupling 55 

constants. The non-trivial miniband topology is experimentally proven by the observation of the 56 

topological phase transitions as a function of temperature used as a tuning knob for the band inversion. 57 

From our data, we construct for the first time the experimental non-magnetic Burkov-Balents phase 58 

diagram [3] predicted for such non-trivial systems. Our results thus represent a text-book topological 59 

superlattice system supporting topological minibands artificially designed for various device 60 

applications. 61 

 62 

II. GROWTH AND CHARACTERIZATION 63 

Artificial TI/NI superlattice heterostructures were created by molecular beam epitaxy of non-trivial Pb1-64 

xSnxSe TI layers (quantum wells) with inverted band gap, alternating with trivial NI Pb1-y-xEuySnxSe barrier 65 

layers. For the topologically non-trivial Pb1-xSnxSe, 𝑥𝑆𝑛 > 0.21 was chosen to obtain a negative gap of 66 

2∆𝑄𝑊< −20 meV at 4 K. Alloying of europium into the barrier, on the other hand, turns the band gap 67 

positive [11], rendering Pb1-y-xEuySnxSe topologically trivial with a gap 2∆𝐵~+ 150𝑚𝑒𝑉 for 𝑦𝐸𝑢~0.05. 68 

Molecular beam epitaxy of Pb1−xSnxSe/Pb1-y-xEuySnxSe superlattices on BaF2 (111) was carried out at a 69 

substrate temperature of 360°C under ultra-high vacuum conditions of 5×10−10 mbar using a RIBER 1000 70 

MBE system. PbSe, SnSe, Eu and Se effusion sources were used for growth, and a Bi2Se3 source for 71 

tuning of the carrier concentration to low 1018 cm-3 as determined by Hall effect measurements. The 72 

superlattice stacks were grown on a 50 nm Pb1-yEuySe buffer layer pre-deposited on the BaF2 substrate 73 

and a 50 nm Pb1-yEuySe on top as a capping layer. 74 

Perfect 2D growth was achieved, evidenced by streak reflection high energy electron diffraction patterns 75 

observed throughout superlattice growth. This yields perfect multilayer structures as evidenced by high 76 

resolution x-ray diffraction shown in Fig. 1, showing sharp superlattice satellite peaks for all samples. In 77 

reciprocal space maps shown in Fig. 1(a,b) theses satellite peaks are perfectly aligned along the Q[111] 78 
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growth direction, evidencing the very high quality of the samples and full coherency of the interfaces. 79 

The resulting superlattice parameters for the investigated samples are listed in Tab. 1. 80 

 81 

Figure 1. High resolution x-ray characterization of the TCI/NI superlattice structures. (a,b) Reciprocal 82 

space maps of Pb1-xSnxSe / Pb1-y-xEuySnxSe SLs around the symmetric (222) and asymmetric (153) Bragg reflection 83 

evidencing perfect pseudomorphic growth. (c) Radial diffraction scans along Q[111] normal to the surface for 84 

samples SL27-1.5 and SL9-3.5. The satellite peaks are labelled as SLx and the diffraction peaks of the BaF2 substrate 85 

and Pb1-yEuySe capping layer are also indicated. The sample parameters obtained are listed in Tab. 1. 86 

 87 

III. MODELING OF THE MINIBANDS 88 

For proper sample design, envelope function theory [44–47] was employed to predict and model the SL 89 

band structure. The periodic superlattice potential shown schematically in Fig. 2(a) implies envelope 90 

functions satisfying the Bloch theorem with a wave vector 𝑞𝑧 that lies within the artificial superlattice BZ 91 

reduced within the boundaries [−𝜋 𝐿⁄ ;+𝜋 𝐿⁄ ], determined by the superlattice period 𝐿. Using a 4-band 92 

𝒌. 𝒑 model, detailed in Appendix A, the topological miniband (𝑇𝑀𝐵) dispersions are calculated versus 𝑞𝑧 93 

as shown in Fig. 2(b). We find that the electron and hole-like states form mirror-like minibands 𝑇𝑀𝐵(𝑞𝑧) 94 

and 𝑇𝑀𝐵′(𝑞𝑧), respectively. Their gap are denoted as 2𝛿0 and 2𝛿𝜋 𝐿⁄  at the center and boundaries of 95 

the mini BZ, respectively. Note that due to the multi valley band structure of the IV-VI 96 

compounds [34,48–50], the miniband dispersions are slightly different for the oblique and longitudinal 97 

valleys (solid and dashed lines in Fig. 2(b)) that are tilted, respectively, aligned parallel to the growth 98 

direction. This originates from the admixture of the anisotropic band dispersion of the barriers to the 99 

otherwise isotropic Pb1-xSnxSe QWs [31,51], which yields slightly different 𝑣𝑧, the Dirac velocities along 100 

the z//[111] growth direction for the longitudinal and oblique valleys. Note that we define here the 101 

Dirac velocity as the slope of the linear part of the 𝐸(𝑘) dispersion. 102 
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 103 

Figure 2. Topological miniband formation in TCI/NI superlattices. (a) Modulation of the conduction and 104 

valence band edges along the SL structure in the growth direction 𝑧. The envelope wave function of the topological 105 

miniband concentrated at the interface is illustrated by the red curve, the black arrows indicate the intrawell and 106 

interwell tunnel coupling 𝜏𝑄𝑊  and 𝜏𝐵, respectively. (b) Miniband dispersion 𝐸(𝑞𝑧) for the longitudinal (solid lines) 107 

and oblique valleys (dashed lines) derived by 𝒌. 𝒑 theory at 𝑘𝑥 = 𝑘𝑦 = 0 and 4.2 K for the superlattice structure 108 

SL9-3.5 listed in Tab. 1. The color scale represents the symmetry (𝐿6
+ versus 𝐿6

