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The Fibonacci topological order is the simplest platform for a universal topological quantum computer. While

the ν = 12/5 fractional quantum Hall (QH) state has been proposed to support a Fibonacci sector, a dynamical

picture of how a pure Fibonacci state may emerge in a QH system has been lacking. We use non-Abelian

dualities to construct a Fibonacci state of bosons at filling ν = 2 starting from a trilayer of integer QH states.

Our parent theory consists of bosonic composite vortices coupled to fluctuating U(2) gauge fields, which is

dual to the theory of Laughlin quasiparticles. The Fibonacci state is obtained by interlayer clustering of the

composite vortices, along with flux attachment. We use this framework to motivate a wave function for the

Fibonacci state.

I. INTRODUCTION

Non-Abelian topological orders are among the most

promising platforms for fault-tolerant quantum computation

[1]. The excitations in these phases are non-Abelian anyons,

which are quasiparticles with non-Abelian exchange statistics

[2]. Non-Abelian anyons therefore provide a source of topo-

logical degeneracy, allowing for non-local storage of infor-

mation. Information can then be manipulated through braid-

ing of the anyons, a process which is resilient against deco-

herence from local perturbations because of its topological

nature [3–7]. Among the most promising systems for real-

izing non-Abelian topological order are 2d gases of electrons

in strong magnetic fields, which can form fractional quantum

Hall (FQH) states. Excitingly, there is mounting experimental

evidence for fractional statistics in FQH states [8], and for a

non-Abelian FQH state at filling fraction ν = 5/2 supporting

the simplest non-Abelian anyon, the Ising anyon [9–13].

Ising anyons, however, are not sufficient for universal quan-

tum computation [1]. In contrast, topological orders support-

ing the so-called Fibonacci anyon can serve as universal quan-

tum computers [14]. This follows from the Fibonacci anyon’s

fusion rule, τ × τ = 1+ τ , where τ is the Fibonacci anyon, 1
is the trivial anyon, and × denotes anyon fusion. For this rea-

son, there has been much interest in the observed ν = 12/5
FQH state, as numerics suggest this may correspond to the Z3

Read-Rezayi (RR) state [15], which supports the Fibonacci

anyon among other, Abelian anyons [16, 17]. Unfortunately,

the presence of the other anyons can complicate manipulation

of the Fibonacci anyons by entering into braiding processes,

and so frustrates the identification of non-Abelian anyons in

interferometry experiments, as discussed in Ref. [18] for con-

jectured ν = 5/2 states. It is thus of interest to understand

if it is possible to realize a topological order supporting the

Fibonacci anyon as its only excitation.

Several proposals have been put forward for realizing such

a Fibonacci state. These include the nucleation of a Fi-

bonacci state on top of an Abelian FQH state using proxim-

ity coupled superconductors [19], chiral superconducting is-

lands with special couplings [20], and the possible realization

of the Fibonacci state at an integer filling of Landau levels

[21]. Further studies have sought Fibonacci anyons in cou-

pled, Coulomb-blockaded IQH islands [22] and via projec-

tive parton constructions [23, 24], but all of these construc-

tions lead to additional anyon content as well. All of the

studies that realize a purely Fibonacci state follow the spirit

of coupled wire constructions [25] which, although providing

concrete and analytically tractable microscopic models with

topologically ordered ground states, do not provide a physi-

cal picture for the dynamics that could lead to the emergence

of such states. A quantum loop model for a Fibonacci state

was proposed in Ref. [26]. In the context of Abelian FQH

states, such a picture is provided by composite fermion/boson

field theories [27–29]. While a composite particle picture is

lacking for most non-Abelian states, including the Fibonacci

state, notable exceptions include the Moore-Read FQH state

(and its cousins) at ν = 5/2, which can be described as arising

from the pairing of composite fermions [30], the Read-Rezayi

sequence [31, 32], and a range of Blok-Wen states [33–35].

Indeed, it is an open problem to establish a precise compos-

ite particle picture for any purely non-Abelian state, as flux

attachment generically leads to Abelian anyon content.

In this article, we employ recently proposed Chern-Simons-

matter field theory dualities [36–38] to construct a composite

particle theory for the emergence of the Fibonacci state in a

QH system of bosons at ν = 2, following our earlier ap-

proach in Refs. [32, 35]. These dualities can be interpreted

as non-Abelian analogues of flux attachment. In the present

work, we instead use duality to construct a Landau-Ginzburg

description of a Fibonacci state of bosons starting from a tri-

layer of IQH states, using flux attachment to render the elec-

tric charges bosonic. In this setup, the dynamical mechanism

leading to the Fibonacci state is manifest as inter-layer clus-

tering of dual bosonic “composite vortices,” which couple to

a fluctuating, non-Abelian gauge field. Our chosen cluster-

ing mechanism binds electric charges on two of the layers to

holes on the third, breaking the inter-layer exchange symme-

try. Our flux attachment procedure similarly breaks this sym-

metry, rendering two of the layers topologically trivial and en-

dowing the remaining layer with the topological order of the

Halperin (2, 2, 1) state.

Our dynamical mechanism therefore has an element of

clustering, which underlies the interpretation of the RR states,
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FIG. 1. A schematic of our construction of the (a) U(2)3 and (b)

U(2)3,1 Fibonacci states. These are FQH states of fermions and

bosons, respectively. Here ↔ denotes duality between the theories

of Laughlin quasiparticles and composite vortices. The non-Abelian

state is obtained by clustering of the dual composite vortices between

the layers.

while retaining the character of a multilayer state, as the

(2, 2, 1) state is commonly interpreted as a bilayer (it has a

Z2 exchange symmetry). In parallel to this intuition, we mo-

tivate an ideal wave function for the Fibonacci state, an as-yet

unprecedented achievement. This wave function superficially

describes a bilayer state, but nevertheless has the clustering

properties of the Z3 RR state, which describes clusters of three

local quasiparticles.

