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Although most quantum systems thermalize locally on short time scales independent of initial conditions,
recent developments have shown this is not always the case. Lattice geometry and quantum mechanics can
conspire to produce constrained quantum dynamics and associated glassy behavior, a phenomenon that falls
outside the rubric of the eigenstate thermalization hypothesis. Constraints “fragment” the many-body Hilbert
space due to which some states remain insulated from others and the system fails to attain thermal equilibrium.
Such fragmentation is a hallmark of geometrically frustrated magnets with low-energy “ice-like manifolds”
exhibiting a broad range of relaxation times for different initial states. Focusing on the highly frustrated kagome
lattice, we demonstrate these phenomena in the Balents-Fisher-Girvin Hamiltonian (easy-axis regime), and a
three-coloring model (easy-plane regime), both with constrained Hilbert spaces. We study their level statistics
and relaxation dynamics to develop a coherent picture of fragmentation in various limits of the XXZ model on
the kagome lattice.

I. INTRODUCTION

The far-from-equilibrium dynamics of interacting systems
away from zero temperature shows a variety of novel phe-
nomena. A large class of quantum systems thermalize: They
lose memory of initial conditions and explore all corners of
the many-body Hilbert space [1]. Such behavior is within
the realm of the eigenstate thermalization hypothesis (ETH)
[2–4]. On the other hand, many-body localization provides
a framework for breaking ergodicity where a disordered in-
teracting system retains local memory of its initial conditions
[5–9]. This has germinated ideas for circumventing quantum
thermalization by fragmenting the many-body Hilbert space
even in the absence of disorder, forming quantum scars [10–
24]. The fragmented parts fail to connect through the Hamil-
tonian despite being symmetry-allowed, leading to slow ther-
malization and glassiness [25–31].

In recent works, quantum scars were shown to exist in a
large class of frustrated spin models [32–35], raising the pos-
sibility of the existence of a rich variety of nonequilibrium
phenomena in several magnetic systems. Frustration in many-
body systems has a long history of producing novel phases of
matter whose experimental search is still ongoing. The dy-
namics of excitations of frustrated systems are shown to ex-
hibit glassiness [36–41], fractionalization and anyonic statis-
tics [42, 43], and associated spin liquidity [44–52]. These
phenomena are generally understood in regimes either close
to the ground state or thermal equilibrium. In this work, we
shed light on situations where the system fails to explore large
sections of the Hilbert space. The tunneling between discon-
nected regions in Hilbert space is either entirely absent or ex-
tremely weak, which gives rise to a wide range of time scales,
a hallmark of glassiness. This form of energy-dependent hi-
erarchy of eigenstates in frustrated systems is unraveled with
energy level statistics and by mapping out connectivity and
formation of “fragments” in the many-body Hilbert space.

We consider a class of frustrated Hamiltonians where con-
servation laws emerge at low energies from local constraints,
which we broadly refer to as “ice rules” throughout this pa-

per, in analogy with spin ice systems [53]. An exponentially
large number of classical states satisfy these rules; quantum
mechanical perturbation introduces matrix elements between
these states. Since the Hamiltonian includes only local few-
body operators, not every ice state is directly connected to ev-
ery other ice state. What is less obvious is that the many-body
Hilbert space of ice states neatly organizes itself into isolated
fragments, a set of interconnected states with no connections
to other states. This is a pure consequence of the effective low
energy behavior of the Hamiltonian, which in turn emerges
from the frustration of the lattice.

Our focus is on two different regimes of the XXZ model on
the kagome lattice (addressed in a variety of contexts [54–61]
previously from the point of view of understanding its ground
state): its Ising and XY regimes characterized by macroscopi-
cally degenerate ice manifolds at low energy. (An exponential
number of quasidegenerate singlets have also been reported in
the Heisenberg regime [62–64].) The Hamiltonian is

HXXZ =
∑
(i,j)

J⊥ij (Sxi S
x
j + Syi S

y
j ) + JzijS

z
i S

z
j , (1)

where Sµi for µ = x, y, z are spin-1/2 operators on site i, and
J⊥ij , Jzij are respectively the strengths of the XY and Ising in-
teractions on a pair of sites (i, j). While the XXZ model har-
bors both ice and non-ice states, we also consider its versions
projected to the ice manifold. Among the rich diversity of
possible models, we study (1) the easy-axis first, second, and
third nearest neighbor XXZ model and its projected version,
introduced by Balents, Fisher, and Girvin (BFG) [54], where
a “three-up, three-down” ice-like rule on every hexagonal mo-
tif emerges, (2) the easy-plane nearest-neighbor XXZ Hamil-
tonian, with exact three-coloring ground states at Jzij/J

⊥
ij =

−1/2 [60, 61], and (3) a projected three-coloring model [65]
with exponentially many three-coloring states that satisfy the
rule of “one red, one blue, and one green” on every triangular
motif. These limiting cases of the XXZ model provide anchor
points for the general phenomenology of scars and glassy dy-
namics of spin-1/2 models on the kagome lattice.
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FIG. 1. Structure of Balents-Fisher-Girvin Hamiltonian.
(a) Balents-Fisher-Girvin Hamiltonian HBFG contains first, second,
and third nearest neighbor XXZ interactions, and the ice Hamilto-
nian H./ in Eq. 2 acts on bowtie motifs. The filled and empty cir-
cles respectively represent up and down spins in an example ice con-
figuration (three ups and three downs for every hexagonal plaque-
tte). (b) Connectivity graph of H./ on the ice manifold of a 12-site
lattice. A vertex represents an ice configuration, a basis state for
the ice manifold, and an edge represents a nonzero matrix element
of the Hamiltonian between two basis states. The three large con-
nected components each form a topological sector, and the 16 iso-
lated ice configurations are the 2×2 “triangular pinwheel” configura-
tions (shown in panel (e)) related by lattice symmetry. (c), (d) Exam-
ple ice configurations on the 12-site lattice from topological sectors
(w1, w2) = (1, 1) and (1,−1) respectively. wi are the spin parities
along the two lattice directions marked by the green dashed lines in
(c). (e) 2× 2 triangular pinwheel-ordered state.