−) of the minibands (see scale bar in 109 

(c)). Label numbers denote the 𝐿6
+ proportion. (c) Evolution of the minibands and their symmetry (color scale) in 110 

the conduction and valence band ((𝑇𝑀𝐵, respectively, 𝑇𝑀𝐵’) as a function of Pb1-xSnxSe thickness 𝑑𝑄𝑊. The 111 

barrier width is fixed to 𝑑𝐵 = 3.5 nm and the Pb1-xSnxSe composition to 𝑥𝑆𝑛 = 0.27. The corresponding bulk band 112 

gaps are 2∆𝑄𝑊= −72.5 meV (dashed horizontal lines) and 2∆𝐵= +150 meV. (d) Probability density of the 113 

topological miniband envelope wave function across the SL structure for different miniband topologies.  Green 114 

line: Normal superlattice (NSL) with 2𝛿0 = +20 meV and 𝜏𝐵 < |𝜏𝑄𝑊|, blue line: Zero gap SL with 2𝛿0 = 0 and 𝜏𝐵 =115 

|𝜏𝑄𝑊|, red line: Topological superlattice (TSL) with 2𝛿0 = −47.5 meV and 𝜏𝐵 > |𝜏𝑄𝑊|.  The different character is 116 

set by changing the Pb1-xSnxSe band gap from 2∆𝑄𝑊= 10, −10, −60 meV.  117 

 118 

Solution of the 𝒌. 𝒑 Hamiltonian yields the size of the miniband gaps 2𝛿0 and 2𝛿𝜋 𝐿⁄  as a function of 119 

layer thicknesses and compositions. The results are exemplified in Fig. 2(c), where the evolution of the 120 

minibands is shown as a function of QW thickness for a fixed barrier thickness 𝑑𝐵 = 3.5 𝑛𝑚 and bulk 121 

band gaps set to 2Δ𝑄𝑊 = −72.5 meV and  2Δ𝐵 = +150 meV, respectively. Evidently, the gap between 122 

the minibands goes to zero at a critical QW thickness (vertical line), indicating that only at sufficiently 123 

large 𝑑𝑄𝑊 the symmetry of the band edges is inverted. 124 

Based on the solution of the  𝒌. 𝒑 model, we find that in a good approximation, the 𝛿(𝑞𝑧) dispersion of 125 

the miniband edges is given by (see Appendix B): 126 
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𝛿(𝑞𝑧) ≅ √
2ℏ2𝑣𝑧

2[1 − cos(𝑞𝑧𝐿)]

𝐿2
+ 𝛿0

2           (1a) 127 

𝛿0 = 𝛿(𝑞𝑧 = 0) ≅
𝑑𝑄𝑊∆𝑄𝑊 + 𝑑𝐵∆𝐵

𝐿
            (1b) 128 

This means that the hybridization gap 2𝛿0 of the superlattice structure is essentially equal to the 129 

average of QW and barrier band gaps weighted according to their layer thickness. This is due to the 130 

close similarity of the band parameters of the layers. According to Eq. (1), the minibands can be fully 131 

designed by the superlattice structure. Most importantly, the gap assumes a negative value only under 132 

the condition that 𝑑𝐵∆𝐵< |𝑑𝑄𝑊∆𝑄𝑊| and ∆𝑄𝑊 is negative. This means that a non-trivial miniband 133 

topology is not simply formed when the band gap of the TI well material is inverted. 134 

We further identify the intrawell and interwell coupling strength 𝜏𝑄𝑊 and 𝜏𝐵 between the TI/NI 135 

interfaces as  𝜏𝑄𝑊 ≡ −ℏ𝑣𝑧 𝑑𝑄𝑊∆𝑄𝑊⁄  and 𝜏𝐵 ≡ ℏ𝑣𝑧 𝑑𝐵∆𝐵⁄ , respectively. Note that in Dirac matter, the 136 

penetration depth of the topological state is given by 𝜆𝑄𝑊 = ℏ𝑣𝑧 |∆𝑄𝑊|⁄  or 𝜆𝐵 = ℏ𝑣𝑧 ∆𝐵⁄  in the well 137 

and in the barrier respectively [19,52,53]. This means that 𝜏𝑄𝑊 = 𝜆𝑄𝑊 𝑑𝑄𝑊⁄  and 𝜏𝐵 = 𝜆𝐵 𝑑𝐵⁄  capture 138 

the recovery of the topological state wavefunctions coming from two distinct interfaces separated by 139 

𝑑𝑄𝑊 or 𝑑𝐵. We can then define the strong coupling limit when |𝜏𝑄𝑊,𝐵| > 1, which insures significant 140 

interactions between interface states. 141 

Using the expression of 𝜏𝑄𝑊 and 𝜏𝐵, Eq. (1b) simplifies to 𝛿0 = ℏ𝑣𝑧(𝜏𝐵
−1 − 𝜏𝑄𝑊

−1 ) 𝐿⁄ . The topological 142 

phase transition where 𝛿0 is zero then occurs under the condition that: 143 

𝑑𝑄𝑊∆𝑄𝑊 + 𝑑𝐵∆𝐵= 0   or   𝜏𝐵 = 𝜏𝑄𝑊           (2) 144 

This leads to a change of the symmetry of the miniband states (𝐿6
+ versus 𝐿6

−) that is represented by the 145 

color scale in Fig. 2(c) as further detailed in the Appendix C. This shows that indeed above a critical 146 

thickness where 𝜏𝐵 > |𝜏𝑄𝑊|, the character of the minibands is inverted, i.e., the SLs become 147 

topologically non-trivial [3,7]. The topological character is thus encoded in the |𝜏𝑄𝑊 𝜏𝐵⁄ | ratio that is  < 148 

1 for the nontrivial, but  > 1 for trivial structures. 149 

The pronounced effect of the band topology on the wave functions of the minibands is demonstrated by 150 

Fig. 2(d), where the wave function probability density across the QW and barriers is depicted for three 151 

cases, i.e., a normal SL (NSL) with 2𝛿0 > 0 , a zero gap SL and a topological superlattice (TSL) with 2𝛿0 <152 

0. Whereas, for the NSL with 𝜏𝐵 < |𝜏𝑄𝑊| (green line in Fig. 2(d)), the probability density is maximal in 153 

the center of the QW as it is generic for conventional semiconductor superlattices, this is exactly 154 

opposite for the TSL with 𝜏𝐵 > |𝜏𝑄𝑊| (red line), where the probability density is minimal in the QW and 155 

high in the barriers. This remarkable difference is a clear signature of the topological character of the 156 

structure. At the phase transition between the NSL and TSL cases, the miniband gap is zero and 𝜏𝐵 =157 

|𝜏𝑄𝑊|. As a result, the average probability density is the same in the QWs and barriers (blue line in Fig. 158 