II. PARENT MODEL AND NON-ABELIAN DUALITY

Our starting point is a trilayer of ν = 2 IQH states, as

shown in Fig. 1. We will take each layer layer to be near a

ν = 2→ 1 transition described by a free Dirac fermion in the

clean limit,

LIQH =

3
∑

n=1

[

Ψ̄n(i /DA −M)Ψn −
3

2

1

4π
AdA

]

. (1)

Here Ψn is a two-component Dirac fermion on layer n, Aµ

is the background electromagnetic (EM) gauge field, and we

use the notation Dµ
B = ∂µ − iBµ, BdC = εµνλBµ∂νCλ,

and /B = Bµγµ, where γµ are the Dirac gamma matrices.

Integrating out the Dirac fermions yields a ν = 2 (ν = 1)

IQH phase for sgn(M) < 0 (sgn(M) > 0). Note we define

the filling as ν = −2πρe/B, ρe = 〈δL/δA0〉, B = εij∂iAj .

Our interest will be in the physics near the quantum phase

transition at M = 0.

Near M = 0, this theory has been proposed to satisfy a

large number of boson-fermion dualities [38], which are rela-

tivistic generalizations of the familiar flux attachment duality

that relates the IQH transition of fermions to the condensa-

tion of composite bosons [28]. These relate the free Dirac

fermion theory on each layer to one of a Wilson-Fisher boson,

φn, coupled to a fluctuating U(N) Chern-Simons (CS) gauge

field, an, in the fundamental representation [39–41]. While a

free Dirac fermion has a bosonic dual for any value of N , our

interest will be in the case of N = 2,

L̃IQH =

3
∑

n=1

[

|Daφn|2 − r|φn|2 − |φn|4
]

+

3
∑

n=1

LCS[an] +Aµj
µ
top , (2)

LCS[an] =
1

4π
Tr

[

andan −
2i

3
(an)

3

]

, (3)

Aµj
µ
top =

1

2π
AdTr[a1 − a2 + a3] . (4)

Here −|φ|4 denotes tuning such that the Wilson-Fisher fixed

point occurs at r = 0, and traces are over color (i.e. U(2))
indices. We have also selected the BF terms in Eq. (4) such

that the second layer has opposite EM charge from the other

two. Because each layer is decoupled from one another, we

may freely determine the signs in Eq. (4) because the partition

function has a charge conjugation symmetry.

The fact that the theory in Eq. (2) has the same phase di-

agram as that of Eq. (1) follows from the so-called level-

rank duality of topological quantum field theories (TQFTs)

[39, 42, 43], which is an equivalence between U(N)k and

SU(k)−N CS theories, where the subscript is the CS level.

In particular, one can set k = 1, leading to a duality between

a trivial (i.e. IQH) theory and a U(N)1 CS theory,

LCS[b] +
1

2π
AdTr[b]←→ −N

4π
AdA , (5)

where b is a U(N) gauge field, and we have suppressed grav-

itational Chern-Simons terms.

Using level-rank duality, we can check the phase diagram

of Eq. (2): for sgn(r) > 0, the φ bosons are gapped, leading

to a U(2)1 theory on each layer, which describes a trilayer of

ν = 2 IQH states by Eq. (5). Similarly, for r < 0 the bosons

condense, breaking the gauge group down to U(1) on each

layer. Integrating out the remaining U(1) gauge fields leads

to the desired trilayer ν = 1 response. The equivalence of the

phase diagrams of the theories in Eqs. (1) and (2) has led to

the conjecture that the critical points at r =M = 0 are identi-

cal. Below we will assume this to be the case, our confidence

bolstered by the large-N, k derivations of Refs. [36, 37] and

the Euclidean lattice derivation of Ref. [40].

III. LANDAU-GINZBURG THEORY

To target the Fibonacci phase, we first identify a CS TQFT

representation of the state. It was recently shown [44] that one

such representation is

U(2)3,1 =
SU(2)3 × U(1)2

Z2
. (6)

This is a U(2) CS gauge theory where the Abelian and non-

Abelian parts of the gauge field have different CS levels. The

quotient by Z2 simply enforces that these two components are
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part of the same U(2) gauge field, projecting out the Wilson

lines which transform under odd half-integer representations

of the SU(2) factor. We elaborate on our Chern-Simons con-

ventions in Appendix A and show explicitly that U(2)3,1 de-

scribes the Fibonacci topological order in Appendix B. The

Lagrangian for this theory is written as

LFib = 3LCS[a]−
1

4π
Tr[a] dTr[a] +

1

2π
AdTr[a] , (7)

where a is again a U(2) gauge field. One can check that

this theory has a single nontrivial anyon, besides the vacuum,

which transforms in the spin-1 representation of U(2), satis-

fies the Fibonacci fusion rule, τ × τ = 1 + τ , and has topo-

logical spin hτ = 2/5. We also comment that this theory is

known to be dual to a (G2)1 TQFT, where G2 is the smallest

exceptional simple Lie group [17, 44, 45].

To access the U(2)3,1 state, our strategy will be to first

illustrate how one can obtain a U(2)3 topologically ordered

state in the trilayer IQH system. We will then show how the

U(2)3,1 arises as a descendant state of this theory, in a way we

make precise below. We start by introducing inter-layer clus-

tering to the composite vortex theory, Eq. (2), via coupling to

a scalar field, Σnm,

Lcluster = −
∑

n,m

φ†mΣmnφn − V [Σ] . (8)

Under gauge transformations, Σnm 7→ UmΣmnU
†
n, whereUn

is a U(2) gauge transformation on layer n. It can be under-

stood as a Hubbard-Stratonovich field associated with the or-

der parameter, φ†mφn. We choose the potential V [Σ] such that

〈Σmn〉 =Mmn 12 ,Mmn 6= 0 , Mnn > 0 , detM > 0 , (9)

where 12 is the 2×2 identity matrix in color space andMmn is

a constant Hermitian matrix. In the resulting ground state, the

φn fields are individually gapped, while the clustering order

parameter, φ†mφn is condensed.

Because Eq. (9) is invariant under gauge transformations

where U1 = U2 = U3, the gauge group is broken as U(2) ×
U(2) × U(2) → U(2), Higgsing gauge field configurations

except for those with a1 = a2 = a3 ≡ a. As a result, the CS

terms for each of the an gauge fields add, leading to a U(2)3
theory,

LU(2)3 [a,A] = 3LCS[a] +
1

2π
AdTr[a] . (10)

Computing the Hall response by integrating out Tr[a] =
Tr[ã12] = 2ã, one finds that the total filling fraction is now

ν = 2/3, rather than ν = 6. The change in the filling frac-

tion is related to our choice of charge assignments in Eq. (4),

which results in the unit coefficient of the BF term in Eq. (10).