II. RESULTS

A. Balents-Fisher-Girvin Model

Consider the easy-axis limit |J⊥ij | � Jzij of Eq. (1)
whose sum is taken over first, second, and third nearest-
neighbor pairs with equal strengths, as was considered by
BFG: HBFG = HXXZ[J1 = J2 = J3] [Fig. 1(a)]. With
this choice of coupling, the Ising term in the Hamiltonian be-

comesHIsing ∝
∑

7
(∑

i S
z
i,7
)2

where the outer sum is over
hexagonal motifs (denoted by 7) and the inner sum is over
the six sites of a given hexagon (denoted by i,7). The low-
est energy manifold defined by the Ising interaction consists
of states with three up spins and three down spins on every
hexagonal plaquette: These states define the ice manifold of
this Hamiltonian.

The remaining XY interaction can be treated perturbatively,
and contributes the following leading order term in the effec-
tive Hamiltonian of the ice manifold:

H./ =
∑
i

J./i S
+
i1
S−i2S

+
i3
S−i4 + H.c., (2)
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FIG. 2. Level statistics of the BFG Hamiltonian. (a) Level statis-
tics of disordered ice Hamiltonian for a 30-site lattice, where J./i
is site-dependent, and chosen from a normal distribution centered at
zero (J./i ∼ N (0, 1)). There are 16568 configurations in the ice
manifold, partitioned into four topological sectors of the same size.
The teal (labeled “ice-all”) and pink (labeled “ice-(1,1)”) histograms
respectively represent the probability density functions P (r̃) of the
whole ice manifold and the topological sector (w1, w2) = (1, 1),
both within the spin-flip-even sector. (b) Density of states of dis-
ordered BFG Hamiltonian for an 18-site lattice, where the XY in-
teraction is bond-dependent and chosen from a uniform box dis-
tribution J⊥

ij ∼ U(−J⊥, J⊥), while the Ising interaction is uni-
formly fixed to be Jzij = 1. The inset shows the “ice gap” ∆ice ≡
minENice+1 − maxENice

(averaged over disorder configurations)
as a function of J , which closes at J⊥ = J⊥

c ≈ 0.17 (see Ap-
pendix C Fig. 9). (c), (d) Low energy level statistics of disordered
BFG HamiltonianHBFG with nearest-neighbor XY interaction only,
for a 24-site lattice in the spin-flip-even symmetry sector. J⊥ = (c)
0.01, (d) 0.2.

where the sum is over every site i. in for n = 1, 2, 3, 4 re-
fer to the four sites of the bowtie motif centered at site i, in
clockwise order [shown in Fig. 1(a)].

The Hamiltonian H./ connects different ice configurations
through tunneling. The graph of the connection in Fig. 1(b)
shows multiple connected components, revealing the frag-
mented structure of the ice manifold. Comparing ice con-
figurations from different components [examples shown in
Figs. 1(c) and (d)], we can identify each component as a topo-
logical sector characterized by the spin parities wi = ±1
along the two lattice directions [66]. For large system sizes,
there are four distinct topological sectors; only three of them
are allowed for the 12-site lattice due to its small size. (We ex-
plicitly show this is the case for a larger lattice in Appendix B.)

In addition to the large connected components, which we
associate with fragmentation, we find that there are 16 isolated
states that are not part of big fragments in Fig. 1(b). These are
chiral ordered states with 2×2 periodicity, shown in Fig. 1(e),
which we dub pinwheel states. The 16 states are related to
each other through lattice symmetry and spin-flip operations.
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A bowtie term in H./ consists of two S+ and two S−. Since
all bowtie motifs in a pinwheel configuration have either three
ups and one down, or vice versa, the state vanishes under any
bowtie term, and is thus an exact eigenstate of H./ with 0
eigenvalue, which lies in the middle of the “ice” spectrum,
akin to quantum scars [10–24]. With the parent XXZ Hamil-
tonian in the limit |J⊥| � Jz , these states are approximate
eigenstates, and thus evolve with time. They are, neverthe-
less, expected to have different dynamics than other states in
the ice manifold.

Inspired by the translationally invariant model,
we study the distribution of the gap ratio r̃n ≡
min(sn, sn+1)/max(sn, sn+1) [6], where sn is the level
spacing between consecutive energy levels En and En+1, for
models with random J./i for every site. The randomization
does not change the connectivity of Fig. 1(b), but it breaks
translation and point symmetries. This allows for easier
analysis of level statistics. We block-diagonalize H./ with
the remaining global spin-flip symmetry, which is required
by the ice rule.

