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Skew scattering — an asymmetric scattering of electrons by impurities — is one of the major
mechanisms causing anomalous/spin Hall effects. While many microscopic mechanisms for skew
scattering are known, the Hall angle of anomalous Hall effect by these mechanisms is often small,
typically θ = 0.1◦ − 1◦. In this work, we study the skew scattering by three-spin clusters focusing
on the strong Kondo coupling regime. Using a T -matrix formalism, we calculate the scattering
probability for arbitrary strength of Kondo coupling, going beyond perturbation theory in previous
studies. From a systematic analysis of the scattering probability for one-, two-, and three-spin
clusters, we show that three spins are necessary for the skew scattering in the absence of spin-orbit
interaction. The skew scattering by three-spin cluster produces a skew angle of order 0.1π rad (∼
18◦) when the electron-spin coupling is comparable to the bandwidth. We also study the relationship
between anomalous/spin Hall effects and the spin chiralities, and argue that the anomalous-(spin-
)Hall skew angle is approximately proportional to the scalar (net vector) spin chirality even for
the strong coupling cases. This mechanism is potentially relevant to anomalous/spin Hall effects in
noncentrosymmetric and frustrated magnets.

I. INTRODUCTION

Anomalous and spin Hall effects reflect rich physics re-
lated to the quantum nature of electrons such as Berry
phase and electron scattering by impurities [1–3]. Tra-
ditionally, the microscopic mechanisms of the Hall ef-
fects are classified into two groups: intrinsic and extrinsic
mechanisms. The intrinsic mechanism of the anomalous
Hall effect (AHE) [4] is related to the Berry curvature of
electronic bands [5]. Later it was realized that the same
mechanism also produces spin Hall effect (SHE) [6, 7].
More recently, it was pointed out that the scalar spin
chirality of ordered localized spins also contributes to the
AHE [8–10]. This mechanism is thought to be respon-
sible for the intrinsic AHE in ordered phases of mag-
nets with non-coplanar magnetic order, such as in py-
rochlore [11] and kagome [12] magnets, and in chiral mag-
nets [13, 14]. On the other hand, the extrinsic mecha-
nisms of AHE are related to impurity scattering. Several
mechanisms are known for single non-magnetic [15, 16]
or magnetic [17–19] impurities; they also contribute to
the SHE [20, 21]. While a variety of mechanisms are
known, in three-dimensional materials, the Hall angle

of anomalous Hall conductivity σ
(AHE)
xy is usually small

compared to the longitudinal conductivity σxx. Typi-

cally σ
(AHE)
xy /σxx = 10−3 − 10−2 regardless of the mech-

anism [23].
In extrinsic mechanisms, the small Hall angle is re-

lated to the spin-orbit interaction necessary for all ex-
trinsic mechanisms by a single impurity. An example is
skew scattering in ferromagnets, in which the electrons
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are scattered asymmetrically by the spin-orbit interac-
tion of an impurity. This effect, however, is often a weak
perturbation compared with the energy scale of the hy-
bridization between the resonance state and the conduc-
tion electrons. Hence, limiting the skew angle.

In contrast, such limitation does not apply to the skew
scattering by multiple spins [8, 9, 24], which occurs with-
out spin-orbit interaction. With small Kondo coupling,
the AHE is directly related to the scalar spin chirality of
impurity spins [24],

Si · (Sj × Sk); (1)

here, Si,j,k are three spins adjacent to each other. Later,
it was shown that this AHE, in good metals, originates
from a skew scattering by three-spin clusters [25, 26].
In addition, a mechanism related to the vector spin
chirality also contributes to the AHE [27–30]. This
mechanism may produce a large skew angle because the
strong coupling between electrons and spins is often re-
alized in transition-metal materials, e.g., in Mn com-
pounds [35, 42]. However, most theoretical studies so
far focus on the weak-coupling limit, except for a few
numerical works [28, 31–33].