While in the decoupled trilayer theory this choice of signs

was immaterial, upon clustering the EM charge densities on

each layer, ρn = εij∂
iTr[ajn]/2π, i, j = x, y, are pinned

as ρ1 = ρ3 = −ρ2, thereby breaking the discrete symmetry

exchanging the layers and altering the filling fraction. The re-

sulting minimal EM charge will prove crucial to obtaining the

Fibonacci state.

The Fibonacci state, Eq. (7), is a descendant of the U(2)3
state at ν = 2/3. To see this, we attach a single unit of flux

to the “electrons,” the charges which couple to the background

EM vector potential,Aµ, and are understood to be the vortices

of Tr[a] in the variables of Eq. (10). Since in our starting

theory, Eq. (1), the EM charges are fermions, flux attachment

shifts their statistics and renders the fundamental EM charges

bosonic. Explicitly, introducing an Abelian statistical gauge

field, b, we have

L = LU(2)3 [a, b] +
1

4π
bdb+

1

2π
bdA+

1

4π
AdA . (11)

Integrating out b, one immediately finds the Lagrangian in Eq.

(7), which displays a ν = 2 Hall response. We have therefore

found, using a combination of flux attachment and inter-layer

clustering, a Fibonacci state of bosons at ν = 2.

The flux attachment transformation in Eq. (11) transmutes

the original electric charges, which are fermions, to bosons,

but it also mixes the three layers of the parent model, Eq.

(1). A more physically transparent approach, which also leads

to a Fibonacci state at ν = 2, proceeds by first attaching a

positive flux to each electron on the first and third layers of

the theory in Eq. (1) while attaching a negative flux to each

electron on the second layer, explicitly breaking the layer ex-

change symmetry outright and leading to the parent theory de-

picted in Fig. 1(b). As is standard for multilayer FQH states,

this layer-dependent flux attachment can be understood as en-

coding changes in the intralayer interaction strengths between

electrons [46, 47]. The details of this procedure are provided

in Appendix C. By attaching fluxes in this way to the theory

of Eq. (1), we obtain a bosonic theory,

LΦ =

3
∑

n=1

LΦn , (12)

LΦn=1,3 = |DAΦn|2 − r|Φn|2 − |Φn|4 +
2

4π
AdA , (13)

LΦn=2 = |DαΦ2|2 − r|Φ2|2 − |Φ2|4 (14)

+
2

4π
αdα+

2

4π
βdβ +

1

2π
αdβ +

1

2π
βdA .

Here, the Φn are composite bosons dual to the original Dirac

fermions, while α and β are emergent U(1) gauge fields aris-

ing from the flux attachment transformation. On the first and

third layers, flux attachment has led to theories of electrically

charged Wilson-Fisher bosons on top of a ν = −2 IQH state.

On the second layer, however, this leads to Wilson-Fisher

bosons coupled to the Halperin (2, 2, 1) CS gauge theory at

filling ν = +2/3, as illustrated in Fig. 1(b). This constitutes

the parent Abelian theory for the Fibonacci state. We note that

the Halperin (2, 2, 1) state has appeared as a parent state for

the Fibonacci order in related constructions [19, 48].

Aapplying the same flux attachment procedure to the non-

Abelian composite vortex theory of Eq. (2) yields a new com-
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posite vortex theory dual to the Abelian theory of Eq. (12),

L̃φ =

3
∑

n=1

L̃φn (15)

L̃φn = |Daφn|2 − r̃|φn|2 − |φn|4 +
1

4π
Tr

[

andan −
2i

3
a3n

]

+ (−1)n
[

1

4π
Tr[an]dTr[an] +

1

2π
AdTr[an]

]

.

(16)

This duality between the theories of Eq. (12) and Eq. (16)

is illustrated schematically in Fig. 1(b) and derived in de-

tail in Appendix C. Using this bosonic parent description, the

final Landau-Ginzburg theory of the Fibonacci state can be

expressed in terms of the clustering order parameter, Σ, after

integrating out the composite vortices, φn, and the auxiliary

gauge fields associated with flux attachment,

L =
∑

m,n

Tr
[

|∂Σmn − iamΣmn + iΣmnan|2
]

+
∑

n

LCS[an]

+
∑

n

(−1)n
(

1

4π
Tr[an]dTr[an] +

1

2π
AdTr[an]

)

− Vr [Σ] . (17)

where the first term is a kinetic term generated by quantum

corrections due to integrating out φ, and Vr is the renor-

malized potential for Σ. The trace is again over color in-

dices. The phase diagram can be understood as follows.

For 〈Σ〉 = 0, the theory consists of three decoupled layers:

two IQH insulators and a single Halperin (2, 2, 1) layer. For

〈Σmn〉 = 〈φ†mφn〉 6= 0, the gauge fields are again Higgsed

such that a1 = a2 = a3 ≡ a. Hence the low-energy physics

of the system is described by the U(2)3,1 Chern-Simons ac-

tion

LFib =
3

4π
Tr

[

andan −
2i

3
a3n

]

− 1

4π
Tr[a] dTr[a]

+
1

2π
AdTr[a] .

(18)

The theory thus finds itself in a phase with Fibonacci topolog-

ical order.

Furthermore, one can identify the Fibonacci anyons with

gapped degrees of freedom in the Landau-Ginzburg theory;

namely, the excitations of the adjoint bilinear of composite

vortices, φ†taφ, where ta are the generators of SU(2) ⊂
U(2). This can be observed from the fact that this operator

transforms in the spin-1 representation of the gauge group and

has vanishing electric charge, both properties of the Fibonacci

anyon. Note that while the φ fields possess a layer index, in

the Fibonacci state this does not lead to any unwanted degen-

eracy due to the condensation of 〈φ†mφn〉, and so there is only

one Fibonacci anyon.