Our numerical results suggest that within each topologi-
cal sector, the distribution of levels follows GOE statistics,
indicating chaotic dynamics within the sector [“ice-(1,1)” in
Fig. 2(a)]. Superposing the energy levels from all four dis-
tinct topological sectors, results in a strong deviation from
GOE, closely resembling a Poisson distribution [“ice-all” in
Fig. 2(a)]. The lack of level repulsion in the low energy man-
ifold indicates the dramatic effect of the fragmentation of the
Hilbert space, due to the ice rules emergent from frustration.

Going back to the full BFG Hamiltonian, the conservation
laws emerge at low energy for |J⊥ij | � Jzij , where the level
statistics approaches that of H./. Given that the model is
not exactly solvable, it is not a priori clear what form the
level statistics acquires. To investigate how the level statis-
tics changes at different values of J⊥, we study the eigen-
states of disordered HBFG with random XY interactions on
the nearest-neighbor bonds whose magnitude is chosen from
a uniform distribution J⊥ij ∼ U(−J⊥, J⊥), and Jzij = 1 on
every first, second, and third nearest neighbor bond [67].

We find interesting level statistics in the strong Ising limit.
At a small value of J⊥, it shows close resemblance to Poisson
distribution. This observation provides a compelling case that
the fragmentation we find for the effective model survives in
the full BFG model in the weak J limit, given by HBFG at
low energies. The downturn at small r̃ is due to topological
loops which have nonzero matrix element for finite size sys-
tems (order O(J3) here given the small size of the system),
and vanish in the thermodynamic limit. At large values of J ,
the perturbative result no longer holds as higher-order terms
beyond H./ become significant and the notion of topological
sectors is no longer sharply defined. This is indeed the case:
The low energy level statistics shows good agreement with
the GOE distribution [Fig. 2(d)], as the fragmented puddles
are destroyed in the nonperturbative regime.

The crossover between Poisson-like and GOE-like distribu-
tions occurs at J⊥/J⊥c ∼ O(1), where J⊥c is the value of J⊥

at which the ice gap (defined in the caption of Fig. 2) closes
and the “ice” manifold is no longer energetically well sepa-
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FIG. 3. Three-coloring states and Kempe loops. (a), (b), (c)
Three-coloring states of a kagome lattice. (a) and (b) are respec-
tively referred to as q=0 and

√
3×
√

3 states. The orange lines ex-
ample red-blue Kempe loops: In the q=0 state, Kempe loops are all
global, while in the

√
3×
√

3 state, they are all local. (d) Number
of connected components in Kempe connectivity graph with loops
of length 6 (Nk6) vs. number of sites (Ns), for various system ge-
ometries. The orange dashed line is an exponential fit Nk6 ∼ WNs

to the largest number of components for every system size (marked
by a red cross). For comparison, we present an exponential with
the W for the scaling of the number of colorings [68] (shown as
the green dashed-dotted line), normalized to match the data point at
108 sites. (e) Scaling analyses for the exponential fits. The y-axis
represents the parameter W from fitting to data points in the range
60 ≤ Ns ≤ Nmax

s .

rated from the rest of the Hilbert space. Our finite size anal-
ysis finds no clear evidence that J⊥c decreases with system
size (see Appendix C). If indeed J⊥c remains nonzero in the
thermodynamic limit, Poisson-like statistics is expected for a
finite range of J⊥.

B. Three Coloring Model

The BFG description was designed to explore the Ising
regime of the kagome antiferromagnet: The low energy mani-
fold defined by its ice rule breaks up into four large connected
components, along with isolated scar states. A complemen-
tary viewpoint is provided by a model in the XY regime of the
XXZ Hamiltonian, which also contains an exponentially large
low energy manifold defined by local constraint. Contrary to
the BFG model, however, these states belong to exponentially
large number of fragments, with a hierarchical structure, as
we will see in the following.

The Hamiltonian of the second model also takes an XXZ
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FIG. 4. Kempe connectivity of three-coloring manifold. (a) Kempe connectivity graph of the three-coloring manifold of a 36-site lattice
(168 colorings). A vertex represents a three-coloring, and an edge represents a Kempe move that connects two colorings. The color of
a vertex represents the component it belongs to, and the color of an edge represents the length of the move. Two special configurations are
highlighted by blue and red circles, q=0 and

√
3×
√

3, respectively shown in Figs. 5(a), (b). The graph clusters into two connected components
(labeled A and B) when loops of all lengths are allowed. (b) The hierarchical component structure of the graph in (a). A leaf node (circle)
represents a three-coloring, and an internal node (rectangle) represents a connected component when Kempe moves of a certain length or
shorter (represented by the gray horizontal lines) are allowed. Vertical lines mark component-subcomponent relationship—a child node is
a subcomponent of its parent node. The number shown in an internal node is the number of colorings in the connected component. The
colors of vertices and edges match those of panel (a). (c) Kempe connectivity graph of the three-coloring manifold on a 81-site lattice (45,184
colorings). Length dependent structures are presented in Supplemental Video 1.
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FIG. 5. Dynamics of three-coloring states. (a) Loschmidt echoes F (t) ≡ |〈ψ(0)|ψ(t)〉|2 for length-6 Kempe model on a 81-site kagome
lattice. The blue and red curves respectively represent Loschmidt echoes of q=0 state and

√
3×
√

3 state. The black dotted curves are
Loschmidt echos of other coloring states. (b) Degree histogram of the Kempe connectivity graphs with loops of length 6, i.e. distribution of
numbers of Kempe loops d for all three-colorings. Inset: F ′′(t) vs. number of Kempe loops, confirming the relationship F (t) ≈ 1− dκ6

2t2.
(c) Loschmidt echoes for XXZ model Hn.n.