2(d)), i.e., the electrons/holes are evenly distributed over the QWs and barriers and thus most 159 

delocalized in the SL structure. 160 
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The coupling strengths 𝜏𝑄𝑊 and 𝜏𝐵  directly control the miniband widths ∆𝑀𝐵 (shaded regions in Fig. 161 

2(c)). Accordingly, when layer thicknesses are reduced to few nanometers, a strong coupling regime 162 

emerges witnessed by a drastic widening of the minibands. Conversely, when the wells and/or barriers 163 

are thick, the coupling between the interfaces is diminished, narrowing the minibands as seen in Fig. 164 

2(c). In the thick barrier limit, uncoupled quantum wells are formed in which the interface states do no 165 

longer hybridize across the barrier layers [19]. Accordingly, not only the band gaps but also miniband 166 

widths can be engineered by control of the layer thicknesses. 167 

For our magneto-optical experiments, two types of samples were prepared, namely, TSL designated to 168 

exhibit a negative miniband gap and nontrivial topology (samples SL9-3.5 and SL27-1.5, see Tab. 1), and 169 

NSL with reduced Sn content. The Sn content is a crucial parameter that controls the well potential 170 

depth. It is reduced for SL15-3.5, rendering the SL gap positive. SL15-3.5 is therefore a control sample 171 

with trivial topology. In the samples, the QW and barrier thicknesses were varied to yield different 172 

coupling strengths and miniband widths. The miniband gaps 2𝛿0 and coupling ratios |𝜏𝑄𝑊 𝜏𝐵⁄ | at 4 K are 173 

also listed in Tab. 1, where |𝜏𝑄𝑊 𝜏𝐵⁄ | < 1  for topological SL9-3.5 and SL27-1.5, but > 1 for the trivial 174 

SL15-3.5 reference sample. It is noted that due to the small lattice mismatch between the QW and 175 

barrier materials, a small tensile strain is imposed in the QWs and the barriers are slightly compressed. 176 

This leads to small deviations in the band gaps ∆𝑄𝑊 and ∆𝐵 with respect to the unstrained bulk 177 

material [31,34]. 178 

Table 1. Sample parameters of the investigated TCI/NI superlattice structures, composed of Pb1-xSnxSe TCI QWs 179 

alternating with trivial NI Pb1-y-xEuySnxSe barriers, repeated 𝑁 times. Also listed are the effective miniband gaps 180 

2𝛿0 and coupling ratios |𝜏𝑄𝑊 𝜏𝐵⁄ | (Eq. (1)) for 𝑇 = 4.2 K. 2𝛿0 < 0 and |𝜏𝑄𝑊 𝜏𝐵⁄ |  < 1 indicate non-trivial topology, 181 

whereas for 2𝛿0 > 0 and |𝜏𝑄𝑊 𝜏𝐵⁄ |  > 1, the superlattices are topologically trivial. The well and barrier material 182 

band gaps 2Δ𝑄𝑊 and 2Δ𝐵  are obtained from the fits of the magneto-optical data, which are shown later.  183 

Parameter  SL9-3.5 SL27-1.5 SL15-3.5 

TCI:  𝑑𝑄𝑊  [nm] 9 ± 0.2 27 ± 0.2 15 ± 0.2 

       𝑥𝑆𝑛 in Pb1-xSnxSe  0.27 ± 0.01 0.26 ± 0.01 0.22 ± 0.01 

       Band gap 2Δ𝑄𝑊 at 4 K [meV] −72.5 −60 −20 

NI:  𝑑𝐵  [nm] 3.5 ± 0.2 1.5 ± 0.2 3.5 ± 0.2 

       𝑦𝐸𝑢  in Pb1-y-xEuySnxSe 0.05 0.05 0.05 

       Band gap 2Δ𝐵  at 4 K [meV] 150 140 150 

SL: Number 𝑁 of periods 40 20 30 

      Miniband gap 2𝛿0 at 4 K [meV] -10 -47.5 +10 

      |𝜏𝑄𝑊 𝜏𝐵⁄ | at 4 K 0.80 0.14 1.75 

 184 

IV. LANDAU LEVEL SPECTROSCOPY OF TOPOLOGICAL MINIBANDS 185 

To assess the topological minibands magneto-optical spectroscopy was performed in Faraday geometry 186 

at magnetic fields up to 15 T [19,43]. The results for SL9-3.5 and SL15-3.5 are shown in Fig. 3 for 𝑇 = 4.2 187 

and 160 K. In both cases, a large number of Landau level transitions are observed (arrows in Fig. 3(a,b)), 188 
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shifting to higher energies as the magnetic field increases. From this we construct fan charts shown in 189 

Fig. 3(c,d), where each data point corresponds to a minimum in the transmission spectra in (a,b). The fan 190 

charts are analyzed using Landau level transitions obtained from 𝒌. 𝒑 calculations presented in the 191 

Appendix D (solid and dashed lines) and fitted to the experimental data. From the analysis, we 192 

unambiguously identify the existence of two individual subsets of transitions, indicated in Fig. 3 by the 193 

red and blue colors. These are identified to occur at the miniband extrema at 𝑞𝑧 = 0 (red) and 𝑞𝑧 =194 

±𝜋/𝐿 (blue), respectively, where the joint density of states of the minibands is maximal. Each 195 

extrapolates to a different energy at 𝐵 = 0, corresponding to the miniband gaps 2𝛿0 and 2𝛿𝜋 𝐿⁄  at the 196 

center and edge of the superlattice BZ respectively – in perfect agreement with the 𝒌. 𝒑 calculations. 197 

The validity of the assignment is evidenced by the perfect fit obtained in each case, with the fit 198 

parameters listed in the Supplementary Material [54]. Most importantly, the observation of the two 199 

independent series of transitions directly proves the miniband formation in our strongly coupled 200 

superlattice structures. 201 

 202 

Figure 3. Magnetooptical spectroscopy. (a,b) Normalized transmission spectra of the superlattice samples 203 