In this work, we study the skew scattering by multi-
ple spins described by Anderson impurities using a T -
matrix method [Fig. 1(a)]. This method allows calcula-
tion beyond the weak-coupling limit studied in related
works [24, 30]. Using this method, we find that the skew
angle reaches the order of 0.1π rad when the electron-spin
coupling is comparable to the bandwidth; this skew angle
is 10-100 times larger than the typical skew angle. We
also argue that the skew angles for AHE/SHE behave
similarly to the spin chiralities, and hence, the chirali-
ties function as an indicator for AHE/SHE at arbitrary
Kondo coupling [24, 30]. On the experimental side, the
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FIG. 1. Schematic figure of a three-spin cluster and skew
scattering. (a) Schematic figure of the electron scattering by
a three-spin cluster. The blue arrows show the incoming (k′)
and outgoing (k) electrons and the orange curve surrounding
the spin cluster is the scattering rate Wkk′ for the outgoing
electrons for k′; we abbreviate the spin indices of the elec-
trons. The skew scattering makes the scattering rate asym-
metric with respect to the incident direction shown by the
dashed line. θ in (a) is the canting angle of the three spins.
(b) and (c) are respectively the top view of the three-spin
cluster canted outward (b) and inward (c). See the main text
for details. (d) Schematic figure of the scaling relation of
anomalous Hall effect.

large skew angle may modify the scaling plot of AHE;
a large skew-scattering AHE extends the skew-scattering
region to lower conductivity. In the extreme case, the
skew-scattering region completely mask the intrinsic re-
gion as shown by the red line when the Hall angle reaches
0.1π rad. We also discuss that the spin cluster scattering
produces a large spin Hall angle, which is related to the
net vector spin chirality of three pairs of spins consisting
the cluster. The T -matrix analysis implies that the mag-
netic scattering in the strong-coupling region can produce
a large AHE/SHE by skew scattering which are approx-
imately proportional to scalar/vector spin chiralities.

II. MODEL AND METHOD

We study the T matrix of a triangular lattice model
with three impurity sites subject to the Zeeman field.

The Hamiltonian is

H =Hf +Hc +Hfc +Hcf , (2a)

Hf =− J
∑

i=0,1,2

Si · f†i σfi, (2b)

Hc =
∑
k

εkc
†
kck, (2c)

Hfc =− V√
N

∑
i=0,1,2
k,σ

γik f
†
iσckσ, (2d)

Hcf =− V√
N

∑
i=0,1,2
k,σ

γ∗ik c
†
kσfiσ, (2e)

where ckσ and fiσ (c†kσ and f†iσ) are respectively the an-
nihilation (creation) operator of itinerant and localized
electrons, ~σ ≡ (σx, σy, σz) is the vector of Pauli matrices
σa (a = x, y, z), ck = (ck↑, ck↓) [fi = (fi↑, fi↓)] is the
spinor for itinerant (localized) electrons,

εk =− 2t

[
cos(kx) + 2 cos

(
kx
2

)
cos

(√
3ky
2

)]
− µ,

∼− (6t+ µ) +
3

2
tk2, (3)

is the eigenenergy of itinerant electrons on the triangular
lattice with momentum k, k ≡ |k|, γik ≡ eik·ri , J > 0 is
the Zeeman splitting of the localized electron, V is the
hybridization of itinerant (c) and localized (f) electrons,

ri is the position of ith spin, and ~Si is a unit vector par-
allel to the localized spin on site i. Here, we assumed
the site distance a = 1. The eigenenergy of electrons
are approximated by a quadratic dispersion. This model
corresponds to a mean-field theory for the Anderson im-
purity model, where the onsite interaction between the
localized electrons are treated by Hartree-Fock approx-
imation. Note that there is no spin-orbit interaction in
Eq. (2a).

We calculate the scattering rate using a T -matrix
method. The details of derivation are in the Appendix.
We here summarize the main results we use in the rest
of this paper. The T matrix for the spin cluster above
reads

Tkσ,k′σ′ =
V 2

N

∑
i,j

γ∗ikγjk′

[
1

ε+ iδ + J
∑
l Sl · σl − Σ(ε)

]
iσ,jσ′

,

(4)

where Σ(ε) is the self-energy whose elements are

Σiσ,jσ′(ε) =
V 2

4π2
δσσ′

∫
dk

γikγ
∗
jk

ε+ iδ − εk
. (5)

Using the T matrix, the scattering rate from a state with
k′ and spin σ′ to that with k and σ reads,

W~kσ,~k′σ′ = 2πW~kσ,~k′σ′δ(ε~kσ − ε~k′σ′), (6)
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where W~kσ,~k′σ′ ≡ |T~kσ,~k′σ′ |2. We study the skew scattering by spin clusters using the
average of Wkσ,k′σ′ over the incident electron directions,
defined by