XXZ at ∆Jz ≡ Jz + 1/2 = 0.01, 0.02, 0.03 with 18 sites.

form:

Hn.n.
XXZ =

∑
〈i,j〉

Sxi S
x
j + Syi S

y
j + JzSzi S

z
j (3)

where the sum is now only over the nearest neighbor pairs
〈i, j〉, and the XY coupling strength is set to J⊥ = 1. At
Jz = −1/2, the ground states are exactly known for the
kagome lattice [60]: They are the exponentially many three-

coloring states [45, 69–73], each of which satisfies the con-
straint of exactly one red, one blue, and one green degree of
freedom [(|↑〉+ exp(2πin/3) |↓〉) /

√
2 with n = 0, 1, 2 re-

spectively] on every triangular motif. The exact solutions are
tensor products of these degrees of freedom, which remain
exact ground states under projection to any Sz sector [60, 61].

Two representative three-colorings shown in Figs. 5(a) and
(b), the q=0 and

√
3×
√

3 states, have periodic structures and
are relevant for the ground state and finite-temperature phase
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diagram of the kagome antiferromagnet [60, 74]. Three rep-
resentative three-colorings are shown in Figs. 3(a)-(c). The
first and second states, respectively referred to as q=0 (3-site
unit cell) and

√
3×
√

3 states (9-site magnetic unit cell), have
periodic structures and are relevant for the ground state and
finite-temperature phase diagram of the kagome antiferromag-
net [60, 74]. These states are characterized by the differences
in their two-color loops (Kempe loops): In the q=0 case, the
Kempe loops wind around the torus, and in the

√
3×
√

3 case,
they are local ones of length six. Exchanging the two colors
within a loop also yields a valid three-coloring, since the sites
adjacent to the chain all have the third color which is differ-
ent from the two colors of the loop. Different colorings have
Kempe loops of different lengths and some colorings contain
both local loops and global loops [see Fig. 3(c)]. We also note
that unlike the Ising ice states, three-coloring wavefunctions
are not orthogonal to each other, but there is an intricate struc-
ture of how they are connected to one another under two-color
loop moves (Kempe moves).

To explore the structure of the three-coloring manifold with
Kempe loops, we construct a model where (1) the non-three-
coloring states are completely projected out, and (2) the al-
lowed three-colorings are assumed to be orthogonal to each
other (akin to the status of dimer coverings in the Rokhsar-
Kivelson model [75]). We then impart dynamics to the three-
colorings by Kempe moves for loops of certain lengths. The
resulting effective model is a Hamiltonian [65, 76] in the
many-body Hilbert space of three-colorings which writes

HK =
∑
C

∑
k∈K(C)

κ`k |k(C)〉〈C|, (4)

where the sum is over every three-coloring C. K(C) is the set
of Kempe loops in C, `k is the length of the Kempe loop k,
and k(C) is the resulting three-coloring after exchanging the
two colors within the Kempe loop k from C. (Here we define
the colorings as equivalent up to global “color rotations,” e.g.
red to green, green to blue, blue to red, which corresponds to
projecting to a particular Sz sector in the XXZ model.)

We find that, contrary to the BFG model, the number of
fragments in this model scales exponentially with system size.
In Fig. 3(d), we show number of fragments (i.e. connected
components) vs. number of sites, for Kempe connectivity
graphs including loops of length 6 only, for all inequivalent
lattice geometries having 60 to 108 sites. The number of frag-
ments vary substantially even for lattices with the same num-
ber of sites, especially for small systems which are strongly
influenced by the boundary condition. We can nevertheless
estimate the scaling Nk6 ∼ WNs from the largest number of
fragments for each system size, whereNk6 andNs are respec-
tively the number of fragments and the number of sites. We
find that W ≈ 1.101, which is smaller than the W ≈ 1.135
for the scaling of the number of three-colorings [68]. For com-
parison, we also tried fitting the same data points to a power
law (shown in Appendix D Fig. 11). Although the limited
range of system sizes makes it difficult to conclusively dis-
tinguish an exponential from a power-law, finite size scaling
of the fitting parameters strongly suggests that the number of

fragments scale exponentially.
Since there are Kempe loops of various lengths, the length-

dependent connectivity of the three-coloring states shows a
rich structure. (See Appendix G for algorithms used to gener-
ate the connectivity graph.) Figure 4(a) shows an illustrative
example of the connectivity graph of the three-coloring states
of the 36-site lattice with full point group symmetry 6mm of
the infinite lattice. When loops of all lengths are allowed,
we identify two connected components: There are no Kempe
moves that connect a state from component A to a state from
component B. The fragmentation structure is much richer on
larger lattices, shown in Fig. 4(c) for 81 sites. Both structures
nevertheless show close resemblance, e.g. there are tightly
bound sets of states in the center to which the

√
3×
√

3 con-
figurations belong to, and the q=0 configurations are weakly
connected to other states at longer loop lengths.