SL9-3.5 and SL15-3.5 at 4.2 and 160 K at different magnetic fields of up to 𝐵 =15 T. The minima are due to Landau 204 

level transitions between the minibands at 𝑞𝑧 = 0 and 𝑞𝑧 = 𝜋 𝐿⁄ , marked by red and blue arrows, respectively. 205 

(c,d) Magnetooptical fan charts derived from the experiments (red/blue dots) compared to the calculations by the 206 

𝒌. 𝒑 model for the longitudinal and oblique valleys (solid and dashed lines, respectively). The extrapolated 207 

transition energies 2𝛿0  and 2𝛿𝜋/𝐿  at 𝐵=0 of the two transition sets are indicated by the arrows and in the insert. 208 

The green shaded regions indicate the experimentally non-accessible energy range blocked by the reststrahlen 209 

band of the substrate and window cut-offs.  210 

 211 
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For the superlattice SL9-3.5, the extrapolation of the data points yields a miniband gap of |2𝛿0| = 10 ±212 

5 meV at 4.2 K, whereas the second set of transitions yields a gap of |2𝛿𝜋/𝐿| = 95 ± 5 meV at the 213 

boundary of the BZ. Both values perfectly agree with the calculated values in Fig. 2(c) for the given TI/NI 214 

layer thicknesses. Using ∆𝑀𝐵= |𝛿0 − 𝛿𝜋/𝐿|, a miniband width of 42.5 ± 10 meV is derived for this 215 

sample. According to the 𝒌. 𝒑 calculations (cf. Fig. 2(c)), the miniband gap is inverted, i.e., the minibands 216 

are topologically non-trivial at 4.2 K. This is supported by the fact that the in-plane Dirac velocities, 217 

determined from the fits for the longitudinal and oblique valleys (𝑣∥
𝑙 = 4.40x105 m/s and 𝑣∥

𝑜 =218 

4.10x105 m/s) are below the critical values where the band gap is inverted [32]. It is noted that the 219 

small difference in the in-plane miniband dispersion for the longitudinal and oblique valleys arises from 220 

the admixture of the band anisotropy of the Pb1-y-xEuySnxSe barriers to that of the QWs caused the large 221 

extent of the wave function across the SL period, as the bulk bands of Pb1-xSnxSe with 0.21 < 𝑥𝑆𝑛 < 0.29 222 

are otherwise isotropic. This is particularly pronounced for topological superlattices because the 223 

probability density of the wave function is strongly enhanced within the barriers as shown by Fig. 2(d). 224 

For the second SL sample SL15-3.5 with lower Sn content, the same analysis yields  2𝛿0 = +10 ± 5 meV 225 

and  2𝛿𝜋/𝐿 = 74 ± 5meV, rendering the gap positive and the minibands topologically trivial. Moreover, 226 

due to the increased QW thickness of 𝑑𝑄𝑊 = 15 nm, the miniband width is reduced to ∆𝑀𝐵= 32 ± 10 227 

meV, following nicely the trend of Fig. 2(c). 228 

We highlight that the observed magnetooptical transitions occur both at 𝑞𝑧 = 0 and 𝑞𝑧 = 𝜋/𝐿 where 229 

the joint density of states for optical transitions is largest. The fact that both transitions are 230 

simultaneously observed and precisely fit to the calculations evidences the existence of minibands in the 231 

superlattice structures. To this end, we emphasize that the higher energy transitions (marked in blue) 232 

cannot be interpreted as transitions between higher energy excited states or higher order minibands. 233 

Indeed, for the samples in Fig. 3, these would lie in the continuum above the band gap 2∆𝐵 of the 234 

barrier material, as shown in the supplementary material. Consequently, we safely attribute the 235 

observed absorptions to the emergent minibands caused by the hybridization of interface states. To the 236 

best of our knowledge, this type of artificial energy bands TI/NI multilayer structures has not been 237 

realized before and in any topological material system. 238 

 239 

V. EXPERIMENTAL DEMONSTRATION OF SYMMETRY INVERSION 240 

The topological character of the superlattice structures is directly revealed by magnetooptical 241 

measurements at varying temperatures in which the fundamental band gaps of the QW and barrier 242 

materials are tuned [27,31,32]. First, we focus on the superlattice SL27-1.5 that displays the largest 243 

negative miniband gap at 4.2 K and is thus, most deeply in the inverted topological region. The 244 

magnetooptical fan chart of the sample shown in Fig. 4(a) yields a miniband gap of 2𝛿0 = −47.5 ± 2.5 245 

meV and 2𝛿𝜋/𝐿 = −75 ± 5 meV at 4.2 K as indicated by the solid lines extrapolated to 𝐵 = 0. Figure 246 

4(b) displays the corresponding transmission spectra at a fixed magnetic field of 15 T as a function of 247 

temperature from 4.2 to 225 K. Clearly, the first interband transition occurring at 𝑞𝑧 = 0, highlighted by 248 

the red dots, exhibits a non-monotonic behavior in its position, shifting initially to lower energies as the 249 

temperature increases, but then reverses and shifts in the opposite direction above 160 K. 250 
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 251 

Figure 4. Temperature dependence of the miniband gap. (a) Magnetooptical fan chart of superlattice SL27-252 

1.5 at 4.2 K, showing the ground transitions between the minibands at 𝑞𝑧 = 0 (red) and |𝑞𝑧| = 𝜋 𝐿⁄  (blue) on an 253 

enlarged scale. (b) Temperature dependence of the far-infrared transmission spectra at 𝐵 = 15 T in which the 254 

lowest energy transition is indicated by the red dots. The energy position of this transition is shown in (c) as a 255 

function of temperature together with the theoretical fit (solid line) obtained by the 𝒌. 𝒑 model. The critical 256 

temperature 𝑇𝑐 ≅ 130 K, indicated by the blue arrow, separates the TSL from the NSL phases and where 257 

𝜕|𝛿0| 𝜕𝑇⁄  changes sign. Note that transitions below 70 meV are masked by the reststrahlen band of the substrate. 258 