W̄σ,σ′(δφ) ≡
∫
dφ′

2π
Wkσ,k′σ′ ,

=
V 4

N2

∑
i,j,m,n

[
1

J
∑
l Sl · σl − Σ(ε)

]
iσ,jσ′

[
1

J
∑
l Sl · σl − Σ(ε)

]∗
mσ,nσ′

× J0

(
k
√
r2
jn + r2

im − 2rim · rjn cos(δφ) + 2(rim × rjn)z sin(δφ)
)
, (7)

where rij ≡ ri − rj , φ′ ≡ atan(k′y/k
′
x) is the angle of

incident electron, δφ is the difference of angles between
the momentum of incoming and outgoing electrons, ~σl ≡
(σxl , σ

y
l , σ

z
l ) is a vector of matrix σal ≡ Ell ⊗ σa (a =

x, y, z and Eij is the matrix unit), and J0(x) is the n = 0

first Bessel function, J0(x) =
∑∞
n=0

(−1)n

(n!)2

(
x
2

)2n
. Using

Eq. (7), the averaged scattering rate reads

W̄σ,σ′(δφ) = 2πW̄σ,σ′(δφ)δ(ε~kσ − ε~k′σ′). (8)

We first look at skew scattering in one- and two-
impurity cases. In the case of one impurity, r11 = 0.
Hence, no asymmetry in W̄kσ,k′σ′ . To consider the two-
impurity case, suppose the impurities are placed with a
distance r; rij = 0 if i = j and rij = r otherwise. The
cross product in Eq. (7) vanishes in this case, becoming

W̄~kσ,~k′σ′ =
V 4

N2

∑
i,j,m,n

[
1

J
∑
l
~Sl · ~σl − Σ(ε)

]
iσ,jσ′

[
1

J
∑
l
~Sl · ~σl − Σ(ε)

]∗
mσ,nσ′

J0

(
k
√
r2
jn + r2

im − 2~rim · ~rjn cos(δφ)
)
(9)

Therefore, W̄kσ,k′σ′ = W̄ ′σ,σ′(δφ) is always symmetric
with respect to δφ. Hence, we need at least three spins
for skew scattering.

III. LARGE SKEW SCATTERING BY
THREE-SPIN CLUSTER

Previous studies find a three-spin cluster causes skew
scattering [25, 26] and AHE [24–26]. These works use a
perturbation expansion with respect to the Kondo cou-
pling, which is valid when the Kondo coupling is small
compared to the Fermi energy. In contrast, we here
study the behavior of electron scattering using a formal-
ism valid for arbitrary strength of electron-spin coupling.

For concreteness, we consider a three-spin cluster con-
sisting of three nearest-neighbor sites on the triangular
lattice. The scattering rate for an umbrella configura-
tion with the canting angle θ = π/4 [Fig. 1(a)] is shown
in Fig. 2(a). The result is asymmetric with respect to δφ,
indicating skew scattering. As a measure of skewness, we

calculate the skew angle defined by

δφ̄σ =

∫ π

−π

d(δφ)

Ωσ
δφW̄σ,σ(δφ), (10)

where Ωσ =
∫ π
−π d(δφ) W̄σ,σ(δφ). Figures 2(b) and 2(c)

shows the Fermi wavenumber kF dependence of δφ̄σ for
J = V cases. The results for δφ̄↑ and δφ̄↓ looks alike
when the coupling is weak (J/t = V/t = 1), i.e., the
sign of δφ̄σ is negative and the minimum is at around
kF ∼ 1.5. This behavior is approximately consistent with
the perturbation theory in Ref. [26], in which W̄↑,↑(δφ) =
W̄↓,↓(δφ). On the other hand, δφ̄↑ and δφ̄↓ behaves dif-
ferently for large J/t, V/t. For instance, the sign of δφ̄↑
is positive and δφ̄↓ is negative when J/t = V/t = 10,
resembling the fictitious magnetic-field argument in the
double-exchange limit [8, 9].

The average skew angle reaches δφ̄σ = O(0.1π) in be-
tween the weak and strong coupling limits, such as in
J/t, V/t & 5. This is 10-100 times larger than the typ-
ical skew angle δφ̄σ ∼ 10−3π − 10−2π rad [1]. Such a
large skew angle appears for a wide range of canting an-
gle π/5 ≤ θ ≤ 4π/5 as in Fig. 3, demonstrating that
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FIG. 2. Scattering rate and skew angle for three-spin cluster.
(a) δφ dependence of W̄↑,↑(δφ) and W̄↓,↓(δφ) for J = V = 6,
kF = 1, and θ = π/4. (b,c) kF dependence of (b) δφ̄↑ and (c)
δφ̄↓ for θ = π/4. Different curves are for different J and V .
The unit of kF is the inverse of the bond length a, and the
cutoff is Λ = π.

a large skew angle appears generally with strong Kondo
coupling.