The length-dependent hierarchy of the Hilbert space frag-
ments is shown in Fig. 4(b) for the 36-site lattice. This hi-
erarchy provides a way of organizing the states in terms of
slow and fast modes. States which connect with each other at
shorter loops thermalize faster, compared to those that require
longer loops (i.e. higher up in the hierarchy). In the thermo-
dynamic limit, there should be exponentially many fragments
for finite loop lengths, and hence a broad distribution of re-
laxation times. This hierarchically constrained dynamics is
analogous to classical glasses [77], where the relaxation due
to fast modes involving the stronger bonds is constrained by
the slow modes.

Within this framework, one would expect the q=0 state,
which has only “topological” Kempe loops and hence is an
exact eigenstate (unless `k is macroscopically large) to relax
parametrically slower than the

√
3×
√

3 state which has loops
of length 6. This is confirmed by full diagonalizations of the
effective model on an 81-site kagome lattice. In Fig. 5(a),
we plot the overlap between the time-evolved wavefunction
and the initial state, also known as Loschmidt echo, for var-
ious coloring states, with κ` = 1 for ` = 6, and 0 other-
wise. In addition to confirming our intuition for the q=0 and√

3 ×
√

3 states, we observe that for other states with a mix-
ture of Kempe loops of length 6 and longer, the relaxation time
scales are in the intermediate range. For small t, each curve
is expected to follow ∼ cos2(

√
dκ6t), where d is the number

of Kempe loops, i.e. the degree of a node in the Kempe con-
nectivity graph. (See Appendix E for proof.) Based on this
relationship, we can use d as a proxy for the relaxation dy-
namics at short times. The histogram in Fig. 5(b) shows that
d forms a broad distribution. Further analyses on the distri-
bution of the relaxation time scales presented in Appendix E
suggest exponential number of states with glassy relaxation
dynamics in the thermodynamic limit.

To see whether our findings on the varying time scales for
the coloring states applies to the full XXZ Hamiltonian, we
consider the time evolution of the q=0 and

√
3×
√

3 states
projected to the Sz = 0 sector, under Hn.n.

XXZ. (We also car-
ried out calculations for the unprojected coloring states. See
Appendix F for a discussion on the effect of Sz projection.)
In Fig. 5(b), we plot the Losschmidt echo for the two color-
ing states on an 18-site lattice, calculated with full diagonal-
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ization. This is used to diagnose the relaxation times of the
coloring states. At Jz = −1/2, they are exact eigenstates,
and hence do not evolve with time. Away from, but close to,
this special point, these states thermalize at distinctly differ-
ent rates despite being at similar energies: The

√
3×
√

3 state
thermalizes much faster than the q = 0 state. For both, the
time scale is approximately proportional to ∆Jz ≡ Jz + 1/2.
(The difference appears to get smaller as one goes even fur-
ther away from Jz = −1/2.) The fact that the thermaliza-
tion time depends on the Kempe loop structure of the three-
coloring state confirms a qualitative explanation in terms of a
phenomenological model.

III. CONCLUSION

In conclusion, we have presented a class of spin-1/2 mod-
els on the kagome lattice, whose low energy quantum dy-
namics, governed by ice-like rules, forces the formation of
Hilbert space fragments, giving rise to glassy dynamics as a
consequence. This includes easy-axis (Ising) and easy-plane
(XY) regimes both of which harbor macroscopically degener-
ate manifolds.

Our work opens several questions related to the nonequi-
librium dynamics of frustrated spin systems. The dynamics
of defects in the constrained ice manifold could potentially be
useful for protecting information in excited states of many-
body systems [78, 79]. The relationship between the graphi-
cal structure of fragmented clusters and the emergent symme-
tries in the model can shed light on the dynamics of symme-
try breaking in the presence of frustration and can provide an
alternative route to understanding the ground states in these
models [80]. Finally, the recent developments in synthetic
quantum systems of Rydberg atoms and trapped ions in two
dimensions have made possible the experimental realization
of these models in the different regimes. (See Refs. [81–83]
for review.) Local addressability and monitoring of the quan-
tum states in these experiments are promising for preparing
these three-coloring states and investigating their dynamics.
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Appendix A: Convention for Lattice Geometry

Throughout the manuscript, we study kagome lattices of
various sizes. Here we briefly explain the convention used in
this work for specifying the geometry of a finite size lattice.

A finite size system with periodic boundary condition can
be thought of as a quotient space of an infinite space by su-
perlattice translations. Therefore, one way to specify the ge-
ometry of the finite size lattice is by defining the superlattice
through its lattice vectors.

A kagome lattice is defined by a triangular Bravais lattice
with a basis of three sites. Throughout this work we use Bra-
vais lattice vectors a1 = (1, 0) and a2 = (−1/2,

√
3/2). The

superlattice vectors can be written in units of these lattice vec-
tors. For example, (2,−2) × (2, 4) refers to a 36-site clus-
ter, shown in Fig. 6. (2,−2) and (2, 4) respectively represent
the superlattice vectors b1 = 2a1 − 2a2 = (3,−

√
3) and

b2 = 2a1 + 4a2 = (0, 2
√

3).
Shapes of the kagome lattices used in the manuscript are

listed in Tab. I.