 259 

The shifts are summarized in Fig. 4(c), where the experimental data (red dots) is compared with the 𝒌. 𝒑 260 

calculations (red line). Evidently, the non-monotonic shift is perfectly reproduced by our model. The 261 

effect originates from the anomalous temperature dependence of the band gaps of IV-VI materials in 262 

which the TCI band inversion is induced by the 𝑠𝑝 repulsion between the 𝐿 bands and lower lying 𝑆 263 

bands rather than by spin-orbit coupling [55]. This repulsion decreases with increasing interatomic 264 

distances, which lifts the band inversion and renders the material trivial as the temperature is increased. 265 

The same also occurs in our TCI/NI structures, albeit at a different critical temperature 𝑇𝑐 because the 266 

superlattice miniband inversion is not only governed by the bulk bands, but also by the thicknesses of 267 

the well and barrier materials (Eq. (1)). Most importantly, the abrupt sign change of 𝜕|𝛿| 𝜕𝑇⁄  of the TSL 268 

structure is a clear evidence for the occurrence of this topological phase transition, with a critical 269 

temperature 𝑇𝑐 ≈ 130 K in this sample, below which 𝜕|𝛿| 𝜕𝑇⁄  is negative. This is the hallmark for the 270 

topological nature of our TCI/NI superlattice system. 271 

The non-monotonic behavior is to be contrasted with our previous observations for TCI multi quantum 272 

well structures [19], where due to an order of magnitude wider barriers (𝑑𝐵 > 35 nm) the coupling 273 

between the topological interface states across the barriers is negligible (𝜏𝐵 ≈ 0). As a result, no 274 

minibands are formed and the hybridization gap of TIS states only monotonically increases with 275 

temperature and thus, no sign changes occurs. In contrast, for the presently studied strong coupled 276 

structures, our experiments reveal that extended minibands are formed due to the strong interwell 277 

hybridization 𝜏𝐵 > 0, inducing an emergent topological phase transition. 278 
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The complete data set for all superlattice samples is summarized in Fig. 5(a-c), which shows the 279 

evolution of the miniband gaps 2𝛿0 and 2𝛿𝜋/𝐿  (red and blue dots) as a function of temperature together 280 

with the 𝒌. 𝒑 calculations (solid lines). For all cases, theory and experiments perfectly fit to one another. 281 

The bulk band gaps Δ𝑄𝑊(𝑥, 𝑇) and Δ𝐵(𝑦, 𝑇) obtained from the magnetooptical fits are shown as well for 282 

comparison by the open circles in Fig. 5(a-c), and they agree very well with the empirical expressions 283 

(dashed lines) derived in our previous works [31,34]. For the two superlattices SL9-3.5 and SL27-1.5, the 284 

minibands are inverted at cryogenic temperatures and thus, they are topological non-trivial. Their 285 

absolute miniband gap value of |2𝛿0| decreases with temperature and turns to positive values when the 286 

critical temperature 𝑇𝑐, indicated by the vertical dashed lines, is reached. This marks the topological 287 

phase transition from a TSL to an NSL structure. 288 

 289 

Figure 5. Demonstration of topological phase transitions. (a-c) Temperature dependence of the superlattice 290 

miniband gaps 2𝛿0 (red) and 2𝛿𝜋 𝐿⁄  (blue) at 𝑞𝑧 = 0 and ±𝜋/𝐿 obtained by experiments (dots) and 𝒌. 𝒑 model 291 

(solid lines). The region of the miniband band inversion is highlighted in yellow. The vertical dashed lines indicate 292 

the critical temperature 𝑇𝑐  below which the SLs are nontrivial. Above 𝑇𝑐  they are trivial. This transition is due to a 293 

symmetry inversion which changes the sign of the miniband gaps. The blue shaded area represents twice the 294 

miniband width 2∆𝑀𝐵. Also shown is the temperature dependence of the band gaps of the QW (2∆𝑄𝑊(𝑥, 𝑇), black 295 

circles) and the barriers (2∆𝐵(𝑦, 𝑇), green circles) obtained from the fits that nicely agree with our previous work 296 

(dashed lines) [31,34]. (d,e) Topological phase diagrams of the SL structures as a function of temperature and Pb1-297 

xSnxSe composition for fixed barrier thickness of  𝑑𝐵 = 3.5 nm (d) and 1.5 nm (e). The solid lines represent the 298 

phase boundaries for different QW thicknesses 𝑑𝑄𝑊  and the shaded regions indicate TSL phases. The black dots in 299 

the phase diagrams mark the experimental phase transitions observed for our samples. (f) Temperature 300 

dependence of the miniband width ∆𝑀𝐵  derived from experiments (symbols) and the 𝒌. 𝒑 model (solid lines). The 301 

cusps mark the topological-to-normal insulator superlattice phase transition as indicated by the arrows. 302 
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The derived 𝑇𝑐 values are 40 K and 130 K, respectively, which nicely agrees with the 𝒌. 𝒑 calculations 303 

(solid lines). The difference in 𝑇𝑐 is mainly due to the different barrier thicknesses (see Tab. 1), for which 304 

reason the ratio |𝜏𝑄𝑊 𝜏𝐵⁄ | of SL9-3.5 is closer to 1 at 4.2 K than the one of SL27-1.5. The resulting 305 

weaker interwell coupling in SL9-3.5 makes it closer to the topological phase transition. For the third 306 

sample SL15-3.5 (Fig. 5(c)), the topological phase transition does not occur because it remains in the NSL 307 

phase down to 4.2 K, where 2𝛿0 = +10 meV is still positive. Thus, it serves as a control sample that 308 

unequivocally reveals that the topological nature of the TSL is intrinsically coupled with the temperature 309 

dependent topological phase transition. Moreover, it shows that the SL structures can be topologically 310 

trivial even if the quantum wells are in the topological crystalline insulator state.  311 

Finally, we want to highlight that the topological character of the SL system is also encoded in the 312 

miniband widths ∆𝑀𝐵 represented by the shaded regions in Fig. 5(a-c). For the TSLs in (a,b), the 313 

miniband width increases with increasing temperature, displaying a maximum at the TSL/NSL transition 314 