To connect the skew angle to AHE, we look at the
spin-configuration dependence of the average of δφ̄↑,↓,
δφ̄+ ≡ (δφ̄↑ + δφ̄↓)/2. The result is shown in Fig. 4(a),
where θ and ϕ correpond to the angles in Figs. 4(c)
and 4(d). The contour plot resembles scalar spin chirality
in Fig. 4(b); they are both antisymmetric about θ = 1/2
and ϕ = π lines, and the maximum in each quadrant is
approximately at the same point. The resemblance im-
plies a close relation between scalar spin chirality and
AHE even for a large J/t, V/t.

We next turn to the magnitude of |δφ̄σ|, which shows
maximum at kF ∼ 1. The position of the maximum
resembles magnon scattering by skyrmions, in which the
maximum is at a wavenumber comparable to the inverse
of the skyrmion diameter [36]. Reference [36] also points
out that a theory for electron scattering by Aharonov-
Bohm flux [37–39] reproduces the numerical simulation of
magnon scattering. Our model shares a similar aspect to
the magnon scattering problem; the coupling of electrons
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FIG. 3. Canting dependence of the skew angle. kF depen-
dence of (a) δφ̄↑ and (b) δφ̄↓ for different canting angles θ with
J/t = V/t = 5. The transverse axis is the Fermi wavenumber
kF .

to localized moments reduces to a fictitious magnetic field
in the strong Kondo-coupling limit [8, 9]. Hence, the peak
at kF ∼ 1 is likely to be related to the spin cluster size.

In the last, we discuss the impact of the large skew
angle on the scaling plot. Figure 1(d) is the schematic
figure of the scaling plot of the anomalous Hall effect.
In ferromagnets, the Hall conductivity shows three dis-
tinct behaviors depending on the longitudinal conductiv-
ity [22, 23]. The conventional skew scattering is seen only
in the clean limit with conductivity σxx & 105Ω−1cm−1

[the right region in Fig. 1(d)], while intrinsic Hall ef-
fect is dominant for 103 . σxx . 105Ω−1cm−1. This
crossover is a consequence of two different scaling be-
haviors. When the skew scattering is dominant, σxy
obeys the skew-scattering scaling relation σxy ∝ (σxx)1,
while the scaling becomes σxy = (σxx)0 when the in-
trinsic one is dominant. This crossover often takes place
at σxx ∼ 105Ω−1cm−1 [22, 23] because σxy for intrinsic
AHE is σxy ∼ 103Ω−1cm−1 while the Hall angle for skew
scattering is σxy/σxx = 0.01 − 0.001. For a large skew-
scattering Hall effect, the skew-scattering region extends
to the lower σxx owing to a larger Hall angle [40]. As the
intrinsic region spans between 103 . σxx . 105Ω−1cm−1,
the skew scattering may completely mask the intrinsic
region if the magnitude increases more than an order of
magnitude [Fig. 1(d)].

IV. SPIN-HALL EFFECT BY SPIN-CLUSTER
SCATTERING
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FIG. 4. Spin configuration dependence of the average skew
angle δφ̄+. (a) Contour plot of δφ̄+/π calculated using Eq. (7)
and (b) the net scalar spin chirality with ϕ2 = π/2. (a) is the
result for J/t = V/t = 6, kF = 1/2, and θ = π/4. θ is the
canting angle as shown in (c). (d) shows the top view of (c);
ϕ is the rotation of the in-plane component from the y axis.

We next discuss staggered skew angle defined by δφ̄− ≡
(δφ̄↑ − δφ̄↓)/2 which relates to SHE. Figure 5(a) is the
contour plot of δφ̄− when the three spins lie in the xy
plane. The result resembles that of the net vector spin
chirality of three spins,

χv =z · (S1 × S2 + S2 × S3 + S3 × S1) ,

= sin(ϕ2 − ϕ1) + sin(ϕ3 − ϕ2) + sin(ϕ1 − ϕ3), (11)

where z is the unit vector along the z axis [Fig. 5(b)].
While the result implies a relation between δφ̄− and χv,
we note that a sum of two-spin scattering cannot produce
a finite δφ̄−, as we discussed at the end of Sec. II. Hence,
we cannot simply attribute the skew scattering to the
sum of two-spin scattering proportional to the vector spin
chirality.