IV. FIBONACCI WAVE FUNCTION.

Having developed an effective field theory that provides a

concrete dynamical mechanism for how the Fibonacci state

may be realized in a bosonic system at ν = 2, we now

seek to develop an ideal wave function, which until now has

also proven elusive. Ideal wave functions encode information

about the clustering properties of electrons (or bosons, in our

case) in non-Abelian states and can be compared with numer-

ically obtained ground states in order to identify the topolog-

ical order realized in realistic Hamiltonians. Remarkably, the

wave function we will obtain displays a number of physical

features that parallel the above effective field theory construc-

tion.

To obtain a wave function for the Fibonacci state of bosons,

we employ the standard conformal field theory (CFT) ap-

proach, in which the wave function is constructed in terms

of correlation functions of the edge (G2)1 ∼= U(2)3,1 Wess-

Zumino-Witten (WZW) CFT, Ψ({zσi }) = 〈∏N
i=1 Ψσ(z

σ
i )〉

[2]. Here, zσi = xσi + iyσi are the complex coordinates of

the electrons, σ = 1, . . . , nf a type of “flavor” index, nfN is

the number of electrons, and Ψσ(zi) are operators in the CFT.

Physically, Ψσ(z) represents an electron operator and can in

general be written as the product Ψσ(z) = χσ(z)e
iϕ(z)/

√
ν ,

where ν is the filling fraction and ϕ is a compact scalar. The

χσ(z) operators are electrically neutral. From Eq. (6), we

observe that for the case at hand the χσ’s are operators in the

SU(2)3 CFT, and eiϕ/
√
ν , with ν = 2, is an operator in the

U(1)2 CFT.

The first step in constructing a wave function is therefore to

determine the boson operators, Ψσ. We claim that the appro-

priate choice of boson operators is

Ψ↑ ≡ ψ2e
iφ/

√
6+iϕ/

√
2, Ψ↓ ≡ ψ1e

−iφ/
√
6+iϕ/

√
2. (19)

Here we have made use of the fact that operators in the

SU(2)3 CFT can be expressed as products of vertex operators

of another compact boson, φ, and so-called Z3 parafermions

[49], ψ1 and ψ2, which satisfy the operator product expan-

sions (OPEs),

ψ1(z)ψ1(z
′) ∼ (z − z′)−2/3ψ2(z

′) + . . . (same for 1↔ 2)

ψ1(z)ψ2(z
′) ∼ (z − z′)−4/3 + . . . . (20)

The choice of the two boson operators (labeled by “spin”

↑ / ↓) in Eq. (19) is motivated by the effective field theory

construction discussed above. Indeed, the (2, 2, 1) Halperin

state involved in the parent state in Fig. 1(b) has two species

of vortices satisfying a Z2 exchange symmetry and is com-

monly understood as a bilayer state; the remaining two layers

in Fig. 1(b) are topologically trivial. We therefore anticipate

that the Fibonacci wave function “knows” about this exchange

symmetry and choose boson operators as such.

More formally, the need for two boson species arises from

the fact that the boson operators must correspond to genera-

tors of the (G2)1 current algebra, all of which represent lo-

cal excitations. These can be labeled by the twelve roots of
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G2, of which two are linearly independent. This suggests that

we should have two distinct boson operators, as is the case

for other FQH wave functions based on rank-two Lie algebras

[50–52]. Following Refs. [50, 51], we require that our choice

of boson operators is such that they have the same electric

charge and opposite SU(2) spin. The first requirement is sat-

isfied via the two eiϕ/
√
2 factors; the second by the fact that

their SU(2)3 factors are conjugate to one another. We detail

the construction of these boson operators in Appendix D.

The Fibonacci wave function can thus be written as a 2N -

point correlation function of the Ψ↑/↓ operators. The correla-

tors of the vertex operators can be explicitly evaluated, and so

we obtain (up to an overall Gaussian factor),

Ψ({zi, wi}) = 〈
N
∏

i=1

ψ2(zi)ψ1(wi)〉
∏

i,j

(zi − wi)
1/3

×
∏

i<j

(zi − zj)2/3
∏

i<j

(wi − wj)
2/3,

(21)

where zi (wi) labels the position of the up (down) “spin.” This

formal expression encodes key properties of the Fibonacci

state. Indeed, the highest power of z1 appearing in the factors

multiplying the parafermion correlator is 2N(1/2), yielding

a filling fraction of ν = 2, consistent with our field theory

construction. Additionally, one can use Eq. (20) to see that

the wave function satisfies the same three-body clustering as

the Z3 RR wave function [15] separately in each of the zi
and wi coordinates, dovetailing with our description in terms

of clustering of composite vortices. These parallels between

our proposed wave function and our dynamical construction

above are encouraging, giving us confidence that Eq. (21)

does indeed describe the Fibonacci state.

By using Eq. (20) to point-split ψ2 into a product of ψ1’s,

one can explicitly evaluate the above parafermion correlator

to express Eq. (21) as

Ψ({zi, wi}) =
Ψk=3

RR ({zi, zi, wi})
∏

i<j(zi − zj)2
∏

i,j(zi − wj)
, (22)

where Ψk=3
RR ({zi, zi, wi}) is the bosonic ν = 3/2 RR wave

function for 3N particles, with the coordinates of N pairs of

particles set equal to one another. The details of this computa-

tion are straightforward, but are included for completeness in

Appendix D. The apparent asymmetry in zi and wi is an arti-

fact of choosing to point-split the ψ2’s. A manifestly symmet-

ric wave function can be obtained via symmetric combination

with the wave function obtained by point-splitting the ψ1’s.

Note that while the wave function exhibits a simple pole as we

bring zi → wi, we expect that this short-distance singularity

can be regularized without altering the topological properties

of the wave function.

V. DISCUSSION

In this article, we have presented both a field-theoretic con-

struction of the bosonic Fibonacci state at ν = 2 based on

non-Abelian composite particle dualities, as well as an ex-

plicit wave function for this state. Our construction involves a

parent trilayer system, in which the Fibonacci state is realized

via clustering of dual “composite vortices” coupled to fluc-

tuating U(2) gauge fields. Leveraging this construction, we

obtain a wave function for the Fibonacci state sharing many

of the physical properties of our field-theoretic construction.