Appendix B: Balents-Fisher-Girvin “Ice” Model

The ice manifold of Ref. [54] has four topological sectors
characterized by topological invariants wi = ±1, the spin
parities along two lattice directions. Such breaking-up of the
Hilbert space can be visualized as multiple connected compo-
nents in the connectivity graph of the Hamiltonian H./ on the
ice manifold. In the main text we have shown the graph for
a 12-site cluster, which showed only three connected compo-
nents, in addition to 16 isolated states. This, however, was due
to the small size of the system. Figure 7(a) is the connectiv-

2 0 2 4 6

2

0

2

4

6
finite size kagome lattice
translated image of finite size kagome lattice
Bravais lattice
supercell lattice

FIG. 6. Geometry of a finite size kagome lattice with shape (2,−2)×
(2, 4). The purple arrows on the right mark the lattice vectors a1 and
a2 of the Bravais lattice (represented by green pluses). The blue
arrows are the lattice vectors of the superlattice (represented by red
crosses): b1 = 2a1 − 2a2 and b2 = 2a1 + 4a2.
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ity graph for a 36-site system with 107,176 ice configurations,
which clearly shows four distinct connected components, in
addition to the 16 isolated states. Representative ice configu-
rations (arbitrarily chosen) of the four topological sectors are
shown in Figs. 7(b)-(e).

In the main text we have presented the level statistics of the
ice manifold in a 30-site lattice, within the Z2 symmetric sec-
tor (combining all four topological sectors) as well as within
a single topological sector, also in the Z2 symmetric sector. In
fact, all sectors (four topological× two Z2) individually show
almost identical GOE-like level statistics, shown in Figs. 8(a)-
(h). Combining multiple sectors results in the level statistics
appearing more Poisson-like [see Figs. 8(i)-(k)]—the larger
the number of combined sectors, the closer the level statistics
is to Poisson distribution. [Compare Figs. 8(i), (j) with (k).]

Appendix C: Stability of The Ice Gap of The
Balents-Fisher-Girvin Model

The level statistics of the random-bond HBFG for |J⊥| �
Jz on the whole ice manifold (even after resolving the Z2

spin-flip symmetry required by the ice rule) is expected to be
Poisson-like, especially so in the thermodynamic limit since
the level repulsions between different topological sectors are
exponentially suppressed. With increasing |J⊥|, however, the
ice gap ∆ice—the energy separation between the ice mani-
fold and the rest of spectrum—closes at J⊥ = J⊥c . The level
statistics crossovers from Poisson-like to GOE-like at scale
J⊥/J⊥c ∼ O(1).

For the system sizes that we have considered, the ice gap
∆ice depends linearly on J⊥ to leading order [shown in
Fig. 9(a)]. We can extract estimates for J⊥c from linear fits
to the means of ∆ice over different random configurations. As
shown in Fig. 9(b), we do not find a clear sign that J⊥c van-
ishes with increasing system size. If indeed the J⊥c remains fi-
nite in the thermodynamic limit, the level statistics is expected
to show either a crossover, or possibly a sharp transition be-
tween Poisson-like and GOE-like distributions, at a nonzero
value of J⊥.

Appendix D: Kempe Connectivity of Three-Coloring Manifold

The connectivity structure of the three-coloring manifold
changes with the lengths of the Kempe moves. Table II

TABLE I. Geometries of the kagome lattices used in the manuscript.

lattice size shape used in
12 (2, 0)× (0, 2) Fig. 1(b)-(d)
18 (3, 0)× (1, 2) Fig. 2(b), Fig. 5(c)
24 (2,−1)× (2, 3) Fig. 2(c),(d)
30 (3,−1)× (1, 3) Fig. 2(a)
36 (2,−2)× (2, 4) Fig. 4(a),(b)
81 (3,−3)× (3, 6) Fig. 4(c), Fig. 5(a),(b)

(a)

component #1/20 (size: 26760)
(b)

component #2/20 (size: 26760)

(c)

component #3/20 (size: 26760)

(d)

component #4/20 (size: 26880)

(e)

FIG. 7. (a) Connectivity graph of H./ on Balents-Fisher-Girvin ice
manifold on a 36-site kagome lattice with 107,176 ice configurations.
Each vertex represents an ice configuration, and an edge represents a
non-zero tunneling element between two ice configurations that the
edge connects. The ice manifold fragments into four topological sec-
tors, shown as four connected components in the graph. The color
of a vertex indicates the connected component it belongs to. (b)-
(d) Representative configurations in each of the four topological sec-
tors (chosen arbitrarily), for (2,−2) × (2, 4) cluster. Opaque black
circles (open circles for down spins, and filled circles for up spins)
mark the sites within the cluster, and gray circles represent translated
image sites under periodic boundary condition. Corresponding val-
ues of topological invariant (w1, w2) are: (b) (1,−1), (c) (1, 1), (d)
(−1, 1), and (e) (−1,−1).

shows the sizes of the connected components in a 81-site
(3,−3) × (3, 6) lattice, when Kempe loops of certain length
or shorter are allowed. At loop length 6, which is the short-
est local loop length possible, the coloring manifold is still
fragmented into 3264 sectors; when loops of all lengths are
allowed, these eventually coalesce into three large connected
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FIG. 8. Level statistics for disordered H./ on a 30-site lattice of shape (3,−1)× (1, 3). The panels show the probability density distributions
P (r̃), for (a)-(d) Z2 symmetric sector of connected components 1, 2, 3, and 4, respectively, (e)-(h) Z2 antisymmetric sector of connected
components 1, 2, 3, and 4, respectively, (i) Z2 symmetric sector (combining all four connected components), (j) Z2 antisymmetric sector, and
(k) the complete ice manifold. The blue and red dashed curve respectively mark the P (r̃) for Poisson and GOE distributions. For the GOE
level statistics, we use the expression for P (r̃) from Ref. [84].
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FIG. 9. (a) Box plots for the “ice gap” ∆ice, sampled over disorder
configurations {J⊥

ij }. The box ranges from the lower to upper quar-
tiles, with a line marking the median, and the whsiters showing the
range of the data. The number above a box indicates the number of
sampled disorder configurations, and the dashed lines are fits to the
disorder averaged ∆ice with the form ∆ice/J

z = 1 − J⊥/J⊥
c . (b)

J⊥
c vs. number of sites. The horizontal lines mark the standard error

for J⊥
c .

components.