To gain more insight into the relation between δφ̄− and
spin chirality, we rewrite

1

J
∑
l
~Sl · ~σl − Σ(ε)

=

∞∑
n=0

(−GzHf )
n
Gz, (12)

which is an expansion valid in the V/t, J/t � 1 limit.
When Szi = 0, the leading order in asymmetric scattering
rate W̄−~k,~k′ = (W̄~k↑,~k′↑−W̄~k↓,~k′↓)/2 appears from the n =

3 term (∝ J3),

W̄−~k,~k′ ∼
2V 4

N2

∑
i,m,n

Im [ΣiiΣ
∗
mn] (Sm × Sn)zJ0

(
k
√
r2
im + r2

in − 2rim · rin cos(δφ) + 2(rim × rin)z sin(δφ)

)
. (13)

Here, we used Si ·Si = 1. This term corresponds to the eighth order in V , in which the electrons are scattered twice by
Si and once by Sj and Sk. Hence, the skew scattering requires at least three spins while the skew angle is proportional
to the net vector spin chirality, similar to a mechanism involving both spins and nonmagnetic impurity [30].

For the three spin cluster with Σ11 = Σ22 = Σ33 = Σd and Σ12 = Σ23 = Σ31 = Σod, the above formula becomes

W̄−~k,~k′ ∼
2V 4

N2
Im [ΣdΣ

∗
od]
∑
m,n

(Sm × Sn)z
∑
i

J0

(
k
√
r2
im + r2

in − 2rim · rin cos(δφ) + 2(rim × rin)z sin(δφ)

)
, (14)

with the sum over i being independent of m and n. This
equation supports the observation in Fig. 5, which relates
δφ̄− to vector spin chirality.

V. SPIN-CLUSTER SCATTERING AND SPIN
CHIRALITY

To make the observation about skew angles and spin
chirality more rigorous, we next look at how the scat-
tering rate W̄σ,σ′(δφ) changes by changing the canting

angle and permuting spins. In particular, we look at how
W̄σ,σ′(δφ) transforms under the following three cases:

1. W̄σ,σ′(δφ)|θ = W̄σ,σ′(δφ)|−θ. — Here, W̄σ,σ′(δφ)|θ is
the scattering rate for a three spin cluster with canting
angle θ; the spins cant outward when θ > 0 [Fig. 1(b)]
and inward when θ < 0 [Fig. 1(c)]. We can show this
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FIG. 6. The relation of the sign of average (δφ̄+) and stag-
gered (δφ̄−) to the spin configuration. (a-d) Examples of spin
configurations we consider: The clockwise (a,b) or counter-
clockwise (c,d) orientation and the canting angle θ (a,c) or
π − θ (b,d). The sign of δφ̄± for each configuration is sum-
marized in the bottom table. The upper sign in each block is
for δφ̄+ and the lower one is for δφ̄−. The alphabet in each
cell shows corresponding spin configuration in (a-d).

property by rewriting Eq. (7) using an expansion,

1

J
∑
l
~Sl · ~σl − Σ(ε)

=

∞∑
n=0

(GzH
′)

2n
Gz −

∞∑
n=0

(GzH
′)

2n
GzH

′Gz, (15)

where Gz = [J
∑
l S

z
l σ

z
l − Σ(0)]−1 and H ′ =

∑
l S

x
l σ

x
l +

Syl σ
y
l . The first term of this equation is diagonal in the

spin index, while the diagonal elements in the second
term are zero. Substituting this formula into Eq. (7), we
find

W̄~kσ,~k′σ′ =
V 4

N2

∑
i,j,m,n

[
(GzH

′)
2n
Gz

]
iσ,jσ′

[
(GzH

′)
2n
Gz

]∗
mσ,nσ′

× J0

(
k
√
r2
jn + r2

im − 2~rim · ~rjn cos(δφ) + 2(~rim × ~rjn)z sin(δφ)
)
, (16a)

for σ = σ′ and

W̄~kσ,~k′σ′ =
V 4

N2

∑
i,j,m,n

[ ∞∑
n=0

(GzH
′)

2n
GzH

′Gz

]
iσ,jσ′

[ ∞∑
n=0

(GzH
′)

2n
GzH

′Gz

]∗
mσ,nσ′

× J0

(
k
√
r2
jn + r2

im − 2~rim · ~rjn cos(δφ) + 2(~rim × ~rjn)z sin(δφ)
)
, (16b)

for σ 6= σ′. As Gz → Gz and H ′ → −H ′ under the transformation θ → −θ, the scattering rate transforms
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W̄σ,σ′(δφ) → W̄σ,σ′(δφ). This property holds for both
scalar and vector spin chiralities.