Our approach can therefore be used to generate many other

exotic states in need of a microscopic construction, as well as

to motivate their wave functions.

Unlike other non-Abelian states, short-distance construc-

tions of the Fibonacci state have proven elusive. The fact

that our construction is based on a parent state involving fairly

germane bosonic FQH phases suggests that a Fibonacci state

may be realizable in the laboratory. Furthermore, we antici-

pate our wave function for the ν = 2 bosonic Fibonacci state

will motivate future numerical searches for this exotic state

in local, microscopic Hamiltonians. Additionally, going for-

ward, it will be of interest to construct a transparent fermionic

analogue of the bosonic Fibonacci state presented here, which

would reproduce the state found in Ref. [35].

One may ask whether a different choice of boson opera-

tors would have yielded an equally reasonable candidate wave

function. In particular, the Ψ↑/↓ operators we defined are part

of an SU(2) quartet. For example, the wave function one ob-

tains by choosing the other pair of operators within this quartet

as the bosons describes the Abelian Halperin (2, 2,−1) state.

While it is possible to obtain this state from our parent tri-

layer theory, it would be interesting to explore how different

choices of boson operator in the CFT language may represent

different parts of the bulk phase diagram.
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Appendix A: Chern-Simons conventions

Here we lay out our conventions for non-Abelian Chern-

Simons gauge theories. We define U(N) gauge fields aµ =
abµt

b, where tb are the (Hermitian) generators of the Lie alge-

bra of U(N), which satisfy [ta, tb] = ifabctc, where fabc are

the structure constants of U(N). The generators are normal-

ized so that Tr[tbtc] = 1
2δ

bc. The trace of a is a U(1) gauge

field, which we require to satisfy the Dirac quantization con-
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dition,

∫

Σ

dTr[a]

2π
= n ∈ Z . (A1)

where Σ ⊂ X is an oriented 2-cycle in spacetime, which we

denoteX . If aµ couples to fermions, then it is a spinc connec-

tion, and it satisfies a modified flux quantization condition

∫

Σ

dTr[a]

2π
=

∫

Σ

w2

2
+ n , n ∈ Z , (A2)

where w2 is the second Stiefel-Whitney class of X . In gen-

eral, the Chern-Simons levels for the SU(N) and U(1) com-

ponents of a can be different. We therefore adopt the standard

notation [38],

U(N)k,k′ =
SU(N)k × U(1)Nk′

ZN
. (A3)

By taking the quotient with ZN , we are restricting the differ-

ence of the SU(N) and U(1) levels to be an integer multiple

of N ,

k′ = k + nN , n ∈ Z . (A4)

This enables us to glue the U(1) and SU(N) gauge fields

together to form a gauge invariant theory of a single U(N)
gauge field a = aSU(N)+ ã1, with Tr[a] = Nã having quan-

tized fluxes as in Eq. (A1). The Lagrangian for the U(N)k,k′

theory can be written as

LU(N)k,k′ =
k

4π
Tr[ada− 2i

3
a3] +

k′ − k
4πN

Tr[a]dTr[a]

(A5)

=
k

4π
Tr

[

aSU(N)daSU(N) −
2i

3
a3SU(N)

]

+
Nk′

4π
ãdã .

(A6)

For the case k = k′, we simply refer to the theory as U(N)k.

Throughout this paper, we implicitly regulate non-Abelian

(Abelian) gauge theories using Yang-Mills (Maxwell) terms,

as opposed to dimensional regularization [53, 54]. In Yang-

Mills regularization, there is a one-loop exact shift of the

SU(N) level, k → k + sgn(k)N , that does not appear in di-

mensional regularization. Consequently, to describe the same

theory in dimensional regularization, one must start with a

SU(N) level kDR = k + sgn(k)N . The dualities discussed

in this paper therefore would take a somewhat different form

in dimensional regularization.

Appendix B: Representation of the Fibonacci order in terms of

U(2)3,1

In this section, we demonstrate explicitly that U(2)3,1 =
[SU(2)3 × U(1)2]/Z2 possesses the same anyon content as

that of (G2)1, namely, just the Fibonacci anyon. There are

multiple ways to describe the process of enforcing the Z2 quo-

tient in the definition of U(2)3,1. From the perspective of the

anyon content of the theories, this quotient amounts to con-

densing [55] a bosonic anyon in the SU(2)3×U(1)2 product

theory with Z2 fusion rules and either 0 or π braiding statistics

with all other anyons. The condensed anyon is then identified

as a local quasiparticle, and so all anyons with which it braids

nontrivially are projected out. In order to identify the anyon

to be condensed, let us remind ourselves of the anyon content

of the SU(2)3 and U(1)2 factors:

U(1)2 : 1, s (B1)

SU(2)3 : [0], [1/2], [1], [3/2]. (B2)

Here, s is the semion, which has topological spin hs = 1/4
and satisfies the fusion rule s × s = 1. We have labelled

the anyons of SU(2)3 by the representation of SU(2) under

which they transform. They are all self-dual, satisfying the

fusion rules

[0]× [0] = [0] (B3)

[1/2]× [1/2] = [0] + [1] (B4)

[1]× [1] = [0] + [1] (B5)

[3/2]× [3/2] = [0]. (B6)

From this, we see that [1], which has spin h[1] = 2/5, is the

Fibonacci. The only Abelian anyon is [3/2], which has spin

h[3/2] = 3/4, trivial braiding with [1], and non-trivial braiding

with [1/2]. We immediately see that, in the product theory,

[3/2]s is an Abelian anyon with spin unity. On condensing

this anyon, all anyons aside from the Fibonacci will become

confined, yielding the desired (G2)1 Fibonacci topological or-

der.

Appendix C: Derivation of the bosonic parent state from

intra-layer flux attachment

Here we describe the intra-layer flux attachment procedure

described in the main text, which yields the bosonic parent

state depicted in Fig. 1(b) of the main text. We start again

with a trilayer of free Dirac fermions near a ν = 2 → 1
plateau transition,

LIQH =

3
∑

n=1

[

Ψ̄n(i /DA −M)Ψn −
3

2

1

4π
AdA

]

. (C1)

This theory is dual to a trilayer of Wilson-Fisher composite

bosons, Φn, coupled to fluctuating CS gauge fields, αn, [56,

57],

LIQH[A]↔
∑

n

LΦn [Φn, αn, A] (C2)
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where

LΦn [Φn, αn, A] =|Dαn
Φn|2 − r|Φn|2 − |Φn|4

+
1

4π
αndαn +

1

2π
Adαn −

1

4π
AdA .