The hierarchical connectivity structure that arises from the
length dependence are shown in Fig. 10 for 36-site and 48-site
lattices. The result for 81 sites is too large to plot.

Appendix E: Kempe Dynamics of Three-Coloring States

At short times, the Kempe relaxation dynamics of a color-
ing state is fully determined by the number of other coloring
states connected to it through Kempe moves. Here we show
that the Loschmidt echo approximates to

|〈ψ(0)|ψ(t)〉|2 ≈ 1− dκ26t2 (E1)

TABLE II. Kempe connectivity of three-colorings on (3,−3)×(3, 6)
Kagome lattice (45184 colorings total).

loop length component size (number of components)
6 19298(1), 378(18), 180(3), 20(162), 19(108),

17(324), 14(108), 13(162), 8(18), 4(162),
3(324), 2(486), 1(1388)

10 22052(1), 3942(2), 2214(6), 180(3), 3(324),
1(452)

12 37172(1), 3942(2), 1(128)
14 37172(1), 3942(2), 54(2), 1(20)
18 37172(1), 3942(2), 54(2), 20(1)
20 37280(1), 3942(2), 20(1)
22 37280(1), 7884(1), 20(1)
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(2,-2)x(2,4)

6

8
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(a)

(4,0)x(0,4)
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1016(b)

FIG. 10. Hierarchical connectivity structures of the three-coloring manifold with Kempe moves at various loop lengths, for (a) 36-site kagome
lattice of shape (2,−2)× (2, 4), and (b) 48-site lattice of shape (4, 0)× (0, 4). The leaf nodes at the bottom are three-coloring configurations,
and the internal nodes labeled ` are connected components when loops of length ` or less are allowed, with increasing value of ` from bottom
to top.
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N
k6

Nk6 Ns
7.92

(a)

60 70 80 90 100 110
Nmax

s

6

7

8

fit to Nk6 Ns

(b)

FIG. 11. (a) Number of connected components in Kempe connectiv-
ity graph with loops of length 6 (Nk6) vs. number of sites (Ns), for
various system geometries, plotted on a log-log scale. The orange
dashed line is a power-law fit Nk6 ∼ Ns

α to the largest number of
components for every system size (marked by a red cross). (b) Scal-
ing analyses for the power-law fits. The y-axes represent parameters
from fits to data points in the range 60 ≤ Ns ≤ Nmax

s .

where d is the number of other states connected to the ini-
tial coloring state, i.e. the degree in the Kempe connectivity
graph.

Denote the initial coloring state as |ψ(0)〉 = |C0〉. The
Kempe Hamiltonian can then be broken into terms that act on

|C0〉, and those that do not:

HK = κ6
√
d

 1√
d

∑
k∈K6(C0)

|k(C0)〉

 〈C0|

+ κ6
∑
C 6=C0

∑
k∈K6(C)

|k(C)〉 〈C| , (E2)

where K6(C) is the set of length-6 Kempe moves for the col-
oring C, and d ≡ |K6(C0)| is the number of moves for C0.
At small t, the leading order time-evolution can be approx-
imated by that of a two-level system, whose states are |C0〉
and |C ′0〉 ≡

∑
k |k(C0)〉 /

√
d:

e(−iHKt) |C0〉 ≈ cos
(√

dκ6t
)
|C0〉 − i sin

(√
dκ6t

)
|C ′0〉

(E3)

The Loschmidt echo therefore approximates to

|〈ψ(0)|ψ(t)〉|2 ≈ cos2
(√

dκ6t
)
≈ 1− dκ26t2. (E4)

The t2 dependence is in agreement with the log-log plot in
Fig. 12(a).

The relationship between the number of Kempe moves and
the dynamics allows us to study the statistics of relaxation
time scale of the coloring states through graph analyses of
Kempe connectivity. Figures 12(b) and (c) show degree his-
tograms of Kempe connectivity graphs of loop length 6. As
Fig. 12(d) shows, the average degree appears to grow linearly
with the system size. This is in agreement with the fact that
the maximum number of (two color) Kempe loops is that of
the
√

3×
√

3 state, and is given by the number of hexagonal
plaquettes.