2. W̄σ,σ′(δφ)|c = W̄σ,σ′(−δφ)|cc. — Here, W̄σ,σ′(δφ)|c
and W̄σ,σ′(−δφ)|cc are respectively the scattering rate
for clockwise and counter-clockwise configurations. For-
mally, the clockwise to counter-clockwise transformation
is equivalent to permuting two sites, e.g., r1 ↔ r3. We

define the switched positions by r′l:

r1 = r′3, r2 = r′2, r3 = r′1. (17)

To make the argument concrete, we set r1 = (−1/2, 0),

r2 = (0,
√

3/2), and r3 = (1/2, 0). In this notation,
ri → r′i is equivalent to the mirror operation about x
axis: x→ −x and y → y. Therefore, rij ·rnm = r′ij ·r′nm,
rij × rnm = −r′ij × r′nm. Therefore, the scattering rate
after the transformation reads

W̄ ′σ,σ′(δφ) =
V 4

N2

∑
i,j,m,n

[
1

J
∑
l Sl · σl − Σ(ε)

]
iσ,jσ′

[
1

J
∑
l Sl · σl − Σ(ε)

]∗
mσ,nσ′

× J0

(
k
√
r2
jn + r2

im − 2rim · rjn cos(−δφ) + 2(rim × rjn)z sin(−δφ)
)
, (18)

=W̄σ,σ′(−δφ).

This transformation changes the sign of scalar and vec-
tor spin chiralities. In the view of δφ̄±, this property
changes the sign of δφ̄+ and δφ̄− by transforming the
counter-clockwise configuration to clockwise configura-
tion [see the table in Fig. 6].
3. W̄σ,σ′(δφ)|θ = W̄σ̄,σ̄′(−δφ)|π−θ. — Here, σ̄ =↓, ↑ for
σ =↑, ↓. We can show this from the π rotation about the
incident momentum k′ [Fig. 1(b)]. Suppose k′ is parallel
to the solid line in Fig. 1(b). Then, the π rotation about
this axis and ϕR rotation about the axis perpendicular
to the plane transforms the spin cluster with θ to that
with π − θ. As the π rotation changes δφ → −δφ, we
find W̄σ,σ′(δφ)|θ = W̄σ̄,σ̄′(−δφ)|π−θ.This transformation
changes scalar spin chirality but not vector spin chirality.
Regarding δφ̄±, the above transformation changes the
sign of δφ̄+ while it leaves δφ̄− invariant [see the table in
Fig. 6].

The sign of δφ̄± is summarized in the table on Fig. 6.
From the table, we see that δφ̄+ has the same property as
scalar spin chirality while δφ̄− follows that of the vector
spin chirality. The same symmetry properties between
chirality and δφ̄± support using the chiralities as an in-
dicator for the anomalous Hall effect, even with a strong
Kondo coupling.

VI. DISCUSSIONS

To summarize, in this work, we studied the skew scat-
tering of electrons by three-spin clusters using a T -matrix
method, going beyond the perturbation limit studied in
[24, 30]. Using an Anderson impurity model and the
Green-function method, we calculated the scattering rate
of the spin clusters for the arbitrary strength of Kondo
coupling. We find that the spin cluster causes a skew
scattering with a large skew angle, reaching the order of

0.1π rad. This skew angle is 10-100 times larger than
other skew scattering mechanisms. Hence, it potentially
produces large anomalous and spin Hall effects related
to the local spin correlation. The T -matrix formula for
scattering rate also shows that the skew angle for AHE
and SHE has the same symmetry properties as scalar and
vector spin chiralities, respectively. Hence, the chiralities
function as an indicator for the Hall effects, even for a
large Kondo coupling.