(arrows Fig. 5(a,b)) and thereafter again decreasing, whereas for the NSL (SL15-3.5, Fig. 5(c)) the 315 

minibands width only monotonically decreases. Accordingly, for the TSL, ∆𝑀𝐵(𝑇) displays a cusp at the 316 

topological phase transition as shown in Fig. 5(f), both in theory (solid lines) and experiments (dots). This 317 

observation is therefore another clear-cut criterion for a topological phase transition in SLs. The cusp 318 

arises from the fact that the intra- and interwell coupling strengths are equal when the gap 2𝛿0 = 0 and 319 

thus, the miniband wave functions are maximally delocalized, maximizing the miniband width. To this 320 

end, we refer to Fig. 2(d), which illustrates the calculated probability density of SL27-1.5 𝑇𝑀𝐵 at 4.2 K 321 

(in red), 𝑇𝐶 = 130 K (in blue) and 200 K (olive). In fact, at the topological phase transition where 2𝛿0 =322 

0, the miniband width scales as ∆𝑀𝐵≅ 2ℏ𝑣𝑧 𝐿⁄  following Eq. (1a). Remarkably, it is essentially 323 

independent of the QW and barrier thicknesses. 324 

The topological phase transitions are put into broader perspective by the topological phase diagrams of 325 

Fig. 5(d,e). These display the topological state and the phase boundaries between the TSL and NSL 326 

structures as a function of QW composition and temperature for different QW thicknesses (solid lines) 327 

but fixed barrier thickness 𝑑𝐵 = 3.5 and 1.5 nm. As indicated by the experimental data points (black 328 

dots) obtained from Fig. 5(a,b), these phase diagrams are in excellent agreement with our experiments. 329 

Therefore, they accurately describe the topological character of the system and serve as guides for 330 

engineering the miniband properties for a given application. 331 

 332 

VI. CONCLUSION 333 

Using Landau level spectroscopy, we have demonstrated the formation of topological minibands in 334 

artificial TCI/NI superlattices obtained by molecular beam epitaxy and band structure engineering of IV-335 

VI semiconductor heterostructures. By envelope function calculations we revealed that the minibands 336 

are the offspring of the hybridized topological interface states that tunnel couple both across the normal 337 

insulator barrier layers as well as across the TI quantum wells. In the topological SL state, this gives rise 338 

to a pronounced shift of the wave function envelope from the quantum wells to the barriers, which 339 

discriminates the TSL from NSL structures. As a result, the topological phase as well as miniband gap 340 

dispersions can be perfectly controlled by the layer thicknesses and compositions, and tunable miniband 341 

gaps and miniband widths are attained. The temperature-induced phase transition of the miniband 342 
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topological character is in perfect agreement with our theoretical model. Thereby, we experimentally 343 

demonstrate for the first time the recently predicted Burkov-Balents phase diagram [3]. Accordingly, our 344 

TI/NI superlattices provide a new quasi-3D topological state that can be engineered over a wide range, 345 

which offers new avenues towards non-zero dissipation less spin Hall currents [3]. Moreover, by 346 

breaking time reversal symmetry using magnetic doping [38,56–58], magnetic topological superlattices 347 

with tunable Weyl, or even line node semimetal phases [3,7,8] can be reached. 348 

 349 
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 354 

APPENDIX A: 𝒌. 𝒑 MODEL FOR SUPERLATTICES 355 

The stacking of Pb1-xSnxSe and Pb1-y-xSnxEuySe layers makes 𝑧-dependent 𝐿6
− and 𝐿6

+ band edges, where 𝑧 356 

is the growth axis. At the interfaces between two layers, the bands of same symmetry must be 357 

connected [44] thus, leading to a potential that inverses the conduction and valence band at each 358 

interface. As the system is considered electron-hole symmetric [34], this potential can be modelled by a 359 

𝑧-dependent energy gap ∆(𝑧) that changes sign across each interface. Due to confinement, 𝑘𝑧 is not a 360 

good quantum number and is replaced by its operator value −𝑖 𝜕 𝜕𝑧⁄ . The 𝑘2-terms coming from the 361 

interactions between 𝐿6
− or 𝐿6

+ with other bands located at much higher or lower energies are 362 

neglected [59]. We also consider a magnetic field along the 𝑧-axis. In this way, for 𝑛 > 0 (𝑛 being the 363 

Landau level index) the Hamiltonian of the SL system can be written in the basis 𝐿6
+𝛼 |𝑛 −364 

1⟩; 𝐿6
+𝛽|𝑛⟩ ; 𝐿6

−𝛼|𝑛 − 1⟩ ; 𝐿6
−𝛽|𝑛⟩ (|𝑛⟩ being the harmonic oscillator functions) as [19,48,60]: 365 

(

 
 
 
 
 
 

−∆(𝑧) 0 −𝑖ℏ𝑣𝑧
𝜕

𝜕𝑧
𝑣∥√2𝑒ℏ𝐵𝑛

0 −∆(𝑧) 𝑣∥√2𝑒ℏ𝐵𝑛 𝑖ℏ𝑣𝑧
𝜕

𝜕𝑧

−𝑖ℏ𝑣𝑧
𝜕

𝜕𝑧
𝑣∥√2𝑒ℏ𝐵𝑛 ∆(𝑧) 0

𝑣∥√2𝑒ℏ𝐵𝑛 𝑖ℏ𝑣𝑧
𝜕

𝜕𝑧
0 ∆(𝑧) )

 
 
 
 
 
 

 (A1) 366 

where 𝛼 and 𝛽 are the spins with underlying spin-orbit coupling; 𝑣𝑧 and 𝑣∥ are the electron velocities 367 

respectively along and perpendicular to the growth direction. The 𝑗-th energy and wavefunctions of the 368 

confined states at 𝑘𝑥 = 𝑘𝑦 = 0 are calculated by reducing the Hamiltonian (A1) accordingly. This yields 369 

two spin-decoupled equations: 370 

(
−∆(𝑧) − 𝐸𝑗 𝜉𝑖ℏ𝑣𝑧

𝜕

𝜕𝑧

𝜉𝑖ℏ𝑣𝑧
𝜕

𝜕𝑧
∆(𝑧) − 𝐸𝑗

)(
𝐹1
(𝑗)