Appendix F: Dynamics of Unprojected Coloring State

As pointed out in the main text, the three-coloring states,
whether projected or unprojected, are eigenstates of the
nearest-neighbor XXZ Hamiltonian at Jz = −1/2. The un-
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FIG. 12. (a) Loschmidt echoes for the length-6 Kempe model on a 81-site kagome lattice [same the data as Fig. 3(d)] plotted as
1 − |〈ψ(0)|ψ(t)〉|2 vs. κ6t in log-log scale. For small t (κ6t . 0.1), the curves follow 1 − |〈ψ(0)|ψ(t)〉|2 ∝ t2. (b),(c) Degree his-
tograms of the Kempe connectivity graphs with loops of length 6 for systems of shapes (3,−3) × (3, 6) (81 sites) in (b) and (6, 0) × (0, 6)
(108 sites) in (c). (d) Average degree vs. number of sites for various lattice geometries.
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3 states on the
18-site lattice of shape (3, 0)× (1, 2), at ∆Jz ≡ Jz + 1/2 = 0.01.

projected coloring state writes

|γ〉 ≡
N⊗
i=1

|γi〉 , where |γi〉 =
1√
2

(
|↑〉+ eiαi |↓〉

)
(F1)

with αi = 0, 2π3 ,
4π
3 for the three colors. The projected states

can be written as

|γ,m〉 ≡ 1

Nm
PSz=m |γ〉 . (F2)

These coloring states, however, are not mutually orthogonal.
Since

〈γ′i|γi〉 =
1 + ei(αi−α

′
i)

2
= 1,

e±
i2π
3

2
, (F3)

the overlap between two colorings states writes

|〈γ′|γ〉| = 1

2nd
(F4)

where nd is the number of sites with different colors between
γ and γ′. In other words, two coloring states can only be
orthogonal to each other in the thermodynamic limit.

Overlap between projected coloring states, on the other
hand, is sector-dependent. In the extreme limit of fully polar-
ized sector, all coloring states project to the exact same state
|↑↑ · · · 〉 or |↓↓ · · · 〉. In the unpolarized sector (total Sz = 0 or
±1/2), on the other hand, the overlap between different col-
orings are less than unity, and can even be smaller than the
overlap between unprojected states in Eq. (F4).

At points away from Jz = −1/2, these states are no
longer eigenstates of the Hamiltonian, and thus evolve with
time. How do these nonzero overlaps (i.e. the nonorthog-
onal nature of the coloring manifold) affect the dynamics?
Would the unprojected coloring states relax faster compared
to the projected states since there are more overlaps between
them, which translates to more decay channels? Would having
more channels reduce the difference between different color-
ing states?

We show the Loschmidt echo | 〈ψ(0)|ψ(t)〉 |2 for the unpro-
jected |q=0〉 and

∣∣√3×
√

3
〉

states in Fig. 13. The two states
show almost identical relaxation. This is in contrast to the
projected coloring states PSz=m |q=0〉 and PSz=m

∣∣√3×
√

3
〉

presented in the main text, where there is a stark difference be-
tween the two states. Also, the relaxation time scale is shorter
compared to that of the projected states by a factor of ∼ 5.

Appendix G: Constructing Kempe Connectivity Graphs

Here we describe exactly how we construct the Kempe con-
nectivity graph for the three-coloring manifold on kagome lat-
tices. As we clarified in the manuscript, we define the color-
ings as “relative colorings,” meaning that two colorings are
equivalent if they differ by a global color rotation, analogous
to projecting to a particular Sz sector. To enforce this equiva-
lence numerically, we define a “normal” coloring by fixing the
color of a particular site. More precisely, given a three color-
ing c : V → Z3 where V is the set of sites, the normalized
coloring c′ is defined as c′ : v 7→ c(v) − c(v0) mod 3, for an
arbitrarily (but consistently) chosen v0 ∈ V .

For any three-coloring of a kagome lattice, every nearest-
neighbor bond belongs to a single Kempe loop. This property
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is specific to kagome lattice, where every node has degree 4.
(In the triangular lattice, for example, a bond belongs to mul-
tiple Kempe loops.) We can make use of this non-branching
property to find all Kempe loops of all three-colorings. Given
a coloring and a bond, Alg. 1 finds the Kempe loop that the
bond belongs to. Algorithm 2 can then be used to find all
Kempe loops of a given coloring.

Using these, we can construct the Kempe connectivity
graph, whose vertices are the three-colorings of the lattice,
with an edge between two colorings if there is a Kempe move
that connects the two. Algorithm 3 describes the steps.

Algorithm 1: FOLLOWKEMPELOOP(G, c, (u, v))

Input: G = (V,E), undirected graph representing the
lattice,
c : V → Z3, a three-coloring of G,
(u, v) ∈ E

Output: `, a list of sites in the Kempe loop that
includes (u, v)

begin
`← (u, v)
(c̃1, c̃2)← (c(u), c(v))
w ← v
while w 6= u do

w ← a neighbor of w with color c(x) = c̃1 that
is not in `

append w to `
swap c̃1 and c̃2

Algorithm 2: FINDKEMPELOOPS(G, c)

Input: G = (V,E), undirected graph representing the
lattice
c : V → Z3, a three-coloring of G

Output: L, set of all Kempe loops of c
begin

S ← E
L← ∅
while S is not empty do

b← an element of S
`← FOLLOWKEMPELOOP(G, c, b)
remove all bonds of ` from S
add ` to L
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Algorithm 3: KEMPECONNECTIVITYGRAPH(G)

Input: G = (V,E), undirected graph representing the
lattice

Output: GK = (VK , EK), the Kempe connectivity
graph

begin
C ← the set of all n-colorings of G
foreach c ∈ C do

L← FINDKEMPELOOPS(G, c)
foreach ` ∈ L do

c′ ← flip the colors of vertices in ` from c
c′′ ← normalize coloring c′

Add (c, c′′) to EK
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