We note that a Kondo resonance mechanism can also
produce a large spin Hall angle [52–54]. This phe-
nomenon, however, is unique to SHE in paramagnetic
metals because both magnetism and magnetic field sup-
press Kondo resonance. Therefore, large AHE/SHE in
magnetically-ordered phases or under magnetic field is
unlikely by the Kondo resonance.

Experimentally, magnetic materials with strong Kondo
coupling are known in transition-metal compounds. For
example, the double-exchange limit of the Kondo lattice
model is considered as the effective model for manganese
oxides [8, 35, 42] and chiral magnets forming magnetic
skyrmions [43]. In the latter, small-radius skyrmions are
expected to appear as the low-energy excitations in the
field-induced ferromagnetic state above a skyrmion crys-
tal phase. The canting angle between the neighboring
spins at the skyrmion becomes large due to small radius.
We also note that a recent experiment on MgZnO/ZnO
interface finds a large AHE with Hall angle > 0.1π
rad and skew-scattering-like scaling [41]. Defects spins
are the likely origin of ferromagnetism in ZnO [44–46],
which may form a canted spin state due to the inter-
facial Dzyaloshinskii-Moriya interaction. In a different
experiment, a large spin Hall effect was reported in Pd-
and Au-based metallic spin glasses [47]. Exchange in-
teractions between the spins are often mediated by long-
range Ruderman-Kittel-Kasuya-Yosida (RKKY) interac-
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tion [48–50] with the length scale 1/kF . As RKKY in-
teraction often forms a structure with a typical length
of 1/kF , skew scattering might be enhanced in metallic
spin glasses. These materials are potential candidates
for studying skew scattering in magnetic materials with
strong Kondo coupling.

Note: Soon after releasing a preprint of this
manuscript, two experimental papers claiming the ob-
servation of large Hall angle by spin-cluster scattering [].

Appendix A: T matrix of the magnetic-impurity
model

We here review a Green’s function formula for calcu-
lating T matrix, which is convenient for our study. A
similar technique was used to study Anderson impurity
models [51]. The formula applies to a general system
with two subspaces A and B; the size of the Hilbert
spaces are NA and NB for A and B, respectively. For
the sake of convenience, we note the NA × NA matrix
Green function for A subspace as GA and that for B as
GB ; the NA × NB matrix corresponding to the inter-
subspace Green function elements of A and B is GAB
and the other inter-subspace elements is GBA.

We calculate the T matrix from the Green function.
The Dyson equation for Green function reads

(ε± iδ −HA)G±A −H
′
ABG

±
BA =1, (A1)

(ε± iδ −HB)G±B −H
′
BAG

±
AB =1, (A2)

(ε± iδ −HA)G±AB −H
′
ABG

±
B =0, (A3)

(ε± iδ −HB)G±BA −H
′
BAG

±
A =0. (A4)

Here, HA and HB are the Hamiltonian matrix within
each subspace and H ′AB and H ′BA are the Hamiltonian
elements that connects A and B subspaces. The last
equation implies G±BA = G0±

B H ′BAG
±
A, where G0±

B =
1/(ε ± iδ − HB), is the Green function for the decou-
pled B subspace (when H ′AB = H ′BA = 0). Substituting
this result to Eq. (A1), GA reads

G±A =
1

(G0±
A )−1 −H ′ABG

0±
B H ′BA

, (A5)

and hence

G±BA =G0±
B H ′BA

1

(G0±
A )−1 −H ′ABG

0±
B H ′BA

. (A6)

Similarly, we find

G±B =
1

(G0±
B )−1 −H ′BAG

0±
A H ′AB

, (A7)

and

G±AB =G0±
A H ′AB

1

(G0±
B )−1 −H ′BAG

0±
A H ′AB

. (A8)

Using the general property of adjoint matrices, (A†)−1 =
(A−1)†, G±AB reads

G±AB =
1

(G0±
A )−1 −H ′ABG

0±
B H ′BA

H ′ABG
0±
B , (A9)

and

G±B =G0±
B +G0±

B H ′BA
1

(G0±
A )−1 −H ′ABG

0±
B H ′BA

H ′ABG
0±
B .

(A10)

Here, we defined the decoupled Green function for A
(G0

A) in a similar manner to G0
B . The comparison of

Eq. (A10) to the T matrix representation, GB = G0
B +

G0
BTG

0
B , implies

T =H ′BA
1

(G0±
A )−1 −H ′ABG

0±
B H ′BA

H ′AB . (A11)

This is the general formula for the T matrix ofB subspace
treating A as the scatterer.
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