(C3)

Here, −|Φ|4 again denotes tuning such that the theory is

at its Wilson-Fisher fixed point when r = 0, and the phase

diagrams of the two theories match if sgn(r) = − sgn(M).
We now attach a positive flux to the electric charges on

layers n = 1 and 3 and a negative flux to those on layer

n = 2. This is implemented in a manifestly gauge invari-

ant way by the following transformation on each layer’s La-

grangian [58, 59],

LΦn [Φn, αn, A]→LΦn [Φn, αn, γn] +
1

2π
γndβn

+
(−1)n
4π

βndβn +
1

2π
Adβn,

(C4)

where βn, γn are new fluctuating U(1) gauge fields. One can

easily check that the electric charges in the gapped phases of

this theory have had their statistics shifted by ±π. Because

the equation of motion for γn is

d(αn + βn) = dγn , (C5)

γn may be integrated out while preserving flux quantization.

The resulting Lagrangian on each layer is

LΦn ≡|Dαn
Φn|2 − r|Φn|2 − |Φn|4 +

2

4π
αndαn

+
1

4π
[1 + (−1)n] 1

4π
βndβn +

1

2π
αndβn +

1

2π
Adβn ,

(C6)

where we have redefined LΦn to minimize the number of la-

bels in use. On layers n = 1, 3, the CS term for βn van-

ishes. Integrating it out therefore Higgses αn (in other words,

sets dαn = dA), leaving a topologically trivial theory near

a superconductor-insulator transition. On layer n = 2, how-

ever, the CS term for βn has level 2, meaning that the gauge

theory is topologically nontrivial and has the K-matrix of the

Halperin (2,2,1) state. Explicitly, renaming α2 ≡ α, β2 ≡ β,

LΦn=1,3 = |DAΦn|2 − r|Φn|2 − |Φn|4 +
2

4π
AdA , (C7)

LΦn=2 = |DαΦ2|2 − r|Φ2|2 − |Φ2|4+
2

4π
αdα +

2

4π
βdβ +

1

2π
αdβ +

1

2π
βdA .

(C8)

The trilayer theory,
∑

n L̃Φn , is that of Eq. (12) and is depicted

in Fig. 1(b) of the main text.

We now check that these theories are dual to theories of

composite vortices, which on clustering yield the Fibonacci

state. Applying the duality used in Eq. (2) of the main text

along with the transformation flux attachment transformation

in Eq. (C4), the dual theories of composite vortices are

L̃φn ↔ L̃φn = |Daφn|2 − r̃|φn|2 − |φn|4 +
1

4π
Tr

[

andan −
2i

3
a3n

]

+
1

2π
γndTr[an] +

1

2π
γndβn (C9)

+
(−1)n
4π

βndβn +
1

2π
Adβn ,

where again an are U(2) gauge fields. In this case, both γn
and βn can be safely integrated out without running afoul of

flux quantization: integrating out γn implements a constraint

on (i.e. Higgses) βn, dβn = −dTr[an]. The resulting theories

involve U(2)1,−1 gauge theories on layers n = 1, 3, which is

topologically trivial [39], and a U(2)1,3 theory on the n = 2
layer,

L̃φn =|Daφn|2 − r̃|φn|2 − |φn|4 +
1

4π
Tr

[

andan −
2i

3
a3n

]

+ (−1)n
[

1

4π
Tr[an]dTr[an] +

1

2π
AdTr[an]

]

.

(C10)

As in the discussion in the main text, we are free to invoke

charge conjugation symmetry to flip the sign of the BF term

on layer n = 2 relative to those on layers 1, 3.

Appendix D: Details of the Wave Function Construction

1. Constructing the Local Boson Operators

As stated in the main text, the boson operators used in con-

structing the Fibonacci wave function must be selected from

the generators of the (G2)1 current algebra. We present the

technical details of this process here. The (G2)1 current al-

gebra has fourteen generators, twelve of which are labeled by

the roots of G2. In order to obtain explicit expressions for

these operators, we make use of the duality between (G2)1
and U(2)3,1 = [SU(2)3 × U(1)2]/Z2, which will allow us to

write the generators in terms of operators in the SU(2)3 and

U(1)2 conformal field theories (CFTs).

The U(1)2 factor is described by a chiral boson, ϕ, with

compactification radiusR = 1. It supports a single anyon, the

semion, represented by the vertex operator

s(z) ≡ eiϕ(z)/
√
2, (D1)

which has scaling dimension ∆s = 1/4. The operators s2 =

ei
√
2ϕ and s̄2 = e−i

√
2ϕ generate the U(1)2 chiral algebra,

and so correspond to local excitations.

As for SU(2)3, its primary fields, like the anyons in the cor-

responding TQFT, fall into four topological sectors labelled

by the SU(2) representation under which they transform: [j],
j = 0, 1/2, 1, 3/2. In order to write down explicit forms of

these fields and the current operators, we make use of the

fact that the operators of SU(2)3 can be expressed in terms
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of products of operators in the k = 3 parafermion and U(1)6
CFTs, the former of which we will write as Parafermion3. The

U(1)6 CFT is described by a chiral boson φ at radius R = 1,

with primary fields

al(z) ≡ eilφ/
√
6, l = 0, . . . , 5 (D2)

These fields have scaling dimensions∆l = l2/12, from which

we see that the field a6 represents a local excitation. The pri-

mary fields of the Parafermion3CFT and their scaling dimen-

sions are given in Table I while their fusion rules are given

in Table II. The raising and lowering operators of the SU(2)3
algebra are given by the operators,

ψ1a
2 = ψ1e

i
√

2/3φ, ψ†
1ā

2 = ψ2e
−i
√

2/3φ. (D3)

1 ψ1 ψ2 σ1 σ2 ǫ

∆ 0 2/3 2/3 1/15 1/15 2/5

TABLE I. Scaling dimensions of the Parafermion3primary fields.