𝜉𝐹2
(𝑗)
) = 0 371 
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where 𝜉 = ± represents the spins and 𝐸𝑗  denotes the spin-degenerated energy of the 𝑗-th confined 372 

states and goes along with their two-component spinor envelope wavefunctions. The envelope 373 

wavefunction of the 𝑗-th confined states have a 𝐿6
+ and a 𝐿6

− component: 𝐹1
(𝑗)

 and 𝐹2
(𝑗)

 respectively. 374 

In order to calculate each component of each envelope function, the current probability continuity 375 

conditions are applied at each interface for the 𝐿6
+ component 𝐹1

(𝑗)
. Therefore, at the interface between 376 

the well and the barrier,  𝐹1
(𝑗)

 must be continuous as well as the quantity [45,46]: 377 

1

∆(𝑧) − 𝐸𝑗

𝜕𝐹1
(𝑗)

𝜕𝑧
 (A2) 378 

𝐹2
(𝑗)

 is then deduced from 𝐹1
(𝑗)

 by: 379 

𝐹2
(𝑗)(𝑧) =

𝑖ℏ𝑣𝑧
∆(𝑧) − 𝐸𝑗

𝜕𝐹1
(𝑗)

𝜕𝑧
 380 

The SL periodicity implies that 𝐹1
(𝑗)

 can be written as a Bloch wave: 𝐹1
(𝑗)(𝑧 + 𝐿) = 𝐹1

(𝑗)
(𝑧)𝑒𝑖𝑞𝑧𝐿 with 381 

−𝜋 𝐿⁄ < 𝑞𝑧 < +𝜋 𝐿⁄ .  If |𝐸𝑗| < |∆𝑄𝑊|, the continuity of 𝐹1
(𝑗)

 and (A2) at 𝑧 = 𝑑𝑄𝑊 and 𝑧 = 𝐿 yields a 382 

four-equation system giving the following secular equation: 383 

cos(𝑞𝑧𝐿) = cosh(𝜅𝑑𝑄𝑊) cosh(𝜌𝑑𝐵) −
1

2
(𝛾 +

1

𝛾
) sinh(𝜅𝑑𝑄𝑊) sinh(𝜌𝑑𝐵) (A3) 384 

with 𝛾 = −
𝜅

𝜌

𝐸𝑗−∆𝐵

𝐸𝑗−∆𝑄𝑊
; 𝜅 =

1

ℏ𝑣𝑧
√∆𝑄𝑊

2 − 𝐸𝑗
2; and 𝜌 =

1

ℏ𝑣𝑧
√∆𝐵

2 − 𝐸𝑗
2.  385 

Here, we have written 𝐹1
(𝑗)

 as: 386 

𝐹1
(𝑗)(𝑧) = {

𝑎 cosh(𝜅𝑧) + 𝑏 cosh(𝜅𝑧) ,                                in the well

𝑐 cosh (𝜌(𝑧 − 𝑑𝑄𝑊)) + 𝑑 cosh(𝜌(𝑧 − 𝑑𝑄𝑊)) ,           in the barrier
 387 

where 𝑎, 𝑏, 𝑐, 𝑑 are the four eigenvector components of the system. For a negative enough ∆𝑄𝑊, (A3) 388 

gives two solutions that describe 𝑇𝑀𝐵 and 𝑇𝑀𝐵’ dispersions versus 𝑞𝑧 at 𝑘𝑥 = 𝑘𝑦 = 0, as it is shown in 389 

Fig. 2(b,c). 𝐹1
(𝑗)

 is then deduced and shown for instance in Fig. 2(d). For miniband with |𝐸𝑗| > |∆𝑄𝑊|, 390 

(A3) is transformed into: 391 

cos(𝑞𝑧𝐿) = cos(𝑘𝑑𝑄𝑊) cosh(𝜌𝑑𝐵) −
1

2
(�̃� −

1

�̃�
) sin(𝑘𝑑𝑄𝑊) sinh (𝜌𝑑𝐵) 392 

with �̃� =
𝑘

𝜌

𝐸𝑗−∆𝐵

𝐸𝑗−∆𝑄𝑊
 and 𝑘 =

1

ℏ𝑣𝑧
√𝐸𝑗

2 − ∆𝑄𝑊
2 . 393 

 394 

APPENDIX B: APPROXIMATION OF THE MINIBAND DISPERSION 395 

Equation (A3) can be approximated if the cosh and sinh functions are developed to the 2nd order. One 396 

gets with 𝐸𝑗 = 𝛿: 397 
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cos(𝑞𝑧𝐿) ≅ 1 +
𝜅2𝑑𝑄𝑊

2

2
+
𝜌2𝑑𝐵

2

2
−
1

2
(𝛾 +

1

𝛾
) 𝜅𝑑𝑄𝑊𝜌𝑑𝐵 398 

⟺ 𝛿(𝑞𝑧) ≅
√2ℏ

2𝑣𝑧
2[1 − cos(𝑞𝑧𝐿)] + (𝑑𝑄𝑊∆𝑄𝑊 + 𝑑𝐵∆𝐵)

2

𝐿2
 399 

which is Eq. (1a,b). The approximation 𝜌𝑑𝐵~0 is justified as the investigated SL have ultrathin barriers. 400 

Small values of 𝜅𝑑𝑄𝑊 are obtained if the wells are thin or if 𝛿 is close to ∆𝑄𝑊, which is the case in the 401 

present work. 402 

 403 

APPENDIX C: SYMMETRY INVERSION OF THE MINIBANDS 404 

A symmetry inversion can be induced by the interwell coupling 𝜏𝐵 in a superlattice. Indeed, one can 405 

notice that the SL gap 2𝛿0 is vanishing at a certain point (see Fig. 2(c) for instance). Having a bound state 406 

at the middle of the quantum well energy gap implies that 𝐸𝑗 = 0 and therefore 𝜅 =
|∆𝑄𝑊|