× ψ1 ψ2 σ1 σ2 ǫ

ψ1 ψ2

ψ2 1 ψ1

σ1 ǫ σ2 σ2 + ψ1

σ2 σ1 ǫ 1 + ǫ σ1 + ψ2

ǫ σ2 σ1 σ1 + ψ2 σ2 + ψ1 1 + ǫ

TABLE II. Fusion rules of Parafermion3.

Now, in order to obtain the (G2)1 algebra from SU(2)3 ×
U(1)2, we must perform the Z2 quotient. As in the TQFT

description, this corresponds to condensing operators in the

[

3

2

]

s (D4)

topological sectors. In the language of CFT, this “conden-

sation” means that the operators in these topological sectors

will be identified as generators of the [SU(2)3 × U(1)2]/Z2

(equivalently, (G2)1) CFT. Explicitly, the operators

ā3, ψ1ā, ψ2a, a3 (D5)

are all in the [3/2] sector, and so are topologically equivalent.

Indeed, each is related to the other by fusion with the SU(2)3
generators, forming an SU(2)3 quartet. Hence, performing

the Z2 quotient means condensing the operators

ā3s, ψ1ās, ψ2as, a3s

ā3s̄, ψ1ās̄, ψ2as̄, a3s̄
(D6)

This set of operators, combined with the generators of SU(2)3
and U(1)2 constitute the twelve generators of (G2)1 labelled

by its roots [60].

Fig. 2 depicts the G2 root system labeled by the corre-

sponding current generators. One can check that vector addi-

tion of the roots matches up with fusion of the corresponding

current operators. Note also that the generators naturally or-

ganize themselves in terms of their transformation properties

under SU(2) and U(1). The vertical coordinate of the root

corresponds to the U(1) charge and the horizontal coordinate

to the SU(2) spin.

FIG. 2. Root system of G2 labelled by the corresponding (G2)1 cur-

rent generators. The green circles indicate the operators we identify

as the boson operators.

It now remains to determine which generators we should

identify as the physical bosons. In the spirit of Refs. [50, 51],

we expect that we must choose two boson operators, by virtue

of the fact that the root system is two-dimensional. The

bosons should have the same positive charge, suggesting we

should restrict ourselves to the upper half-plane of the root

system. As described in the main text, we expect the Fi-

bonacci wave function to describe a two-flavor system, and

so the boson operators should have opposite SU(2) spin. We

thus claim that

Ψ↑ ≡ ψ2as = ψ2e
iφ/

√
6+iϕ/

√
2,

Ψ↓ ≡ ψ1ās = ψ2e
−iφ/

√
6+iϕ/

√
2

(D7)

are the appropriate boson operators.

We note that operators ā3s and a3s also satisfy our two cri-

teria for charge and spin. In fact, Ψ↑ and Ψ↓ form an SU(2)
quartet with ā3s and a3s (as can be seen from Fig. 2), and

so one may reasonably ask whether the latter two operators

constitute equally valid choices for the boson operator. As it

turns out, the wave function obtained from ā3s and a3s de-

scribes an Abelian state, as we demonstrate in the following

section. This suggests, a posteriori, that Ψ↑/↓ are the correct

boson operators needed to obtain a wave function describing

the non-Abelian Fibonacci state.
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2. Derivation of the Fibonacci Wave Function

In this section, we present a computation of the explicit

form of the Fibonacci wave function provided in the main text.

With the choice of boson operators given in Eq. (D7), we can

express the wave function as

Ψ({zi, wi}) = 〈
N
∏

i=1

Ψ↑(zi)Ψ↓(wi)Obg〉

= 〈
N
∏

i=1

ψ2as(zi)ψ1ās(wi)Obg〉, (D8)

where zi and wi label the positions of the up and down spins

(spin is used as a stand-in for some flavor index). Here Obg

is a background charge operator that ensures the correlator of

the s fields is non-vanishing and yields the usual Gaussian

factor on the plane [61]. Note that such an operator for the a
fields is not necessary, since there are an equal number of a
and ā fields, ensuring their charge neutrality condition is sat-

isfied. Physically, this is a consequence of the fact that it is the

U(1)2 sector and hence the s fields which are charged under

the external electromagnetic field. We thus obtain (dropping

the usual overall Gaussian factor),

Ψ({zi, wi}) = 〈
N
∏

i=1

ψ2(zi)ψ1(wi)〉〈
N
∏

i=1

e
i 1√

6
φ(zi)e

−i 1√
6
φ(wi)〉〈

N
∏

i=1

e
i 1√

2
ϕ(zi)e

i 1√
2
ϕ(wi)Obg〉 (D9)

= 〈
N
∏

i=1

ψ2(zi)ψ1(wi)〉
∏

i,j

(zi − wi)
1/3
∏

i<j

(zi − zj)2/3
∏

i<j

(wi − wj)
2/3. (D10)

In order to evaluate the remaining correlator, we can use the

parafermion operator product expansions (OPEs),

ψ1(z)ψ1(z
′) ∼ (z − z′)−2/3ψ2(z

′) + . . . (likewise for 1↔ 2)

ψ1(z)ψ2(z
′) ∼ (z − z′)−4/3 + . . . . (D11)

to effectively point-split the ψ2 operators into products of ψ1

operators:

〈
N
∏

i=1

ψ1(z
1
i )ψ1(z

2
i )ψ1(wi)〉 =〈

N
∏

i=1

(z1i − z2i )−2/3ψ2(z
2
i )ψ1(wi)〉

+ . . . , (D12)

where, here and in the following, the limit z1i → z2i is taken

implicitly. The ellipsis represent less singular terms in the

ψ1×ψ1 OPE which vanish in this limit, allowing us to isolate

the desired parafermion correlator when we take z1i = z2i ≡ zi
at the end of the computation.

Now, the correlator of ψ1 fields is precisely given in terms

of the Read-Rezayi (RR) wave functions:

〈
N
∏

i=1

ψ1(z
1
i )ψ1(z

2
i )ψ1(wi)〉 =Ψk=3

RR ({z1i , z2i , wi})

×Ψ
−2/3
LJ ({z11 , z2i , wi}).

(D13)

Here, Ψk=3
RR and ΨLJ({zi}) =

∏

i<j(zi−zj) are the ν = 3/2
bosonic RR (taking k = 3 and M = 0 in the notation of

Ref. [15]) and Landau-Jastrow wave functions, respectively.

Hence,

〈
N
∏

i=1

ψ2(z
2
i )ψ1(wi)〉+ . . . = Ψk=3

RR ({z1i , z2i , wi})Ψ−2/3
LJ ({z11 , z2i , wi})

N
∏

i=1

(z1i − z2i )2/3 (D14)

= Ψk=3
RR ({z1i , z2i , wi})

∏

i<j

(z1i − z1j )−2/3(z2i − z2j )−2/3(wi − wj)
−2/3

×
∏

i6=j

(z1i − z2j )−2/3
∏

i,j

(z1i − wj)
−2/3(z2i − wj)

−2/3.
(D15)

We can now safely set z1i = z2i ≡ zi, in which case the terms contained in the ellipsis vanish identically. Combining terms
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and ignoring unimportant overall phase factors, we obtain

Ψ({zi, wi}) = Ψk=3
RR ({zi, zi, wi})

∏

i<j

(zi − zj)−2

×
∏

i,j

(zi − wj)
−1

(D16)

as our Fibonacci wave function. Here, Ψk=3
RR ({zi, zi, wi}) is

the bosonic ν = 3/2 RR wave function for 3N particles, with

the coordinates of N pairs of these particles set equal to one

another. As noted in the main text, the asymmetry in zi andwi

is a consequence of having point-split the ψ2 parafermions as

opposed to the ψ1 parafermions. Had we instead point-split

the ψ1 parafermions into products of ψ2 parafermions, we

would have obtained the above expression with zi and wi ex-

changed. Since the expressions obtained via these two differ-

ent point-splitting procedures must necessarily be equal, we

can write down the wave function in a manifestly symmetric

way by taking their average:

Ψ({zi, wi}) =
(

Ψk=3
RR ({zi, zi, wi})
∏

i<j(zi − zj)2
+

Ψk=3
RR ({zi, wi, wi})
∏

i<j(wi − wj)2

)

× 1

2

∏

i,j

(zi − wj)
−1. (D17)

Finally, we return to the remark regarding the choice of

boson operators made at the end of the preceding section.

Had we instead attempted to construct a wave function using

Ψ↑↑ = a3s and Ψ↓↓ = ā3s as the boson operators, we would

have obtained

Ψ̃({zi, wi}) = 〈
N
∏

i=1

Ψ↑↑(zi)Ψ↓↓(wi)Obg〉 (D18)

= 〈
N
∏

i=1

ei
√

3

2
φ(zi)e−i

√
3

2
φ(wi)〉

× 〈
N
∏

i=1

e
i 1√

2
ϕ(zi)e

i 1√
2
ϕ(wi)Obg〉 .

(D19)

The correlators of vertex operators can be straightforwardly

evaluated to obtain

Ψ̃({zi, wi}) =
∏

i<j

(zi − zj)2(wi − wj)
2
∏

i,j

(zi − wj)
−1,

(D20)

which describes the Abelian Halperin (2, 2,−1) state, again at

filling ν = 2. This gives us some confidence that Ψ({zi, wi})
correctly describes the Fibonacci state.
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[29] A. López and E. Fradkin, Fractional quantum Hall effect and

Chern-Simons gauge theories, Phys. Rev. B 44, 5246 (1991).

[30] N. Read and D. Green, Paired states of fermions in two

dimensions with breaking of parity and time-reversal

symmetries and the fractional quantum Hall effect,

Phys. Rev. B 61, 10267 (2000).

[31] E. H. Fradkin, C. Nayak, and K. Schoutens,

Landau-Ginzburg theories for non-Abelian quan-

tum Hall states, Nucl. Phys. B546, 711 (1999),

arXiv:cond-mat/9811005 [cond-mat].

[32] H. Goldman, R. Sohal, and E. Fradkin, Landau-Ginzburg the-

ories of non-Abelian quantum Hall states from non-Abelian

bosonization, Phys. Rev. B 100, 115111 (2019).

[33] B. Blok and X. Wen, Many-body systems with non-Abelian

statistics, Nuclear Physics B 374, 615 (1992).

[34] D. Radicevic, D. Tong, and C. Turner, Non-

Abelian 3d Bosonization and Quantum Hall States,

JHEP 2016 (12), 067, 1608.04732.

[35] H. Goldman, R. Sohal, and E. Fradkin, Non-Abelian

fermionization and the landscape of quantum Hall phases,

Phys. Rev. B 102, 195151 (2020).

[36] O. Aharony, G. Gur-Ari, and R. Yacoby, d = 3 bosonic

vector models coupled to Chern-Simons gauge theories,

J. High Energy Phys. 03 (3), 37.

[37] S. Giombi, S. Minwalla, S. Prakash, S. P. Trivedi, S. R. Wadia,

and X. Yin, Chern-Simons theory with vector fermion matter,

Eur. Phys. J. C 72, 1 (2012).

[38] O. Aharony, Baryons, monopoles and dualities in Chern-

Simons-matter theories, J. High Energy Phys. 02 (2), 93.

[39] P.-S. Hsin and N. Seiberg, Level/rank Du-

ality and Chern-Simons-Matter Theories,

JHEP 09 (9), 095, arXiv:1607.07457 [hep-th].

[40] J.-Y. Chen and M. Zimet, Strong-Weak Chern-

Simons-Matter Dualities from a Lattice Construction,

JHEP 08 (8), 015, arXiv:1806.04141 [hep-th].

[41] A. Hui, E.-A. Kim, and M. Mulligan, Non-Abelian

bosonization and modular transformation approach

to superuniversality, Phys. Rev. B 99, 125135 (2019),

arXiv:1712.04942 [cond-mat.str-el].

[42] M. Camperi, F. Levstein, and G. Zemba, The

large N limit of Chern-Simons gauge theory,

Physics Letters B 247, 549 (1990).

[43] S. G. Naculich and H. J. Schnitzer, Duality be-

tween SU(N)k and SU(k)N WZW models,

Nuclear Physics B 347, 687 (1990).
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