ℏ𝑣𝑧
, 𝜌 =

∆𝐵

ℏ𝑣𝑧
 and 407 

𝛾 = 1. Equation (A3) thus becomes:  408 

cos(𝑞𝑧𝐿) = cosh(𝜅𝑑𝑄𝑊) cosh(𝜌𝑑𝐵) − sinh(𝜅𝑑𝑄𝑊) sinh(𝜌𝑑𝐵) = cosh(𝜅𝑑𝑄𝑊 − 𝜌𝑑𝐵) 409 

We conclude that for 𝑑𝐵∆𝐵= 𝑑𝑄𝑊|∆𝑄𝑊|, or 𝜏𝐵 = 𝜏𝑄𝑊, we have 𝛿0 = 0 and Eq. (2) is retrieved. The 410 

calculations give an inversion of the minibands. In order to discriminate the topological phase from the 411 

trivial one, the exact symmetry of the bound states at 𝑞𝑧 = 0 and |𝑞𝑧| = 𝜋 𝐿⁄  have been numerically 412 

calculated. The 𝐿6
+ symmetry of the 𝑗-th confined states is calculated as ∫𝐹1

(𝑗)
𝐹1
(𝑗)
𝑑𝑧, where the integral 413 

extends over one SL period: 0 ≤ 𝑧 ≤ 𝐿. One can then deduce the 𝐿6
− parity by 1 − ∫𝐹1

(𝑗)
𝐹1
(𝑗)
𝑑𝑧. A 414 

symmetry inversion is found when the state with a 𝐿6
+-major component lies above the 𝐿6

−-major state, 415 

and one can retrieve the Burkov-Balents phase diagram [3]. 416 

The results of the symmetry calculations are given in Fig. 2(b,c) of the main text. We deduce that at 4.2 417 

K, both SL9-3.5 and SL27-1.5 display symmetry inverted miniband structure. This inversion is then 418 

experimentally demonstrated for SL27-1.5 (see Fig. 4). Oppositely, SL15-3.5 presents a normal symmetry 419 

order mainly because for its given layer thicknesses, 2∆𝑄𝑊= −20 meV is not enough. 420 

 421 

APPENDIX D: LANDAU LEVELS OF THE MINIBANDS 422 

The 𝐵-dependent terms in (A1) are taken into account in a perturbation theory. The perturbative 423 

Hamiltonian for 𝑛 > 0 is then: 424 

(

 
 

0 0 0 𝑣∥√2𝑒ℏ𝐵𝑛

0 0 𝑣∥√2𝑒ℏ𝐵𝑛 0

0 𝑣∥√2𝑒ℏ𝐵𝑛 0 0

𝑣∥√2𝑒ℏ𝐵𝑛 0 0 0 )

 
 

 425 
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We derive an effective Hamiltonian expressed in the basis of the normalized envelope functions of 𝑇𝑀𝐵 426 

and 𝑇𝑀𝐵’ obtained above at 𝑘𝑥 = 𝑘𝑦 = 0 and for a given 𝑞𝑧. It gives: 427 

𝐻
𝑇𝑀𝐵−𝑇𝑀𝐵′
𝑒𝑓𝑓 (𝑞𝑧) =

(

 
 

−𝛿(𝑞𝑧) 0 0 𝐴𝑣∥√2𝑒ℏ𝐵𝑛

0 −𝛿(𝑞𝑧) 𝐴𝑣∥√2𝑒ℏ𝐵𝑛 0

0 𝐴𝑣∥√2𝑒ℏ𝐵𝑛 𝛿(𝑞𝑧) 0

𝐴𝑣∥√2𝑒ℏ𝐵𝑛 0 0 𝛿(𝑞𝑧) )

 
 

 428 

where 𝐴 = ∫ [𝐹1
(𝑇𝑀𝐵)

𝐹2
(𝑇𝑀𝐵′)

+ 𝐹1
(𝑇𝑀𝐵′)

𝐹2
(𝑇𝑀𝐵)

] 𝑑𝑧 = ±𝑖 by parity. Therefore, the twofold degenerated 429 

Landau levels for 𝑛 > 0 are those of Dirac fermions: 430 

𝐸𝑛 = ±√𝛿
2(𝑞𝑧) + 2𝑒ℏ𝑣∥

2𝐵𝑛 (E1) 431 

In this system, the 𝑛 = 0 Landau levels are spin-polarized and non-dispersive in magnetic field. The 432 

corresponding Landau levels are given in Fig. 6. In the present work, experiments have been performed 433 

in the Faraday geometry that leads to conventional dipole selection rules. Magneto-optical transitions 434 

are thus occurring between two Landau levels 𝑛 → 𝑛 ± 1 and at fixed 𝑞𝑧. For instance, the ground 435 

transition observed in Fig. 4 involves the levels 0 of 𝑇𝑀𝐵’ and 1 from 𝑇𝑀𝐵. 436 

More subtly, we want to point out that the perturbative Hamiltonian is exact for the longitudinal valley 437 

whose high symmetry axis is naturally aligned with 𝐵//[111]; however, it is not the case for the oblique 438 

valleys, which main axis is tilted from 𝑧 by an angle 𝜃 = 70.5°. This anisotropy effect has been 439 

considered by rotating spin and momentum operators in the Hamiltonian, an operation which is 440 

detailed in ref. [61]. This result allows us to adopt an empirical approach in this work by modeling the 441 

anisotropy effect with different valley-dependent fitting parameters 𝑣∥ and 𝑣𝑧 in Eq (E1). 442 
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 443 

Figure 6. Landau levels of the topological minibands. Calculated Landau levels of 𝑇𝑀𝐵 and 𝑇𝑀𝐵’ at 𝑞𝑧 = 0 444 
(red) and 𝑞𝑧 = ±𝜋 𝐿⁄  (blue). Calculations have been performed with the parameters 𝑑𝑄𝑊 = 9 nm; 𝑑𝐵 = 3.5 nm; 445 

2∆𝑄𝑊= −72.5 meV; 2∆𝐵= +150 meV and 𝑣∥ = 𝑣𝑧 = 4.40 x 10
5 m/s. Some Landau level indexes 𝑛 are written at 446 

the right. 447 

 448 
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